
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

233 | P a g e

www.ijacsa.thesai.org

Using Combined List Hierarchy and Headings

of HTML Documents for Learning

Domain-Specific Ontology

Muhammad Ahsan Raza1

Department of Information Technology

Bahauddin Zakariya University

Multan, Pakistan

Binish Raza2

Faculty of Computer Science and Information Technology

University of Malaya

Kuala Lumpur

Malaysia

Taiba Jabeen3

Faculty of Education

Allama Iqbal Open University, Multan, Pakistan

Sehrish Raza4

Institute of Computer Science and Information Technology

The Women University, Multan, Pakistan

Munnawar Abbas5

Department of Computer Science

Institute of Southern Punjab, Multan, Pakistan

Abstract—HTML pages contain unstructured and diverse

information. However, these documents lack semantics and are

not machine understandable. Semantic webs aim to add formal

semantics to web data, whereas ontology provides formal

semantics to a domain and is thus considered a foundation of

semantic webs. Domain ontologies can be constructed manually,

but this process is tedious and inefficient. Thus, this study

presents an ontology learning (OL) model to create domain

ontologies automatically from a set of HTML pages. The key

insight of this research is that it combines the list structure and

headings of HTML pages to recognize the ontology vocabulary.

The approach also incorporates synonym relationships with

ontology and allows the semantic interpretation of ontology

concepts. We implement the proposed OL approach to build

sports ontology from a collection of sports domain HTML

documents. The new sports ontology is tested using FaCT++

reasoner; results show no inconsistency in the ontology.

Furthermore, experts evaluate the successful mapping of HTML

lists and headings to the ontology vocabulary. The proposed OL

approach performs effectively and achieves 92.7% and 95.4%

precision values for list and heading mapping, respectively.

Keywords—Ontology learning; semantic web; sports ontology;

HTML documents; knowledge extraction; ontology engineering

I. INTRODUCTION

HTML is a markup language that is used to write web
pages over the World Wide Web [1]. It consists of elements
called tags, which have a fixed definition. Web browsers are
tools that interpret these tags and display the web pages. Many
web applications, such as data mining, machine learning,
artificial intelligence, and natural language processing,
facilitate the retrieval of information from web pages to fulfill
user information requirements [2-4]. However, semantics (i.e.,
definition of data embedded in a tag) are not explicitly

provided in HTML pages. The vision of semantic webs is to
achieve HTML documents that are understandable by
machines. To achieve this vision, a formal manner of
representing semantics is required. This semantic
representation organizes information, thereby enabling the
machines to search and process information rapidly and
accurately. Ontology has emerged as an approach that
represents the machine-understandable semantics of a domain
and is currently considered the heart of semantic web
technologies [5].

An ontology represents domain semantics in terms of
classes, which are linked via relationships called properties.
The manual construction of ontologies for specific domains is a
time-consuming and tedious task [6]. In contrast to manual
ontology development, ontology learning (OL) aims to create
ontologies automatically from given sources, such as textual
and HTML documents or relational database (RDB) schema
[7]. Thus, an OL approach helps reduce the time and effort
consumed in ontology development. In [8], the authors
presented and analyzed a broad spectrum of OL approaches.

This study presents an OL approach that learns ontology
automatically by using HTML documents. The ontology is
learned through a combined use of the list and heading tags of
HTML. In our OL approach, an initial ontology is initially built
by exploiting the structure of HTML lists. Subsequently, the
HTML headings are mapped and merged into the initial
ontology to generate the final ontology. The proposed OL
approach has two unique features, which are as follows.

1) It utilizes the combination of HTML list and heading

tags to develop an ontology.

2) Synonym relationships are added to the resultant

ontology to improve the semantic interpretation of concepts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

234 | P a g e

www.ijacsa.thesai.org

The next section presents related work on OL and
illustrates the different categories of OL approaches. Section 3
discusses the steps and algorithms of the proposed OL
approach. Section 4 outlines the evaluation metrics and
discusses the results. The last section provides the conclusion
and future directions.

II. RELATED WORK

Various OL techniques have been proposed in the
literature. These techniques are classified into three main
categories, namely, textual, knowledge, and semistructured
based techniques.

