
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

323 | P a g e

www.ijacsa.thesai.org

Fermat Factorization using a Multi-Core System

Hazem M. Bahig1*, Hatem M. Bahig2, Yasser Kotb3

College of Computer Science and Engineering, University of Ha’il, Ha’il, Kingdom of Saudi Arabia1

Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Egypt1, 2, 3

College of Computer and Information Sciences, Information Systems Department3,

Imam Mohammad ibn Saud Islamic University, Kingdom of Saudi Arabia3

Abstract—Factoring a composite odd integer into its prime

factors is one of the security problems for some public-key

cryptosystems such as the Rivest-Shamir-Adleman cryptosystem.

Many strategies have been proposed to solve factorization

problem in a fast running time. However, the main drawback of

the algorithms used in such strategies is the high computational

time needed to find prime factors. Therefore, in this study, we

focus on one of the factorization algorithms that is used when the

two prime factors are of the same size, namely, the Fermat

factorization (FF) algorithm. We investigate the performance of

the FF method using three parameters: (1) the number of bits for

the composite odd integer, (2) size of the difference between the

two prime factors, and (3) number of threads used. The results of

our experiments in which we used different parameters values

indicate that the running time of the parallel FF algorithm is

faster than that of the sequential FF algorithm. The maximum

speed up achieved by the parallel FF algorithm is 6.7 times that

of the sequential FF algorithm using 12 cores. Moreover, the

parallel FF algorithm has near-linear scalability.

Keywords—Integer factorization; fermat factorization; parallel

algorithm; multi-core

I. INTRODUCTION

The extensive use of digital systems has led to an increased
need for information security. The main tool used to ensure the
security of information is cryptography. In order to provide
information security services, a set of cryptographic strategies
is needed to convert plaintext into ciphertext. A set of such
strategies is known as a cryptosystem. There are two main
types of modern cryptosystems:- (1) public-key (asymmetric)
cryptosystems such as the ElGamal digital signature scheme,
Rivest-Shamir-Adleman (RSA) cryptosystem, Diffe-Hellman
scheme and digital signature algorithm [1], and (2) private-key
(symmetric) cryptosystems such as the advanced encryption
standard algorithm [2].

The RSA cryptosystem is one of the important
cryptosystems with security based on integer factorization
problem, which is defined as follows: Given a positive integer
𝑛 , the aim of the factorization of 𝑛 is to find two positive
integers (also known as factors) 𝑝1 and 𝑝2 such that 𝑛 equals
the product of 𝑝1 and 𝑝2 , and 𝑝1 , 𝑝2 > 1. In this case, 𝑛 is
called a composite integer. On the other hand, if 𝑛 cannot be
factored, then 𝑛 is called a prime number. Thus, we can
represent any positive integer as a unique product of prime
factors.

In the RSA cryptosystem, the key is constructed by
detecting two prime numbers 𝑝1 and 𝑝2 such that the size of

each of them is large and approximately equal. The modulus
for the key is defined as 𝑛 = 𝑝1 𝑝2 . Then an encryption
exponent e is chosen that is relatively prime to 𝜑(𝑛) =
(𝑝1 − 1)(𝑝2 − 1) . Finally, the decryption exponent d is

defined as 𝑑 ≡ 𝑒−1 (mod 𝜑(𝑛)).

The main challenge of factorization is the amount of time
that is consumed to arrive at a solution, especially when the
size of the prime factors is large. Also, there exists no
deterministic polynomial algorithm to factor a composite
number into two prime numbers.

A. High-Performance Computing

One of the strategies that can be utilized to reduce the high
computational time needed by factorization methods is the
high-performance computing (HPC). The main objective of
using HPC is to design a parallel algorithm in running time, Tp,
which is almost equal Tseq/p, where Tseq is the execution time of
the problem using one processor and p is the number of
processors used in the HPC. However, the achievement of this
objective is not easy for several reasons such as the difficulty
of dividing the problem into equal-sized, the communication
between processors, and the dependences in some steps of the
solution.

The effectiveness of the parallel algorithm can be measured
using the speedup criteria. The speedup of a parallel algorithm
is the ratio between the running time of the problem using one
processor over the running time of the problem using p
processors and is denoted by Sp=Tseq/Tp. The main goal of
designing a parallel algorithm is to achieve linear speedup.
Another important criteria for the parallel algorithm is
scalability, which represents the parallel system’s capacity to
increase speedup in proportion to the number of processors.

Many hardware and software platforms have been
introduced to measure parallel algorithms practically.
Examples of parallel hardware are the cluster, multi-core,
graphics processing unit (GPU) and cloud. There are also many
different parallel programming languages or libraries such as
open multi-processing (openMP), the message passing
interface (MPI), and compute unified device architecture
(CUDA).

