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Abstract—We introduce a novel Conceptual Framework for
finding approximations to both Minimum Weight Triangulation
(MWT) and optimal Traveling Salesman Problem (TSP) of
planar point sets. MWT is a classical problem of Computational
Geometry with various applications, whereas TSP is perhaps
the most researched problem in Combinatorial Optimization.
We provide motivation for our research and introduce the
fields of triangulation and polygonization of planar point sets
as theoretical bases of our approach, namely, we present the
Isoperimetric Inequality principle, measured via Compactness
Index, as a key link between our two stated problems. Our
experiments show that the proposed framework yields tight
approximations for both problems.
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I. INTRODUCTION

Traveling Salesman Problem (TSP), whose optimal solu-
tion is the minimum-length Hamiltonian Cycle, is the landmark
problem in the field of Combinatorial Optimization. TSP
is essential for the real-world applications such as vehicle
routing, production planning, and design of hardware devices
and computer networks. Triangulations, on the other hand,
represent the most intuitive way one can partition a planar
point set. They are used as valuable tools in cartography and
topology of old, and mesh generations in Computer Science
of new. Minimum weight triangulation (MWT) is defined as
the full triangulation of the planar point set with minimal
total edge length; it is also commonly referred to as the
optimal triangulation. Both TSP and MWT had been proven
to belong to the class of NP-hard problems. While prior
research has pointed at strong links between MWT and TSP
[1], we uncovered a clear knowledge gap in substantiating
this relationship. This article aims to close the gap by using
the tools of traditional geometry, such as the Isoperimetric
Inequality principle, and proposing a conceptual framework
aimed at generating close approximations to both problems.

II. BACKGROUND

A. Traveling Salesman Problem

In purely mathematical terms, TSP is the problem of
finding a Hamiltonian tour of minimum weight in a complete
edge-weighted graph. In our research, we consider a symmetric
TSP, or STSP, in that we assume that edge-costs are symmetric,
or, equivalently, that the graph is undirected. A special case of

Fig. 1. TSP example of a tour through US cities [4]

the TSP is obtained when the vertices of the graph correspond
to points in the Euclidean plane, and the distance between
any two points is equal to the Euclidean distance between the
corresponding points. The Euclidean TSP is a special case of
the metric TSP, in which the costs obey the triangle inequality.
Metric TSP was found to be strongly NP-hard [2]. Related to,
but distinct from, the Euclidean TSP is the planar graph TSP
which is the focus of our research. This is the version of the
TSP in which a planar graph G = (V,E) is given, with weights
on the edges of E, and one seeks the minimum cost tour which
uses only edges in E. Not only is this problem NP-hard, it is
NP-hard even to test if a planar graph is Hamiltonian [3]. Fig.
1 illustrates a tour through all US cities with population greater
than 500 as of 1998 [4].

TSP belongs to the class of NP-hard problems since no
polynomial-time algorithm exists that can solve the problem
optimally in polynomial time, regardless of its complexity
(i.e. the number of cities in the tour). The best result to date
is a solution method, introduced in 1962, that runs in time
proportional to n22n [5].

To quickly generate good TSP approximations, a number
of heuristics algorithms has been developed over the past 50
years. Heuristic algorithms are problem-dependent techniques
that use systematic procedures derived from relatively simple
idea towards finding a good solution [6]. A comprehensive
taxonomy of TSP heuristics is reproduced in Fig. 2.
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Fig. 2. Taxonomy of TSP Heuristics [6]

TSP heuristic algorithms can be divided into two distinct
categories of construction and improvement. Tour construc-
tion heuristics stop when a solution is found. Improvement
heuristics start with a subset of points, and then insert the rest
according to some selection rules.

To summarize our problem statement, researchers have
detailed out a number of innovative optimization techniques
such as Simulated Annealing, Ant Colony Optimization, and
Genetic Algorithms [5]; while these techniques produce good
results, they do not make a dramatic shift in either the inci-
dence of optimal solutions generated or the worst-performance
guarantee. This was our main motivation to look to a geometric
nature of a planar TSP.