A. Textual-based OL Techniques

Textual or linguistic techniques depend on natural language
processing methods for learning ontology constructs from
textual data. These approaches exploit linguistic analysis to
uncover the key terms and relationships among terms from a
given text. Authors in [9] exploited the syntactic patterns of
sentences to discover the dependency relations among words.
Their proposed extraction procedure provides a fruitful tool for
learning domain ontology to support web services. Two
different evaluations, namely, quantitative and qualitative
evaluation, are adopted to check the performance of tools. In
quantitative evaluation, the precision measure is calculated to
represent the extraction of relevant information from the text.
On the contrary, the extraction of valid hierarchical structures
to build an ontology among words is analyzed through
qualitative evaluation.

Venu et al. [10] illustrated relation pattern hypernymy (i.e.,
parent–child) and meronyms (i.e., part–whole) in their system
to learn ontology automatically. The proposed system
developed an ontology in five stages, as follows: (1) in the first
stage, an iterative focused crawler is used over the corpus
collection; (2) in the second stage, the dominant terms are
extracted using a hyperlink-induced topic search algorithm
[11]; (3) in the third stage, hypernym and meronym patterns
are extracted to recognize taxonomic relations (superclass and
subclass); (4) association rules are used for mining
nontaxonomic relations in the fourth stage; (5) the last stage
refines the domain-specific ontology. Many other techniques,
namely, co-occurrence analysis [12], clustering analysis [13],
term subsumption [14], and association rule mining [15], are
also used in the OL procedure for ontology building with high-
level precision.

B. Knowledge-based OL Techniques

In this OL category, ontologies are learned through
structured data, such as using knowledge structure or database
schemas. Various approaches have been proposed for learning
ontologies from relational schemas, that is, mapping relational
schema elements to ontology vocabulary [16-17]. In [18], the
authors proposed a migration approach that generates resource
description framework (RDF) graphs from the RDB. To build
ontologies, they built a prototype that extracts the metadata
schema of databases. Subsequently, the extracted schema was
converted into a canonical data model to facilitate the
migration procedure. Lastly, the structure of the RDF ontology
was generated as a result of the migration process.

To learn the ontology from the RDB, Hazber et al. [19]
proposed a novel approach to facilitate semantic web
applications. The approach consists of two phases, namely,
(1) constructing ontology structures from the RDB schema and
(2) learning ontology instances from the RDB data
accordingly, that is, mapping rules are applied on the RDB data
to obtain ontological instances in RDF triple formats. The
resultant ontology of the proposed approach appeared to be
reliable and was also verified by software engineers. Gamallo
and Pereira-Farina [20] used WordNet knowledge structure for
OL. Different WordNet relation types, such as synset and
hypernyms, are exploited to learn the vocabulary of ontology.
The learned ontology represents high-level domain semantics
with the use of WordNet knowledge-based techniques.

C. Semistructured-based Techniques

The approaches that learn ontologies from semistructured
data, such as XML documents or HTML corpus, fall under the
semistructured-based OL group. In [21], the ontology in RDF
language is learned from legal XML documents. In addition to
XML files, authors explored the use of cases of an ongoing
project to improve the accuracy of RDF graphs. The
performance evaluation of RDF ontologies showed
improvement over an existing parser.

Algosaibi and Albahli [22] reviewed different categories of
OL techniques, especially focusing on web documents to
achieve the vision of semantic webs. Hazman et al. [23]
presented an approach to learn ontology from HTML
documents. The approaches are used by extracting the phrases
of HTML headings, which are then converted into seed
concepts representing the domain knowledge. Subsequently,
the relationships between heading phrases are identified on the
basis of the heading hierarchy within the HTML page. The
approach provides a useful lightweight ontology. However,
focusing only on HTML headings may not fully capture the
semantics of the domain of interest. Authors in [24] followed a
manual approach to construct ontologies in the tourism
domain. The researchers collected tourism data from HTML
datasets and then explored the structure of HTML documents
to extract the ontology vocabulary. The tourism ontology is
evaluated by experts using questionnaires and the Pellet
reasoner tool. The approach is effective but relies on the
manual identification of ontology vocabulary from the corpus.

Recent research has focused on automatic learning of
ontology from the HTML documents. However, this study
proposed an OL technique that differs from existing works in
terms of two unique facets. (1) In addition to HTML headings,
we used ordered and unordered lists, given that these HTML
lists can be a good source to extract web documents with
appropriate structure. (2) We included synonym relationships
in the creation of final ontologies to improve the semantics of
the domain.