B. State of the Art

Many integer factorization algorithms have been proposed
based on a range of different strategies [1,3,4] such as trial
division [5], Fermat [6], Brent, Pollard rho and p-1 [1,7],
elliptic curves [8], Lehman’s method [1,6], continued fraction
[1,5], multiple polynomial quadratic sieve [9], and number

*Corresponding Author: h.bahig@uoh.edu.sa

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

324 | P a g e

www.ijacsa.thesai.org

field sieve [9,10]. These algorithms can be categorized based
on the properties of the numbers to be factorized into general-
purpose and special-purpose algorithms [1,3].

The time complexity of the algorithms that belong to the
general-purpose group is almost independent of the size of the
factor found and depends on the size of 𝑛. Examples of some
of the methods that belong to this group are Lehman’s method,
Shanks’ square form factorization method, continued fraction,
multiple polynomial quadratic sieves, and number field sieve.
In the case of the algorithms that belong to the special-purpose
group, the time complexity of the algorithms mainly depends
on the size of the factor found. Examples of some of the
methods belong to this group are the trial division, Fermat,
Pollard rho, and Lenstra’s elliptic curve methods.

In this study, we focus on the Fermat factorization (FF)
algorithm, which is an efficient method when the difference
between two factors is small. Many research studies have
attempted to enhance this method from the sequential
computation viewpoint [11,12,13,14]. However, from the
parallel computation perspective, to our knowledge there is
only one published paper on implementing the FF algorithm on
a GPU, namely, the NVIDIA GeForce GT 630 [15]. Also, in
this study, the experimental conducted to parallelize the FF
algorithm on the GPU was based on a small input size of less
than 60.

C. Study Outline

In this study, we show how to utilize HPC to speed up the
computation of FF method. We use a multi-core platform that
executes 12 threads concurrently to reduce the execution time
of the FF algorithm. Also, we study the effect of using HPC
when we increase the difference between the two primes, even
of two primes of the same size. The results show that the
proposed parallel FF algorithm improves execution time and
that the maximum speed up achieved by parallelization is 6.7
times that of a sequential FF algorithm. Moreover, the
parallelization of the proposed parallel FF algorithm shows
near-linear scalability.

The rest of this paper is arranged as follows. In Section 2,
we provide an overview of the FF algorithm, including the
mathematical concept and pseudocode algorithm, as well as a
complexity analysis and example. In Section 3, we introduce
our proposed strategy for parallelizing the FF algorithm. Then,
in Section 4 we present and discuss the results of our
experimental evaluation according to execution time, speed-up
and scalability. Finally, in Section 5, we present the conclusion
of this work.

II. THE FF ALGORITHM

In this section, first we introduce, briefly, the mathematical
concept on which the FF algorithm is based. Second, we
present the idea underpinning the FF algorithm as well as the
pseudocode of the FF algorithm. Third, we provide a
complexity analysis of the FF algorithm. Finally, we provide
an illustrative example to show the effect of the difference
between two primes on the performance of the FF algorithm.

A. Mathematical Concept

Assume that 𝑛 is an odd integer of the form 𝑛 = 𝑝1𝑝2 ,
where 𝑝1 > 𝑝2 > 0 . Then the integer 𝑛 can be formed as a
subtraction of two squares 𝑞1 and 𝑞2, i.e., 𝑛 = 𝑞1

2 − 𝑞2
2.

We can easily prove this statement by setting 𝑞1 and 𝑞2 as
follows:

𝑞1 =
𝑝1 + 𝑝2

2
 and 𝑞2 =

𝑝1 − 𝑝2

2

Then,

𝑛 = 𝑞1
2 − 𝑞2

2

⟹ 𝑛 = (
𝑝1 + 𝑝2

2
)

2

− (
𝑝1 − 𝑝2

2
)

2

⟹ 𝑛 = 𝑝1𝑝2

Also, 𝑛 = 𝑞1
2 − 𝑞2

2 can be rewritten as follows:

𝑛 = 𝑞1
2 − 𝑞2

2 = (𝑞1 + 𝑞2)(𝑞1 − 𝑞2)

If the two values (𝑞1 + 𝑞2) and (𝑞1 − 𝑞2) are not equal to
1, then the two values are factors of n.

B. The Algorithm

The main idea of the algorithm is to search for two possible
values 𝑞1 and 𝑞2 such that 𝑛 = 𝑞1

2 − 𝑞2
2. We can rewrite the

relation between 𝑛 , 𝑞1 and 𝑞2 as 𝑞2
2 = 𝑞1

2 − 𝑛 . So, if we
know the value of 𝑞1, we can find the value of 𝑞2. Since the
value of 𝑞2

2 is a positive integer, this means that 𝑞1
2 > 𝑛. So,

the initial value of 𝑞1 is ⌊√𝑛⌋ + 1.