B. Geometry and the Traveling Salesman Problem

In the early 1990s Fekete introduced TSP as one of
the three optimal polygonization problems [7]. Indeed, in
a planar point set S with n points, one can seek optimal

polygonizations (with all points on the perimeter representing
polygon vertices) that minimize area (MINAP), maximize
enclosed area (MAXAP), and minimize perimeter (TSP). In
his doctoral thesis and subsequent research, Fekete had proven
that both MINAP and MAXAP are also NP-hard problems
and harder to solve for than TSP since edge lengths are
not good representatives of the inclusion or exclusion criteria
[8]. Fekete proposed a simple heuristic for minimum area
polygonization, one that starts with the smallest empty 3-gon
(i.e. triangle), and greedily adds to the partial polygonization
candidate triangles with smallest area until full polygonization
is obtained. Candidate triangles are remaining triangles that
share edges with triangles already in the polygonization. Our
research indicates this was the first time that triangles rather
than edges were used to build a complex polygon. In his
doctoral thesis a decade later, Vassilev used the area of simple
triangles as a constraint, not as a quality measure, in building
optimal Min-Max triangulation [9].
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C. Triangulations in Computational Geometry

Triangulations represent the most intuitive way one can
partition a planar point set [10]. Conceptually, triangulations
have been discussed before TSP and polygonizations in general
and are very valuable tools in cartography and topology of
old, and mesh generations in Computer Science of new [10].
A set of triangles is called a triangulation T of the point
set S if and only if: (a) every triangle of T has its vertices
in S, (b) no triangle of T contains a point from S in its
interior, (c) every two triangles in T have disjoint interiors,
and (d) the union of all the triangles in T is exactly the
convex hull of S [9]. Full triangulation completely partitions
a planar point set. Triangulations of point sets in the plane
have been studied for the last four decades as one of the
important structures in Computational Geometry [9]. Vassilev
pointed to three important attributes of a triangle that form
a triangulation: (a) edge lengths, (b) angles and (c) area in
his thesis, and utilized the triangle area as a constraint rather
than as a general optimization criterion. This he stated was
a significant motivator for his work. Our work, as it will be
further revealed, is chiefly anchored on what we call the fourth
triangle attribute of Compactness Index, which will be defined
a few sections below.

The major reason to study triangulations, apart from the
abundant mathematical challenges, is dictated by the practi-
cal applications [9]. Practical fields where triangulations are
used include computer graphics [11], terrain approximations,
multivariable analysis, numerical methods, and mesh genera-
tion [12]. Connected subgraphs of triangulations like Gabriel
Graph and Relative Neighborhood Graph are used in wireless
networking and ad hoc routing [13].

Triangulations are typically created to optimize some qual-
ity measure [9]. One might choose to minimize the maximum
angle or maximize the minimum angle in a planar set triangu-
lation; these are called Min-Max and Max-Min triangulations.
One can also choose to minimize the total sum of edge lengths;
this is called Minimum Weight Triangulation, or MWT. None
of the triangulations captures imagination of researchers as
much as Delaunay triangulation, an example of which is given
in Fig. 3.

The origins of Dalaunay dual, the Voronoi diagram, reach
way back into the 17th century and writings of Descartes, who
imagined the universe as a set of regions around each star
and illustrated his thinking with what would be later become
known as Voronoi diagrams [14]. Voronoi diagram also mimics
the end stage of the cell formation, and several other key
biological and chemical processes. Delaunay triangulation of
a planar point set maximizes minimum triangulation angle,
and contains Minimum Spanning Tree (shortest spanning tree),
Nearest Neighbor Graph (graph containing edges between
closest points), and Gabriel Graph (graph in which points x
and y are neighbors only if there are no other points inside
their diameter circle) [10].

It is therefore not surprising that researchers speculated
Delaunay triangulation was also MWT, and that it also con-
tained TSP [15]. The claim that Delaunay and MWT contained
TSP was rejected by Dillencourt, who used a specific point
set configuration example to disprove the claim [16]. The
claim that Delaunay even approximated MWT in all point

Fig. 3. Voronoi diagram (solid lines) and Delaunay triangulation (dashed
lines) of a planar set of 16 points

set configurations has been rejected by Manacher and Zobrist
who also used a specific point set configuration of a simple
regular polygon to disprove the hypothesis [17]. However,
even though Delaunay triangulation is not MWT, it does
approximate it in randomized point set configurations [18].
Several researchers have since shown that using only edges
from well-known triangulations and existing solution tech-
niques like Concorde optimization engine can produce good
TSP approximations, often approaching optimality. Letchford
and Pearson, for instance, utilized Concorde to use edges of
Delaunay triangulations in 29 TSPLIB problems to solve for
TSP using Concorde [1]. They found that heuristic results
where on average only 0.28% worse than optimal, while in
no case being more than 3.3% worse than optimal [1].