III. PROPOSED ONTOLOGY LEARNING MODEL

We propose an OL model using semistructured web data
while considering all semantics of the domain. The proposed
model (as shown in Fig. 1) is composed of seven components.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

235 | P a g e

www.ijacsa.thesai.org

Fig. 1. Steps of the OL Model.

A. List Extractor

HTML lists (either ordered or unordered) within the
<script> or <div> tags are usually used as menus in HTML
documents [25]. For OL, the lists provide an improved source
of information to understand the appropriate structure of the
collected web documents. A list extractor module is
responsible for extracting lists from the input HTML
collection. For instance, from the unordered list (as shown in
Fig. 2), the list extractor module acquires athletic trainer
 as a list item.

B. Heading Extractor

Headings in HTML documents are also important to
understand the structure of web documents. Researchers have
focused on using them in OL procedures [22-23]. In our OL
model, the heading extractor module was used to extract
headings from HTML documents, where all six heading levels
are considered. For instance, from the HTML code <div><h1>
Assistant athletic trainer </h1></div>, this module retrieves the
heading item as <h1> Assistant athletic trainer </h1>.

C. Preprocessing

This step normalizes the inner text of the extracted HTML
lists and headings. The output of this model are the following
two sets: HTML list set (HLS) and HTML heading set (HHS).
HLS or HHS normalization involves two important tasks,
namely, stop word removal and stemming.

1) Stop word removal: Numbers and stop words (e.g., the,

an, to, and of) in the HLS and HHS are removed using this

module. For example, from the HHS heading <h2> the athletic

trainer </h2>, the stop word “The” is removed from the

heading, and the remaining heading “Athletic trainer” is the

output.

2) Stemming: The process of reducing different

grammatical forms of a term to its base form is called

stemming. Primitive stemmers work on the removal of prefixes

or suffixes from the text. Various stemmers have been used in

the literature [26] to obtain the basic concepts of a domain. We

used Porter stemmer [27] for this task.

The overall work of the preprocessing module is shown as
an algorithm in Fig. 3.

D. Concept Identification

In this step, two sets of terms (HLS and HHS), which are
obtained as output of the preprocessing algorithm, are
recognized as concepts by adding an underscore between
different terms of a phrase. For instance, a phrase “athletic
trainer” in HLS becomes “athletic_trainer,” and “associate
athletic trainer” is converted to “associate_athletic_trainer.”
The same procedure is applied to HHS terms. The concepts are
then used to identify different relationships to create an
ontology

Fig. 2. Snippet of HTML Document.

Algorithm: HTML Preprocessor

Input: HTML lists and HTML headings

1. For each tag // <h1> to <h6> || ||

2. Extract inner text T of or heading tag

3. Remove noise from T

4. Stem T using Porter stemmer

5. End For

Output: Two sets of refined terms: HLS and HHS

Fig. 3. Preprocessing Algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

236 | P a g e

www.ijacsa.thesai.org

E. Hierarchy Identification

The hierarchy module builds a parent–child or is–a relation
(hierarchy) between the identified HLS concepts. To represent
the work of this module, we proposed an algorithm as shown in
Fig. 4. The algorithm uses HLS concepts as input, generates
subclass relations between concepts by calling the
Insert_ontology() function, and finally builds an initial
ontology from the HLS.

F. List and Heading Merger

We also focused on the HTML heading list for final
ontology construction. To this end, we merged the initial
ontology (developed from HLS) with HHS. Fig. 5 describes the
detailed steps of merging via an algorithm. The algorithm
matches the headings within the HHS with each concept of
initial_ontology (OC). If a heading is exactly matched with the
OC, then this heading is merged with the OC (e.g., lines 3 and
4). If the heading concept is unmatched with the OC, then its
parent is explored. If a parent match is found for OC, then the
heading concept is placed under the parent concept (see
algorithm lines 7–10). On the contrary, if no match is found,
then the heading is inserted as a child of a superclass “root”
(e.g., line 13).

1) Similarity measure: An important substep of the HHS

merging algorithm is to find a similarity match between

concepts (e.g., lines 3 and 9 in Fig. 5). To this end, Wu and

Palmer’s (WP) measure [28] is used to compute the similarity

match among the concepts. For instance, Table I indicates the

WP similarity values (calculated via 1) between initial

ontology concept (c1) and heading concept (c2).