The idea of FF algorithm is to test iteratively, increasing by

a value of 1, all values of 𝑞1 beginning with ⌊√𝑛⌋ +1 until we

detect a value of 𝑞1 that satisfies the condition that 𝑞1
2 − 𝑛 is a

perfect square. In this case, the two factors are (𝑞1 +
𝑞2) and (𝑞1 − 𝑞2).

The complete pseudocode of the FF algorithm is as shown
in Algorithm 1. The algorithm consists of three main steps. The
first step is to compute the square root of 𝑛 to determine the
start value of 𝑞1 . The second step is an iterative step that
increases the value of 𝑞1 by 1 until the value 𝑞1

2 − 𝑛 is a
perfect square. At this point, the two factors are determined in
the third step.

Algorithm 1: Fermat Factorization (FF)

Input: Composite odd integer n.

Output: two prime factors, 𝑝1, 𝑝2 > 1, such that 𝑛 = 𝑝1 𝑝2.

1. 𝑞1 ← ⌊√𝑛⌋
2. Do

 𝑞1 ← 𝑞1 + 1

 𝑞2 ← 𝑞1
2 − 𝑛

 While (𝑞2 is not a perfect square)

3. 𝑝1 ← 𝑞1 + √𝑞2

 𝑝2 ← 𝑞1 − √𝑞2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

325 | P a g e

www.ijacsa.thesai.org

TABLE I. THE EFFECT OF THE DIFFERENCE BETWEEN TWO FACTORS ON FERMAT FACTORIZATION

𝒏 𝒑𝟏 𝒑𝟐 𝜶 ⌊√𝒏⌋ 𝒒𝟏 # of trials

16181393 4079 (12 bits) 3967 (12 bits) 6 4022 4023 1

15634807 4079 (12 bits) 3833 (12 bits) 7 3954 3955, 3956 2

14566109 4079 (12 bits) 3571 (12 bits) 8 3816 3817, … , 3825 9

12510293 4079 (12 bits) 3067 (12 bits) 9 3536 3537, …, 3573 37

8439451 4079 (12 bits) 2069 (12 bits) 10 2905 2906, … , 3074 169

C. Complexity Analysis

The best case of the FF algorithm occurs when the two
factors are close together. This means that the value of 𝑞2 =
𝑝1−𝑝2

2
 is small and the value of 𝑞1 is slightly greater than √𝑛.

Therefore, the number of iterations in the second step is small.

The worst case of the FF algorithm can be calculated as
follows. Assume that the minimum value of 𝑞1 − 𝑞2 is 𝛿. This
implies that:

𝑛 = (𝑞1 + 𝑞2)(𝑞1 − 𝑞2) = (𝑞1 + (𝑞1 − 𝛿)) × 𝛿 =
(2𝑞1 − 𝛿) × 𝛿. Therefore,

𝑛 = 2𝑞1𝛿 − 𝛿2 ⟹ 𝑞1 =
𝑛−𝛿2

2𝛿
.

If 𝛿 =3, for large primes, then 𝑞1 =
𝑛+9

6
.

In general, the performance of FF algroithm is based on the
difference between the two prime factors, and can be given by
the following rule [16]:-

𝒪 (
|𝑝1−𝑝2|2

4√𝑛
)

In case of |𝑝1−𝑝2| = 𝒪(√𝑛
4

), the FF solution can be found

easily [16].

D. Example

Table I shows that the main step of FF algorithm, i.e., Step
2, is affected by the difference between the prime factors even
when the two factors are of the same size. The table consists of
seven columns. The first three columns are related to the
numbers to be factor and their factorization, 𝑛, 𝑝1, and 𝑝2. The
two prime factors have sizes of 12 bits each, but they have
different values. The fourth column, 𝛼, represents the number
of bits in the difference between two factors, ∆. The relation
between 𝛼 and ∆ is 2𝛼 ≤ ∆< 2𝛼+1 . The fifth and sixth
columns represent the square root of 𝑛 and all the trail values
of 𝑞1, respectively. The last column represents the number of
iterations in the second step of FF method.

For all the values of 𝑛, the number of bits is 𝑙 = 24, and the

number of bits for each factor is
𝑙

2
= 12. In the first row, the

number of bits in the difference between two factors is
𝑙

4
= 6.

The number of bits in the difference between two factors is
increased by 1 in each next row. It is clear from Table I, that
when the difference between two factors increases, the number

of iterations in the main step (Step 2) of the FF algorithm also
increases.

