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Abstract—The problem of controllability of networks can be
seen in critical infrastructure systems which are increasingly
susceptible to random failures and/or malicious attacks. The
ability to recover controllability quickly following an attack can
be considered a major problem in control systems. If this is
not ensured, it can enable the attacker to create more disrup-
tions as well as, like the electric power networks case, violate
real-time restrictions and result in the control of the network
degrading and its observability reducing significantly. Thus, the
present paper examines structural controllability problem that
has been in focus through the equivalent problem of the Power
Dominating Set (PDS) introduced in the context of electrical
power network control. However, the controllability optimisation
problem can be seen as computationally infeasible regarding large
complex networks because such problems are considered NP-
hard and as having low approximability. Hence, the ability of
structural controllability recoverability will be explored as per
the PDS formulation, especially following perturbations in which
an attacker with sufficient knowledge of the network topology
is only able to completely violate the current driver control
nodes of the original control network leading to a degradation of
controllability of dependent nodes. The results highlight that the
use of directed Laplacian matrix can be a useful approach for
analysing structural controllability of a network. The simulation
results show also that an increase of a connectivity probability of
the distribution of links in Directed ER networks can minimise
the number of driver control nodes which is highly desirable
while monitoring the entire network.

Keywords—Structural controllability; control systems; cyber
physical systems; power dominating set; recovery from attacks

I. INTRODUCTION

Securing control systems have attracted significant atten-
tion to many researchers from various fields [1]. Random
failures or malicious attacks can turn critical infrastructure
components’ pairwise dependencies uncontrollable, leading to
severe economic effects. Hence, it is important to effectively
assess all pairwise dependencies among components to keep
control into infrastructures and protect critical infrastructures.
Further, domination, which is a significant subject in graph
theory, can be regarded as a crucial theme in the control
systems’ design and analysis as it is similar to the (Kalman)
controllability problem. It is the concept of structural control-
lability, as introduced by Lin [2], that provides the motivation
and presents a graph-theoretical interpretation in terms of
control systems which was first put forth Kalman [3].

ẋ(t) = Ax(t)+Bu(t), x(t0) = x0 (1)

In this equation, x(t) = (x1(t), . . . ,xn(t))T the current state of
a system with n nodes at time t, a n× n adjacency matrix
A representing the network topology of interactions among
nodes, and B the n×m input matrix (m ≤ n), identifying
the set of nodes controlled by a time-dependent input vector
u(t) = (u1(t), . . . ,um(t)) which forces the desired state. Ac-
cording to Kalman’s rank criterion, the system in equation (1)
is controllable if and only if:

rank [B,AB,A2B, . . . ,An−1B] = n (2)

On the other hand, large networks such as power networks or
even large control systems find it prohibitively expensive to
affirm this criterion as there is a computational difficulty in
verifying all possible combinations concerning large complex
networks. This because the number of input combinations
increases exponentially as per the number of nodes. Lin’s
graph-theoretical interpretation concerning Kalman’s algebraic
criterion was a major contribution that enabled the required and
adequate conditions to be determined for identifying individual
Driver Nodes (denoted as ND). Such driver control nodes can
control a system that has a particular structure (topology). The
system in Eq. (1), denoted by (A,B), can be interpreted as the
matrix A giving the network topology, and the matrix B can
be interpreted as the set of nodes with the capacity to drive
control.

Lin [2] gives the interpretation of G(A,B) = (V,E) as a
digraph where V =VA∪VB the set of vertices and E = EA∪EB
the set of edges. In this representation, VB comprises nodes able
to inject control signals into the entire network, also known as
Driver Nodes (ND) corresponding to input vector u in Equation
(1). In control systems, being able to determine driver control
nodes is vital for attackers as well as defenders. For identifying
the minimum number of driver node subsets, various methods
can be used for determining ND; however, the Maximum
Matching approach [4] has been focused on the most. This
approach by Liu et al. is based on a non-rigorous variant of
the Maximum Matching problem to identify a subset of ND.
This paper studies an alternative approach following the Power
Dominating Set (PDS) problem that was proposed by Haynes
et al. [5] as a model for studying electric power networks
as well as an extension to the well-known Dominating Set
(DS) problem. Through the PDS approach, an equivalent
formulation can be obtained to determine the minimum ND.
This interest is mainly based in the real-world context because
of the significant similarities between the logical structures of
PDS-based networks and the real-world monitoring systems, in
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which driver nodes can represent e.g. control terminal units that
control industrial sensors or actuators. The recovering strategy
presented in this paper focuses on sparse Erdős-Rényi with
directed control edges that provides similar aspects to real
power networks. This recovering strategy seeks to control a
network after a threat in which an attacker can compromise
a subset of driver control nodes, leading to the breakdown of
the network into pieces and damage the control network.

The remainder of the paper is structured as follows. Section
II presents the related work and network controllability consid-
ering vulnerability. Section III discusses the initial assumptions
as well as conditions that were taken into account for re-
covering structural controllability when there were adversaries
positioned within a network to attack critical nodes. Section
IV introduces a new optimal recovering strategy for repairing
structural controllability after perturbations as per the PDS
formulation while Section V analyses the computational com-
plexity of recovering algorithm; followed by the simulation
results for repairing structural controllability. Section VI, we
close this paper with some conclusions.