𝑠𝑖𝑚𝑤𝑝(𝑐1, 𝑐2) =
2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑜(𝑐1,𝑐2))

𝑙𝑒𝑛(𝑐1,𝑐2)+2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑜(𝑐1,𝑐2))
 (1)

Algorithm: List to ontology convertor

Input: Script S, ol tags, ul tags

1. For each ol | ul in S

2. Extract inner text T

3. If ol | ul is in Div-id && Div-class then

4. Extract first level inner text T

5. //insert T under root ontology concept

 CALL Insert_ontology (T, root)

6. End If

7. If nested | then

 Extract nested level inner text T`

8. //insert T` under non-root ontology concept T

 CALL insert_ontology (T’,T)

9. End If

10. End For

Output: Initial_ontology

Fig. 4. Algorithm for Converting an HTML List to an Ontology.

Algorithm: Heading merger

Input: HHS, Initial_ontology

1 For each heading term Ti in HHS

2 Match Ti with initial_ontology concept (OC)

3 If Ti is exactly match with OC

4 Merge Ti in OC

5 End If

6 Else

7 Extract Ti parent Tp

8 Match Tp with OC

9 If Tp match found with OC

10 Insert Ti under Tp

11 End If

12 Else

13 Insert Ti under concept root

14 End Else

15 End Else

16 End For

Output: Final_ontology

Fig. 5. Algorithm for Merging Headings.

TABLE I. WU AND PALMER SCORES

C1 (ontology) C2 (HHS) WP value

Athletic_trainer Robust_trainer 0.987

Associate_athletic_director Associate_ robust _director 0.981

Sports_ physician Sports_psychologist 0.51

Medical_assistant Physical_education_instructor 0.30

G. Add Synonyms

The last step of our OL model adds synonyms to the new
ontology as additional semantic data. The synonyms for each
ontology concept are derived using WordNet knowledge
structure and are inserted via sim–syn relationships. We only
focused on noun synonyms to be inserted in our ontology via
sim–syn relationship because most concepts in the final
ontology are nouns. Fig. 6 describes an algorithm for this
module that identifies and inserts synonyms in the final
ontology concepts.

Algorithm: Synonym adder

Input: Final_ontology, WordNet

1 For each concept Ci in Final_ontology

2 Retrieve synonyms S using WordNet for Ci

3 Extract Noun synonyms N from S

4 Insert N using sim-syn relationships with Ci

5 End For

Output: Final_ontology with synonyms

Fig. 6. Adding Synonym Algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

237 | P a g e

www.ijacsa.thesai.org

IV. IMPLEMENTATION AND RESULTS

The proposed OL algorithms (as listed in Section 3) are
implemented in Java environment to build a system prototype.
In addition, Jena (an open source java API) is used for
ontology manipulation, and Protégé tool is used to view the
final ontology. We evaluated our approach by using the sports
domain dataset, which consists of 105 HTML documents
collected from https://www.sports.ru website1. Fig. 7 represents
the ontograph view (i.e., protégé tool plugin) of the final
ontology in the sports domain, which is semantically learned
via the system prototype.

A. Evaluation Measures

Two performance measures, namely, semantic reasoner and
precision measure, are used to evaluate the performance of our
proposed OL model.

1) Semantic reasoned: Once an OL technique learns an

ontology, the consistency of new ontology vocabulary should

be checked. Semantic reasoners are tools that assess the

consistency (duplicate classes or properties and unconnected

taxonomy) of ontologies. Different types of semantic

reasoners, such as FaCT++, RACER, and HermiT, are

available to check the validity of ontologies [29].

2) Precision: Precision evaluation metrics were used to

measure the performance of our proposed OL algorithms. This

metric shows whether a relevant ontology vocabulary is

retrieved by the system prototype from the HTML document

set. Precision can be calculated using (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠}∩{𝑟𝑒𝑡𝑟𝑖𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠}

{𝑟𝑒𝑡𝑟𝑖𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠}
 (2)

B. Result Analysis

We initially evaluated the new ontology learned by our OL
model by using a semantic reasoner. We used the FaCT++
reasoner to check the consistency of our ontology. In our
system, the FaCT++ reasoner provided consistent and reliable
results for the newly learned sports ontology. This finding
indicates that the resultant ontology is consistent and no
ambiguity, and redundancy is found in the vocabulary of
ontology.