III. PARALLEL FF ALGORITHM

In this section, we present the mechanism that is used to
parallelize FF method. The FF algorithm can be considered as

a searching algorithm over the range from ⌊√𝑛⌋ + 1 to
𝑛+9

6
.

Therefore, the proposed approach to parallelize the FF method
is based on assigning the first 𝑡 integers to 𝑡 threads, such that
each thread, 𝑡𝑖 , takes one integer. This means that integers

⌊√𝑛⌋ + 1, ⌊√𝑛⌋ + 2, …, ⌊√𝑛⌋ + 𝑡 are assigned to threads 𝑡1 ,

𝑡2, …, 𝑡𝑡, respectively. If the target goal is not found by any

thread, then the second 𝑡 integers, ⌊√𝑛⌋ + 𝑡 + 1, ⌊√𝑛⌋ + 𝑡 + 2,

…, ⌊√𝑛⌋ + 2𝑡 , are assigned to 𝑡 threads 𝑡1 , 𝑡2 , …, 𝑡𝑡 ,

respectively. This process continues dynamically until a thread
finds a value of 𝑞2𝑖

 and satisfies the condition that 𝑞2𝑖
 is a

perfect power.

In general, the assignment of integer, 𝑞1𝑖
, to thread 𝑡𝑖 is

given by the following formula:

𝑞1𝑖
= ⌊√𝑛⌋ + (𝑗 − 1) 𝑡 + 𝑖

where 𝑗 represents the 𝑗th 𝑡 integers, 𝑗 ≥ 1, and 1 ≤ 𝑖 ≤ 𝑡.

All the steps in this parallelization method are given by
Algorithm 2. The first step of the algorithm is a sequential
steps that are used to (1) determine the value of the square root
that is used by all threads, and (2) assign the shared variable
found with false. The second step is a parallel step that is
executed by all threads, where each thread 𝑖 , 1 ≤ 𝑖 ≤ 𝑡, has

two local variables, 𝑞1𝑖
 and 𝑞2𝑖

. This step consists of three

substeps, 2.1, 2.2, and 2.3. Substep 2.1 is used to assign initial
values for 𝑗 (iteration number) and 𝑞1𝑖

. Substep 2.2 is used to

update the value of 𝑞1𝑖
 and 𝑞2𝑖

 if the value of 𝑞2𝑖
 is still not a

perfect square or no other thread has found the solution.
Finally, in Substep 2.3 the thread that has found the solution,
i.e., 𝑞2𝑖

 that is a perfect square, changes the value of found

from false to true and then calculates the two factors 𝑝1 and 𝑝2.

In order to improve the performance of Algorithm 2, we
applied the following modifications. First, in order to be able to
read a shared value between all threads, for each shared value
between threads, we used a local variable instead of the shared
value, except at the beginning of executing each thread. Also,
for the shared value found, we used a shared array Ok of 𝑡
elements of Boolean type. We also changed the second
condition in the While-loop in Substep 2.2, to Ok[i]. Second,
we implemented a modification to enable writing on a shared

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

326 | P a g e

www.ijacsa.thesai.org

variable. This occurs when thread 𝑗 has found the solution. In
this case, thread 𝑗 is responsible to changing all values of Ok
using the critical region command. The complete steps of the
modified algorithm are shown in Algorithm 3.

Algorithm 2: Parallel Fermat Factorization (PFF)

Input: Composite odd integer n.

Output: Two prime factors 𝑝1, 𝑝2 > 1, such that 𝑛 = 𝑝1 𝑝2.

1. 𝑞1 ← ⌊√𝑛⌋

 found =false

2. for 𝑖 ← 1 to 𝑡 do parallel

2.1 𝑗 ← 0

 𝑞1𝑖
← 𝑞1 + 𝑖

 𝑞2𝑖
← 𝑞1𝑖

2 − 𝑛

2.2 while (𝑞2𝑖
 is not a perfect square) and (not found) do

 𝑞1𝑖
← 𝑞1𝑖

+ 𝑡

 𝑞2𝑖
← 𝑞1𝑖

2 − 𝑛

2.3 if (𝑞2𝑖
 is a perfect square) then

 found =True

 𝑝1 ← 𝑞1𝑖
+ √𝑞2𝑖

 𝑝2 ← 𝑞1𝑖
− √𝑞2𝑖

Note: There is another approach that can be used to
parallelize the range search, 𝑅 for FF algorithm. This approach
is based on dividing the search range into 𝑡, number of threads,
subranges. Each thread 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑡 , searches subrange, 𝑅𝑖 ,
which is defined as follows.