D. Why do “Good” Triangulations Yield “Good” TSP Tours?

Our extensive review uncovered a clear knowledge gap
in understanding of why TSP edges are also overwhelmingly
present in MWT. To contribute to closing this gap, we re-
searched Isoperimetric Inequality principle (L2 ≥ 4πA, where
L is the perimeter and A is the area). Isoperimetric Inequality
principle states that out of all geometric figures with fixed
perimeter it is a circle that contains maximum area [19]. As
with most of basic geometry, this special property dates to
antiquity. According to the work of Kesavan, this inequality
can be restated to indicate that, of all triangles with equal area,
it is the equilateral triangle that has the smallest perimeter
[20]. The measure of Isoperimetric Inequality can be stated as
CI = 4πA

L2 , to describe what researchers call the Compactness
Index of simple geometric figures [21]. For example, any circle
would have Compactness Index of 1, and all other figures have
Compactness Indices of strictly less than 1, as illustrated in
Fig. 4.

The remainder of this paper is organized as follows. First,
we propose the conceptual framework which prioritizes empty
compact triangles as fundamental building blocks for both
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Fig. 4. Compactness Index range for 2D geometric shapes [22]

triangulations and polygonizations of choice. Second, within
this proposed framework we introduce the algorithm to find
approximations to MWT and TSP. Next, we evaluate the
quality of the introduced algorithm experimentally. Finally, we
make our conclusions and outline next steps.

III. OUR APPROACH

A. Data Hierarchy

In theoretical fields mentioned in our introduction, re-
searchers tend to follow a traditional data hierarchy model
outlined in Fig. 5a. To create TSP approximations, for instance,
heuristics evaluate distances between points as key indicators
of fitness for their inclusion into, or exclusion from, a solu-
tion tour. Our methodology, on the other hand, utilizes data
hierarchy shown in Fig. 5b. This hierarchy organizes points
into triangles, and then fits triangles into triangulations, all
based on the triangle attribute of choice (i.e. Area, Perimeter,
Compactness Index, Triangle Inequality). In this structure,
edges are looked at only within the context of the triangles
they constitute.

Similarly, polygonizations are only viewed as triangulation
attributes; they are simply outer perimeters of either full or par-
tial triangulations. This adjustment allows us to deploy system
theoretical thinking in that it allows us to view polygonization

Fig. 5. a) Data hierarchy prevalent in the existing theoretical framework; b)
Proposed data hierarchy guiding our research

Fig. 6. Proposed Conceptual Framework

simply as a system boundary between triangles belonging to
the polygonization, representing the System, and remaining
triangles in the triangulation, representing the Environment.
Prevalent data hierarchy presented in Fig. 5a depends on the
intelligent selection of candidate edges from an exponential
number of possibilities, a problem that grows more and more
difficult as the number of points increases. An advantage of
the proposed hierarchy lies in both the greater density of
information contained in empty 3-gons and in comparatively
smaller, or polynomial, number of empty triangle candidates
[23].

B. Proposed Conceptual Framework

This data hierarchy ultimately allows us to propose the
conceptual framework presented in Fig. 6.

Step 1 in Fig. 6 highlights the choice of Compactness Index
as the key triangle attribute in the subsequent step of creating
a full triangulation. Step 2 in in Fig. 6 aims to produce a full
triangulation of planar set S by greedily selecting most compact
empty triangles. Once a full triangulation is obtained in such a
way, we ensure it is also locally optimal by performing targeted
edge (triangle) flips only in cases when such flips result in
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shorter triangulation length. We call this triangulation Greedy
Compact Triangulation, or GCT. We call the algorithm that
creates it the GCT algorithm. We know that there are 2n−h−2
simple triangles in GCT of a planar set S of n points, where
h represents the number of points on the CH(S), or Convex
Hull of S because this is a number of triangles in any full
triangulation [9]. We hypothesize that because GCT favors
compact empty triangles it will also minimize triangulation
edge lengths; this is due to Isoperimetric Inequality principle.
Step 3 in Fig. 6 highlights the choice of Triangle Inequality
Measure as the key triangle attribute in the subsequent step
of creating our TSP approximation. Step 4 in Fig. 6 aims
to produce a polygon of planar set S by removing exposed
triangles with minimum Triangle Inequality Measure from
GCT until n−2 triangles remain, since we know there are n−2
simple triangles in any polygonization of planar point set of
n points. The applicability of Step 6 step has been confirmed
earlier [22]. In this article we focus on viability of Steps 1 and
2.