We further evaluated our approach by commissioning
experts, which are divided into two groups. Each expert group
consists of domain researchers and master students with
background in computer science. The experts manually
calculated the list items and headings from the collected web
pages of the sports domain, where 70 list items spanning three
levels of list hierarchy and 1080 heading items are extracted.
Then, the experts compared these items with the sports
ontology vocabulary that is learned by our OL model. To
elaborate the expert’s results, the precision value was
computed using Eq. 2 (as discussed in previous section). The
two precision values calculated are (1) for list items that are
used to build the initial ontology and (2) for headings that are
mapped to create the final ontology. Fig. 8 provides a graphical
representation of the precision value showing 92.7% precision
for list mapping and 95.4% for heading mapping. This finding
suggests that our OL approach can stably learn the ontology
from the combined use of the lists and headings of HTML
documents.

Fig. 7. Ontograph view of Sports Ontology.

1https://www.sports.ru//

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

238 | P a g e

www.ijacsa.thesai.org

Fig. 8. List and Heading Precision.

V. CONCLUSION

This research addresses the issue of accurate OL from the
HTML corpus by focusing on the combined use of the lists and
headings of HTML documents. We propose an OL model and
claim that this model can accurately map the HTML dataset to
an ontology knowledge base. We have tested our OL prototype
over an HTML corpus in a sports domain. The ontology
learned from the web dataset using our approach shows 100%
consistency on the semantic reasoner. Our OL approach
obtains 92.7% and 95.4% precision for HTML list mapping
and HTML heading mapping, respectively. This finding
indicates that the combination of HTML lists and headings is
useful in learning precise ontology vocabulary from HTML
documents.

In the future, we will focus on improving our OL
algorithms for inferring HTML heading hierarchy along with
the HTML lists from the web documents. Furthermore, we will
attempt to utilize synonym (sim–syn) relationships of newly
learned ontologies for inferring the accurate structure of
HTML headings.

REFERENCES

[1] D. Raggett, A. L. Hors, and I. Jacobs. "HTML 4.01 Specification W3C
Recommendation 24 December 1999," 20 January 2020;
https://www.w3.org/TR/html401/.

[2] V. N. Gudivada, D. L. Rao, and A. R. Gudivada, "Chapter 11 -
Information Retrieval: Concepts, Models, and Systems," Handbook of
Statistics, V. N. Gudivada and C. R. Rao, eds., pp. 331-401: Elsevier,
2018.

[3] L. E. M. FERNÁNDEZ, and S. Bhulai, “Recommendation System for
Netflix,” Master, Vrije Universiteit Amsterdam, 2018.

[4] L. C. Smith, "Artificial Intelligence in Information Retrieval: forty years
on," The Human Position in an Artificial World: Creativity, Ethics and
AI in Knowledge Organization: ISKO UK Sixth Biennial Conference
London, 15-16th July 2019, D. Haynes and J. Vernau, eds., pp. 301-302,
Baden-Baden: Ergon-Verlag, 2019.

[5] M. A. Raza, M. Rahmah, A. Noraziah, and M. Ashraf, “Sensual
Semantic Analysis for Effective Query Expansion,” International
Journal of Advanced Computer Science and Applications (IJACSA),
vol. 9, no. 12, 2018.

[6] G. Li, J. Lin, J. Lu, and Q. Xu, “Extraction of Ontological Terminology
Relations of Scheduling Regulations Based on Combination Method,” in
2019 International Conference on Electronic Engineering and
Informatics (EEI), 2019, pp. 370-374.

[7] B. Sathiya, and T. V. Geetha, “Automatic Ontology Learning from
Multiple Knowledge Sources of Text,” International Journal of

Intelligent Information Technologies (IJIIT), vol. 14, no. 2, pp. 1-21,
2018.

[8] R. Lourdusamy, and S. Abraham, "A Survey on Methods of Ontology
Learning from Text," Intelligent Computing Paradigm and Cutting-edge
Technologies. pp. 113-123, 2020.

[9] M. Sabou, C. Wroe, C. Goble, and G. Mishne, “Learning Domain
Ontologies for Web Service Descriptions: An Experiment in
Bioinformatics,” in Proceedings of the 14th international conference on
World Wide Web, WWW 2005, Chiba, Japan, 2005, pp. 190-198.

[10] S. H. Venu, V. Mohan, K. Urkalan, and G. T.V., “Unsupervised Domain
Ontology Learning from Text,” in Mining Intelligence and Knowledge
Exploration MIKE 2016, Springer, Cham, 2017, pp. 132-143.