[𝑞1 + 1 + (𝑖 − 1)
𝑅

𝑡
, 𝑞1 + 𝑖

𝑅

𝑡
]

Algorithm 3: Modified Parallel Fermat Factorization (MPFF)

Input: Composite odd integer n.

Output: Two prime factors 𝑝1, 𝑝2 > 1, such that 𝑛 = 𝑝1 𝑝2.

1. 𝑞1 ← ⌊√𝑛⌋

2. for 𝑖 ← 1 to 𝑡 do parallel

2.1 𝑗 ← 0

 𝑂𝑘𝑖 ← 𝑓𝑎𝑙𝑠𝑒

 𝑛𝑖 ← 𝑛

 𝑡𝑖 ← 𝑡

 𝑞1𝑖
← 𝑞1 + 𝑖

 𝑞2𝑖
← 𝑞1𝑖

2 − 𝑛𝑖

2.2 while (𝑞2𝑖
 is not a perfect square) and (not 𝑂𝑘𝑖) do

 𝑞1𝑖
← 𝑞1𝑖

+ 𝑡𝑖

 𝑞2𝑖
← 𝑞1𝑖

2 − 𝑛𝑖

2.3 if (𝑞2𝑖
 is not a perfect square) then

 for 𝑖 ← 1 to 𝑡 do // critical region

 𝑂𝑘𝑖 ← 𝑡𝑟𝑢𝑒

 𝑝1 ← 𝑞1𝑖
+ √𝑞2𝑖

 𝑝2 ← 𝑞1𝑖
− √𝑞2𝑖

Thread 𝑡𝑖 starts the search with 𝑞1𝑖
= ⌊√𝑛⌋ + 1 + (𝑖 − 1)

𝑅

𝑡

and tries to find the value of 𝑞2𝑖
 satisfying the condition that

 𝑞2𝑖
 is a perfect power. If thread 𝑡𝑖 finds the target goal, 𝑞2𝑖

 is

a perfect power, then the shared variable, found, is changed
from false to true. This means that all the other threads stop
searching if one of the threads changes the variable found to
true.

In general, this approach is not efficient for two factors of
the same size. For example, referring to Table I, consider n=
4079 × 2069 = 8439451 , and let the number of threads
𝑡 = 8. The range of the search is [2905,1406576] and
therefore the range of the search for each thread is
approximately 175822. The first thread will therefore find the
solution after 169 iterations. In contrast, by using Algorithm 2,
the solution can be found after just 22 iterations.

IV. EXPERIMENTAL EVALUATIONS

In this section, we present the procedures and the results of
our evaluations of the impact of the suggested parallel
approach on the FF method according to the following three
parameters: (1) the number of bits for the composite odd
integer, (2) size of the difference between two prime factors,
and (3) number of threads used. To achieve these goals, the
section involves two subsections. The first subsection provides
the configurations of the platform and data used in the
experiments. The second provides the measurement and
analysis of the running times and the scalability of the
suggested parallel method.

A. Platform and Data Setting

The platform settings in the experiments are based on the
configurations shown in Table II.

The experiments on all the studied algorithms are based on
three parameters. The first two parameters are related to the
generation of two prime numbers, 𝑝1 and 𝑝2, of the same size
to construct a composite odd number 𝑛 = 𝑝1 𝑝2 . The first
parameter is the number of bits for the integer 𝑛, which is 𝑙.
This means that the number of bits for each prime factor, 𝑝1

and 𝑝2, is
𝑙

2
. The second parameter is the difference between

the two prime factors, which is ∆= |𝑝1 − 𝑝2|, 2𝛼 ≤ ∆< 2𝛼+1,

where 𝛼 <
𝑙

2
− 1. This means that a prime factor 𝑝1 of size

𝑙

2
 is

generated, the size of the second prime factor generated is
𝑙

2

such that the difference between them is ∆ and 2𝛼 ≤ ∆< 2𝛼+1,
for a certain value of 𝛼. The setting of these two parameters is

shown in Table III. The maximum value of 𝛼 is
𝑙

2
− 2 in order

to ensure that the two prime factors are the same size. The

minimum value of 𝛼 is
𝑙

2
− 15, because this value is near to

𝑙

4
,

for the studied cases. Also, if 𝛼 is less than
𝑙

2
− 15, for the

studied cases, the running time of the algorithms tends to be
toward zero. The third parameter is the number of cores, 𝑡,
used in the experiments and the values of 𝑡 are 4, 8, and 12.