C. GCT Algorithm

GCT algorithm pseudo code is introduced in five simple
steps shown below:

Input Planar Point Set S with n points
Output GCT (S)

1 Initialize array Points of size n, and load coordinates (x, y)
2 Build up simpleTriangles array of max n2 x 6 (3 vertices, area, perimeter,

Compactness Index).
3 Sort simpleTriangles array (on Compactness Index; decreasing order).
4 Build GCT array of max (2n – 2) x 6 (3 vertices, area, perimeter,

Compactness Index).
5 Improve GCT by performing edge (triangle) flipping when a flip results

in triangulation length decrease.

The time complexity of Step 1 of GCT Algorithm is O(n)
since there are n points in a planar point set S. Step 2 has the
time complexity of at most O(n4) since there are

(
n
3

)
triangles

in a planar point set with n points that need to be checked
against containing up to n−3 remaining points. Step 3 has the
time complexity of O(3n3logn) provided we utilize Heap Sort
algorithm whose worst-case time complexity is O(mlogm),
where m = O(n3) and is the number of items to be sorted[24].
Step 4 has the time complexity of no more than O(n4), as
we check up to

(
n
3

)
candidate empty triangles in a planar

point set of n points against intersecting with up to 3n − 3
triangles already included in GCT [9]. Finally, Step 5 has the
time complexity of O(n2), as this is the time complexity to
transform any triangulation into another [25]. It is also easy to
show that the space complexity of GCT algorithm is O(n3),
since there are up to

(
n
3

)
empty triangles in a planar point

set of n points. In summary, GCT algorithm is polynomial
in both the time and space complexity at O(n4) and O(n3),
respectively.

D. Illustration

To demonstrate applicability of our approach we turn to the
simple example illustrated in Fig. 7. There are n = 52 points
in this TSPLIB planar point set called S = berlin52, which
depicts 52 locations in the city of Berlin [26]. Triangulation
lines represent edges in GCT of berlin52. Grey polygon with
the thick red perimeter represents TSP of berlin52. There are
exactly h = 8 locations on the Convex Hull of this point

Fig. 7. TSP is fully contained within GCT for berlin52 problem set [22]

set, and there are n − 2 = 50 gray triangles denoting TSP
polygon. This leaves us with exactly n − h = 44 remaining
white triangles, representing the Environment. One can easily
see that TSP polygon is fully contained within GCT.

IV. EXPERIMENTAL METHODOLOGY

A. Hypotheses

We hypothesize that TSP polygon is fully embedded in
GCT in more than 50% of the cases; this is based on our
literature review [1]. In cases when full containment does
not occur, we hypothesize that only a minor number of
GCT triangles will be intersecting with optimal TSP, and that
minimum perimeter polygon in GCT will closely approximate
the optimal TSP solution, with error margins similar to those
observed in research of Letchford and Pearson [1]. Finally,
we speculate that best results will occur in randomized point
set configurations, since prior research in restricting candidate
edges to Delaunay edges worked best in these point set
configurations [1].

B. Data Sets

To perform our experiments we selected 18 problem sets
from TSPLIB, a well-known online problem library created
to provide researchers with a broad set of test problems
from various sources and properties [26]. We have chosen 11
problem sets which are given with points in general position
(att48, berlin52, ch130, eil51, eil76, eil101, gr06, gr137, rat99,
rat195, rd100). This was important as point sets in general
position do not have 3 or more co-linear points. We have also
chosen 7 problem sets with a significant number of co-linear
points (lin105, pr76, pr107, pr124, pr136, pr144, u159). This
was done to test performance of our framework in both point
set configurations. Another reason to choose these TSPLIB
problem sets was their appearance in prior research that already
identified their respective MWT lengths [27].
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C. Programming

To achieve our first experimental objective, we have pro-
grammed GCT Algorithm in VBA for Excel and found GCT
for each of our problem sets. We have then calculated relative
difference of GCT lengths to MWT lengths found in prior
work of Haas [27], and identified this as GCT-to-MWT Error.