[11] Y. Du, X. Tian, W. Liu, M. Wang, W. Song, Y. Fan, and X. Wang, “A
novel page ranking algorithm based on triadic closure and hyperlink-
induced topic search,” Intelligent Data Analysis, vol. 19, pp. 1131-1149,
2015.

[12] S. Suresu, and M. Elamparithi, “Probabilistic relational concept
extraction in ontology learning,” Int. J. Inform. Technol., vol. 2, no. 6,
2016.

[13] Z. Xu, M. Harzallah, and F. Guillet, “Comparing of Term Clustering
Frameworks for Modular Ontology Learning,” Proceedings of the 10th
International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management pp. 128-135, 2018.

[14] H. N. Fotzo, and P. Gallinari, “Learning « generalization/specialization »
relations between concepts: application for automatically building
thematic document hierarchies,” in Coupling approaches, coupling
media and coupling languages for information retrieval, Vaucluse,
France, 2004, pp. 143–155.

[15] Z. Abedjan, and F. Naumann, “Improving RDF Data Through
Association Rule Mining,” Datenbank-Spektrum, vol. 13, no. 2, pp. 111-
120, 2013/07/01, 2013.

[16] L. Man, D. Xiao-Yong, and W. Shan, “Learning ontology from
relational database,” in 2005 International Conference on Machine
Learning and Cybernetics, 2005, pp. 3410-3415 Vol. 6.

[17] M. A. Raza, and B. Raza, “Comparative Analysis of Ontology
Extraction Techniques from Relational Database,” Science International,
no. 4, pp. 3589-3595, 28-4-2016, 2016.

[18] H. Ling, and S. Zhou, “Mapping Relational Databases into OWL
Ontology,” International Journal of Engineering and Technology, vol. 5,
pp. 4735-4740, 2013.

[19] M. A. G. Hazber, R. Li, Y. Zhang, and G. Xu, “An Approach for
Mapping Relational Database into Ontology,” in 2015 12th Web
Information System and Application Conference (WISA), 2015, pp.
120-125.

[20] P. Gamallo, and M. ı. Pereira-Farina, “Compositional Semantics using
Feature-Based Models from WordNet,” in Proceedings of the 1st
Workshop on Sense, Concept and Entity Representations and their
Applications, Valencia, Spain, 2017, pp. 1–11.

[21] A. Crotti Junior, F. Orlandi, D. O'Sullivan, C. Dirschl, and Q. Reul,
"Using Mapping Languages for Building Legal Knowledge Graphs from
XML Files," arXiv e-prints; 2019. https://ui.adsabs.harvard.edu/abs
/2019arXiv191107673C.

[22] A. Algosaibi, and S. Albahli, “Web Documents Structures as Source for
Machine-Understandable Document,” in Proceedings of the 2019 2nd
International Conference on Intelligent Science and Technology,
Durham, United Kingdom, 2019, pp. 11–17.

[23] M. Hazman, S. El-Beltagy, and A. Rafea, “Ontology Learning from
Web Organization Documents,” International Journal for Metadata
Semantics and Ontologies, vol. 4, pp. 24-33, 01/01, 2009.

[24] C. Chantrapornchai, and C. Choksuchat, “Ontology construction and
application in practice case study of health tourism in Thailand,”
SpringerPlus, vol. 5, no. 1, pp. 2106, 2016/12/20, 2016.

[25] S. Langridge, DHTML Utopia: Modern Web Design : Using JavaScript
& DOM, 1st ed., Collingwood Australia: Sitepoint Publishing, 2005.

[26] A. G. Jivani, “A Comparative Study of Stemming Algorithms,”
International Journal of Computer Technology and Applications, vol. 2,
no. 6, pp. 1930-1938, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

239 | P a g e

www.ijacsa.thesai.org

[27] M. Porter. "Snowball: A language for stemming algorithms," 20 January
2020; http://snowball.tartarus.org/texts/introduction.

[28] L. Meng, R. Huang, and J. Gu, “A review of semantic similarity
measures in wordnet,” International Journal of Hybrid Information
Technology, vol. 6, no. 1, pp. 1-12, 2013.

[29] D. Tsarkov, and I. Horrocks, “FaCT++ Description Logic Reasoner:
System Description,” in Automated Reasoning, Springer, Berlin,
Heidelberg, 2006, pp. 292-297.