In the experiments, we initially fix the value of 𝑙, say 𝑙 =

80, and then generate two prime numbers, each of size
𝑙

2
 such

that the difference between them is ∆, say ∆=
𝑙

2
− 5. We repeat

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

327 | P a g e

www.ijacsa.thesai.org

the same process to generate 25 different data, 𝑑𝑖 , 1 ≤ 𝑖 ≤ 25,
for the same values of 𝑙 and ∆. After that, we run Algorithm A
on 𝑑𝑖 using a fixed number of cores, 𝑡𝑗. Therefore, the running

time for Algorithm A using 𝑡𝑗 cores is the average of the

running times of Algorithm A on 25 instances. In the case of
𝑙 = 100, we run the FF algorithm only one time, because the
running time is very large (see Table IV). Also, in this case, we
run the parallel FF algorithm using 𝑡 threads for five instances
only.

In general, the running time for Algorithm A is computed
using the three parameters as follows: For each fixed value of
𝑙, ∆, and 𝑡, we measure the running time of Algorithm A by
executing Algorithm A on 25 different instances and then
compute the average of these running times in seconds.

In addition, for the fixed value of 𝑙, we have 12 values for
the running time of Algorithm A, and each of them is the
average time for 25 instances. These 12 values come from all

the combinations of four values of ∆ (
𝑙

2
− 15,

𝑙

2
− 10,

𝑙

2
− 5,

and
𝑙

2
− 2) and three values of 𝑡 (4, 8, and 12).

B. Discussion of the Results

Based on the platform and data settings described in the
previous subsection, the running times of Algorithm 1
(sequential FF algorithm) and Algorithm 3 (parallel FF
algorithm) are shown in Table IV. The table consists of six
columns. The first column represents the number of bits for the
composite odd integer 𝑛, while the second column represents
the number of bits for the difference between the factors. The
third column represents the running time for the sequential FF
algorithm, Algorithm 1. The fourth to sixth columns represent
the running time for the parallel FF algorithm, Algorithm 3,
using 4, 8, and 12 threads, respectively.

TABLE II. HARDWARE AND SOFTWARE CONFIGURATIONS

Type of

Platform
Components Description

Hardware

Processor 2 hexa-core (12 cores)

Speed 2.6 GHz

Memory 16 GB

Cash Memory 15 MB

Software

Operating System Windows 10

Language C++

Parallel Library OpenMP (Open Multi-Processing)

Big Integer Library GMP (GNU Multiple Precision)

TABLE III. PARAMETER SETTINGS FOR 𝑙 AND ∆

𝒍
𝒍

𝟐

𝟐𝜶 ≤ ∆< 𝟐𝜶+𝟏

𝜶

𝒍

𝟐
− 𝟏𝟓

𝒍

𝟐
− 𝟏𝟎

𝒍

𝟐
− 𝟓

𝒍

𝟐
− 𝟐

70 35 20 25 30 33

80 40 25 30 35 38

90 45 30 35 40 33

100 50 35 40 45 48

TABLE IV. RUNNING TIME FOR SEQUENTIAL AND PARALLEL FF

ALGORITHMS

𝒍 𝜶
Number of threads

1 4 8 12

70

(𝑙 2)⁄ − 15 = 20 0 0.0002 0.0004 0.0004

(𝑙 2)⁄ − 10 = 25 0.0022 0.0008 0.0006 0.0006

(𝑙 2⁄) − 5 = 30 1.1628 0.4412 0.303 0.201

(𝑙 2)⁄ − 2 = 33 57.9 19.1 13.7 9.8

80

(𝑙 2)⁄ − 15 = 25 0.0002 0.0004 0.0002 0.0002

(𝑙 2)⁄ − 10 = 30 0.0544 0.0206 0.017 0.0106

(𝑙 2⁄) − 5 = 35 35.7 10.7 8.8 6.4

(𝑙 2)⁄ − 2 = 38 524.1 146.5 113.5 80.1

90

(𝑙 2)⁄ − 15 = 30 0.002 0.0007 0.0006 0.0004

(𝑙 2)⁄ − 10 = 35 1.158 0.404 0.271 0.216

(𝑙 2⁄) − 5 = 40 796.3 248.3 185.7 117.5

(𝑙 2)⁄ − 2 = 43 19348.7 6046.5 4398.5 3064.5

100

(𝑙 2)⁄ − 15 = 35 0.0564 0.0224 0.014 0.01

(𝑙 2)⁄ − 10 = 40 42.7 13.7 10.1 6.9

(𝑙 2⁄) − 5 = 45 18695.7 5665.4 3995.8 2948.2

(𝑙 2)⁄ − 2 = 48 873041.6 253055.5 174608.3 130956.2

From results of the analysis of the running times of the two
algorithms, 1 and 3, using different factors shown in Table IV,
several observations can be made. First, in respect of the
sequential FF algorithm, Algorithm 1:

1) The running time of the sequential FF algorithm

increases with increased difference between the two prime

factors. This means that, for a fixed value of 𝑙, the running

time of the FF algorithm when 𝛼 = 𝛼1 is less than when 𝛼 =
𝛼2, where 𝛼1 < 𝛼2. For example, when 𝑙 = 80, 𝛼1 = 35, and

𝛼2 = 40, the running times of the sequential FF algorithm are

0.05 and 35.7 seconds, respectively.