To achieve our second experimental objective, we have
plotted each of the 18 resulting triangulations, together with
their respective optimal TSP tours, in MATLAB. We have
then visually inspected for the deviations from full TSP
embeddedness in each experimental problem instance. When
deviations were identified, they were removed and replaced
with the most optimal edges in GCT to complete the minimum
length polygons (pGCT) for each problem. Finally, we have
programmed pGCT length calculations in VBA for Excel to
calculate the relative difference between pGCT and optimal
tour lengths, identified as pGCT-to-TSP Error.

V. EXPERIMENTAL RESULTS

Table I shows our experimental results.

On average, GCT triangulations found in our test problems
are only 0.63% longer than MWT. The greatest deviation
was registered with pr107 problem set, where pGCT polygon
was 4.20% longer than optimal. For 11 problem sets in
general point positions the average error decreased to 0.36%.
Calculated t-test statistic (one tail) at p = 2.46% shows that
statistically significant difference was observed between two
sets. Box plots for the entire data set, together with each type
of problem sets individually, are shown in Fig. 8.

Even more impressively, pGCT polygons identified in our
test problems are on average only 0.36% longer than optimal
TSP solutions. The greatest deviation was registered with
pr124 problem set, where pGCT polygon was 4.78% longer
than optimal. Full embeddedness was observed in 11 out of
18 cases, which represents 61.1% of the sample problems. In
5 out of 7 cases we have identified a single deviation from
optimality, where the remaining 2 cases had 2 deviations from
optimality. Interestingly, in one of the well-known TSP prob-
lems (gr137) we have identified an improvement to the stated

TABLE I. GCT AND PGCT PERFORMANCE AGAINST MWT AND TSP FOR
18 TSPLIB INSTANCES

Instance S n GCT-to-MWT Error pGCT-to-TSP Error
1 att48 48 0.44% 0.33%
2 berlin52 52 0.80% 0.00%
3 ch130 130 0.15% 0.05%
4 eil51 51 0.00% 0.00%
5 eil76 76 0.00% 0.00%
6 eil101 101 0.00% 0.00%
7 gr96 96 0.11% 0.13%
8 gr137 137 0.77% 0.08%
9 lin105 105 0.36% 0.00%
10 pr76 76 0.68% 0.26%
11 pr107 107 0.30% 0.00%
12 pr124 124 0.19% 4.78%
13 pr136 136 0.18% 0.00%
14 pr144 144 4.11% 0.02%
15 rat99 99 0.39% 0.00%
16 rat195 195 0.81% 0.00%
17 rd100 100 0.92% 0.00%
18 u159 159 1.19% 0.00%

Fig. 8. Box plots for both GCT and pGCT deviations from optimal.

optimal solution. Even though the average error decreased to
only 0.13%, t-test statistic (one tail) at p = 20.86% did not
indicate this was a statistically significant difference between
two types of problem sets. Box plots for the entire data set,
together with each type of problem sets individually, are shown
in Fig. 8.

VI. CONCLUSIONS

Our research proposed a novel conceptual framework,
illustrated in Fig. 6, aimed at approximating both MWT and
TSP. A key part of this framework is GCT algorithm we
proposed to create a near-optimal TSP based on Isoperimetric
Inequality principle applied to simple triangles having points
from planar point sets as vertices.

We have shown that the space and time complexity of
this algorithm are O(n3) and O(n4) respectively. We have
also experimentally confirmed that, on average, GCT is within
0.63% of MWT in 18 TSPLIB instances. In our experiments
we have also shown that GCT was at most 4.20% less-
optimal than MWT. Furthermore, we have hypothesized that
full TSP containment within GCT would be observed more
than half of the time, and in our experimentation we have
found that pGTC = TSP in 61.1% of our sample problems.
We have also hypothesized that the pGCT lengths would be
comparable to results of Letchford and Pearson [1]. Indeed,
pGCT polygons identified in our 18 TSPLIB instances were
on average only 0.36% longer than optimal, with none being
more than 4.78% longer than optimal.

We have also assumed that improved results will be ob-
served in randomized TSPLIB point set configurations, which
has also been confirmed in our experimentation. If we exclude
7 TSPLIB problems which have three or more co-linear points,
the average observed GCT and pGCT errors were reduced to
0.36% (down from 0.63%) and 0.12% (down from 0.36%),
respectively.
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