2) For a fixed value of 𝑙 and two different values of 𝛼,

𝛼1 and 𝛼2 , the difference in the running time of the FF

algorithm between 𝛼1and 𝛼2 is significant.

3) The minimum and maximum running times of the

sequential FF algorithm occur when the values of 𝛼 are a

minimum of
𝑙

4
, and a maximum of

𝑙

2
− 2, respectively.

Second, in respect of the running time of the parallel FF
algorithm, Algorithm 3:

1) The running time of the parallel FF algorithm decreases

with an increase in the number of threads. This means that for

fixed values of 𝑙 and 𝛼, the running time of the parallel FF

algorithm using 𝑡 threads is less than the running time for the

same instance using 𝑡′ threads, where 𝑡 > 𝑡′. As an example,

for 𝑙 = 80 and 𝑡 = 4, 8, and 12, the running times of the

parallel FF algorithm are 10.7, 8.8, and 6.4, respectively.

2) The running time of the parallel FF algorithm is faster

than the running time of the sequential FF algorithm using any

number of threads, 𝑡 ≥ 4, except when the running time for

FF algorithm is near to zero. In this case, when 𝑙 = 70 and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

328 | P a g e

www.ijacsa.thesai.org

𝛼 = 20, the parallelization approach is not efficient in terms

of running time because the search range is very small.

3) For fixed values of 𝑙 and 𝛼 , the running time of the

parallel FF algorithm is different from one instance to another.

This is because the range of ∆ is large for a large value of 𝛼.

As an example, Fig. 1 shows the running time of the parallel

FF algorithm on 25 different instances using four threads for

the case of 𝑙 = 80 and 𝛼 = 35.

4) The amount of improvement in the parallel FF

algorithm, using 𝑡 threads, with respect to the FF algorithm is

greater than the improvement in the parallel FF algorithm

using 𝑡′ threads, 𝑡 > 𝑡′, see Fig. 2. For example, in the case of

𝑙 = 90 and 𝛼 = 40, the amount of improvement in the parallel

FF algorithm using four threads is 68.8%, whereas the amount

of improvement increases to 76.6% using eight threads.

Third, we also measured the speedup of the parallel FF
algorithm based on two viewpoints: (1) fixed values of 𝑙 and 𝛼,
and (2) fixed values of 𝑙 and 𝑡.

1) Fig. 3 shows the speedup values with fixed 𝑙 and 𝛼 ,

and varied values of 𝑡, from which it can be observed that the

speedup of the parallel FF algorithm increases with increased

𝑡. This is true for every 𝑙 and 𝛼 studied except when 𝑙 = 70

and 𝛼 = 20, because the running time of the FF algorithm at

these values is zero. For example, when 𝑙 = 90 and 𝛼 = 40,

the speedup values of the parallel FF algorithm using 𝑡 = 4, 8,

and 12 are 3.2, 4.3, and 6.8, respectively. In addition, in

general, the speedup value equals, approximately, half of the

number of threads.

2) Fig. 4 shows the speedup values with fixed 𝑙 and 𝑡, and

varied values of 𝛼 , from which it can be observed that the

speedup of the parallel FF algorithm increases, slightly, with

increased 𝛼 . This means that for a fixed problem size and

number of threads, the speedup value of the parallel FF

algorithm increases, even slightly, with an increase in the

difference between two prime factors. For example, when 𝑙 =
80 and 𝑡 = 12 , the speedup values of the parallel FF

algorithm are 1, 5.1, 5.6, and 6.5 for 𝛼 =25, 30, 35, and 38,

respectively.

In general, the maximum speedup achieved by the parallel
FF algorithm was 6.7 times greater than that achieved by the

FF algorithm. Moreover, the parallel FF algorithm had near-
linear scalability.

Fourth, Fig. 5 shows the efficiency of the parallel FF
algorithm in the case of 𝑙 = 100 and different values of 𝛼. The
maximum efficiency value achieved when the number of
threads equals four.

Fig. 1. Running Time of the Parallel FF Algorithm Over different instances.

Fig. 2. Percentage of Improvements for the Parallel FF Algorithm.

0

4

8

12

16

20

1 3 5 7 9 11 13 15 17 19 21 23 25

T
im

es
 i

n
 s

ec
o

n
d

s

Instances

l=80, α=35, t=4

0

20

40

60

80

100

70 80 90 100

Im
p

ro
v
em

en
t

P
er

ce
n

ta
g
e

l

t=12 t=8 t=4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

329 | P a g e

www.ijacsa.thesai.org

Fig. 3. Scalability of the Parallel FF Algorithm with Fixed 𝑙 and 𝛼.

Fig. 4. Scalability of the Parallel FF Algorithm with Fixed 𝑙 and 𝑡.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

330 | P a g e

www.ijacsa.thesai.org

Fig. 5. Efficiency of the Parallel FF Algorithm.

V. CONCLUSION

In this study, we addressed one of the challenging problems
related to cryptography, namely, integer factorization. The goal
of integer factorization is to factor a composite number into
two prime factors. The FF algorithm is one of the factorization
algorithms that is used when the two factors are the same size.
We investigated the use of a multi-core system on the
performance of the FF method based on three parameters: (1)
the number of bits for the composite positive integer, (2) size
of the difference between two prime factors, and (3) number of
threads used. The experimental results showed that the running
time for the parallel FF algorithm was faster than that of the FF
algorithm. The maximum speedup achieved by the parallel
algorithm was 6.7 times that of the sequential FF algorithm.
Moreover, the parallel FF algorithm had near-linear scalability.

There are still some interesting open questions related to FF
algorithm such as (1) how to use GPUs to parallelize FF
algorithm, (2) how to reduce the running time of FF algorithm
when the difference between the two prime factors is large, and
(3) how to use FF algorithm in internet of things [17].

ACKNOWLEDGMENT

This research has been funded by Scientific Research
Deanship at University of Ha’il – Saudi Arabia through project
number 0161034.

REFERENCES

[1] S. Yan, Primality testing and integer factorization in public-key
cryptography, 2009, Springer.

[2] J. Alfred ,Menezes , Paul C. van Oorschot , Scott A. Vanstone .
Handbook of Applied Cryptography (Discrete Mathematics and Its
Applications) 1st Edition CRC Press; 1996.

[3] A. Lenstra, Integer factoring. Designs, Codes and Cryptography, 19(2–
3), 101–128 , 2000.

[4] J. Milan, Factoring small integers: an experimental comparison. INRIA
report (2007), http://hal.inria.fr/inria-00188645/en/

[5] G. Hiary, A deterministic algorithm for integer factorization
Mathematics of Computation 85, 2065-2069, 2016.

[6] P. Lehman, R. Sherman, Factoring large integers. Mathematics of
Computation, 28, 637-646, 1974.

[7] J. Pollard, A Monte Carlo method for factorization. BIT Numerical
Mathematics, 15, 331–334, 1975.

[8] H. Lenstra, Factoring integers with elliptic curves. Mathematische
Annalen, 126, 649–673, 1987.

[9] A. Lenstra, H. Lenstra, The Development of the Number Field Sieve, in:
Lecture Notes in Mathematics 1554, 1993.

[10] R. Silverman, Optimal parameterization of SNFS. Journal Mathematical
Cryptology, 1, 105–124, 2007.

[11] J. McKee, Speeding Fermat’s factoring method. Mathematics of
Computation, 68, 1729-1737, 1999.

[12] K. Somsuk, MVFactorV2: An improved integer factorization algorithm
to speed up computation time. 2014 International Computer Science and
Engineering Conference, 30 July-1 Aug. 2014, pp 308-311.

[13] K. Somsuk, The improvement of initial value closer to the target for
Fermat’s factorization algorithm. Journal of Discrete Mathematics
Science and Cryptography, 21(7), 1573-1580.

[14] M. Wu, R. Tso, H. Sun, On the improvement of Fermat factorization
using a continued fraction technique. Future Generation Computer
Systems, 30 (2014) 162–168.

[15] G. Kimsanova, R. Ismailova, R. Sultanov, Comparative analysis of
integer factorization algorithms using CPU and GPU. MANAS Journal
of Engineering, 5(1), 53-63, 2017.

[16] B. De Weger, Cryptanalysis of RSA with small prime difference.
Applicable Algebra in Engineering, Communication and Computing,
13(1):17–28, 2002.

[17] S. Venkatraman, A. Overmars. New Method of prime factorisation-
based attacks on RSA authentication in IoT. Cryptography 2019, 3(3),
20.

0

0.5

1

1.5

1 4 8 12

E
ff

ci
en

cy

Number of threads

l=100

(l/2)-15 (l/2)-10

(l/2)-5 (l/2)-2

https://www.amazon.com/Alfred-J-Menezes/e/B000APBQ80/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Scott+A.+Vanstone&text=Scott+A.+Vanstone&sort=relevancerank&search-alias=books