II. POWER DOMINATION AND RELATED WORK

The study of the PDS problem with respect to the graph-
theoretical representation was initiated by Haynes et al. [5] as a
model for studying electric power networks and their efficient
monitoring as an extension to the well-known Dominating
Set (DS) problem. As shown by the authors of [5], PDS
for a particular graph G is NP-complete in terms of general
graphs despite being reduced to specific classes of graphs,
such as chordal graphs and bipartite graphs. Guo et al. [6]
showed that the PDS problem is also NP-complete for planar
graphs, circle graphs, and split graphs, and it cannot be
better approximated than the domination problem for general
graphs. Further, [6], [7] presented parametrised results and
proved W [2]-hardness in case of the parameter’s size being
equal to that of the solution through decreasing a DS to a
PDS. Guo et al. [6] also presented fixed-parameter tractability
of PDS regarding a tree decomposition of bounded tree-
width for the underlying graph. A concrete algorithm that can
turn PDS into an orientation problem on undirected graphs
was developed by [6]. Considering the fact that the PDS
problem is the dominating set problem’s generalisation, the
basic minimum DS problem is known to be NP-complete
with a polynomial-time approximation factor of θ(logn) as
noted by Feige [8]. Hence, Aazami and Stilp [9] differentiated
between the approximation hardness of DS and PDS problems
and verified that it is not possible to better approximate the
PDS problem than 2log1−e n, unless NP⊆ DT IME(npolylog(n)).
They also presented an O(

√
n)-approximation algorithm for

the PDS problem in planar graphs. Liao and Lee [10] showed
a different NP-completeness proof for the PDS problem in
split graphs as well as introduced a polynomial-time algorithm
for solving PDS optimally on interval graphs. As shown by
Binkele-Raible and Fernau, the PDS problem continues to be
NP-hard on cubic graphs[11]. Guo et al. [6] also presented
valid orientations to optimally address PDS on undirected
graphs having bounded tree-width. Furthermore, the Directed
PDS (DPDS) was reformulated by Aazami and Stilp [12] as
Valid Colourings of edges, and they developed a dynamic
programming algorithm concerning a DPDS in which the

underlying undirected graph had bounded tree-width. The
previous work on PDS in different graph classes examined
and determined that such structures could be embedded in
Erdős-Rényi graphs having varied density and approximation
characteristics [13]. This can help to implement the ideas
involved in addressing the PDS problem. An algorithm was
also developed for decreasing a reconstruction algorithm’s
average-case complexity for (directed) control graphs through
the re-use of the rest of the original graph’ fragments wherever
they could be re-used [14]. Also, it detects edges that were
previously un-used for reducing the number of PDS.

A. Network Controllability under Attack

Certain network vertices experiencing malfunctioning be-
cause of malicious attacks or random failures can lead to
the entire network breaking down into isolated parts. The
authors of [15] studied the attack vulnerability of network
controllability for the canonical model networks according to
five different strategies subject to attacks on nodes and edges.
In terms of Erdős-Rényi random graph, especially directed
graphs, et al. [16] presented the most significant study by
examining the controllability of directed Erdős-Rényi as well
as scale-free networks when facing single-node attack along
with cascading failure attack. They also noted that the degree-
based attacks in directed Erdős-Rényi and scale-free networks
have a greater impact on network controllability compared to
random attacks. They further noted that network controllability
can be adversely impacted by cascade failures, despite a local
node failure being induced. In addition, the effects of vertices
being removed from different networks were studied according
to six complex networks’ attack vulnerability which included
Erdős-Rényi model of random networks [17]. This study
also noted that, as against the original network-based attack
strategies, there were more detrimental impacts of elimination
through the recalculated degrees and betweenness centralities.
Moreover, the Erdős-Rényi random digraph’s structural con-
trollability was also assessed while the question of recovering
a control graph to a large extent was explored in case of
the PDS or its dependent nodes being infringed upon partly
without complete re-computation [18]. The same method was
implemented by Alcaraz et al. [19] for recovering the precise
scale-free networks’ structural controllability following nodal
removal. Further, in [20], how various non-interactive attack
types impact the PDS as well as how underlying graphs affect
numerous network topologies were evaluated. Barthlemy [21],
on the other hand, examined the importance of the nodes’
betweenness centrality in Erdős-Rényi and scale-free networks
in which eliminating betweenness centrality of nodes leads to
new disconnected components. Liu et al. [22] investigated the
single node’s control centrality in complex networks including
directed Erdős-Rényi random graph. They also showed that up-
stream (or downstream) neighbours selected randomly involve
a higher proportion of outgoing (or incoming) links compared
to the node. The authors of [23] studied the possibility to
recover the structural controllability of the residual system with
a minimum set of inputs without re-computation. They also
proposed an efficient algorithm to classify each network single
vertices in order to maintain the current minimum number of
inputs [24].
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III. CONDITIONS FOR THE ANALYSIS

This section discusses the initial assumptions as well as
conditions implemented for recovering structural controllabil-
ity when adversaries are in position within a network for
attacking the driver control nodes. Let G(V,E) be a directed
graph, constructed as ER(n, p), with an arbitrary set of nodes
V and a set of edges E. Each edge included in the graph is
determined independently with probability p. In this paper,
we consider only the resulting instance of ER(n, p) that is
connected without its isolated vertices. Any ordered pair of
vertices vi,v j ∈ V (G) is connected with p by a directed edge
e = vi,v j ∈ E(G) without producing self-loops or parallel
edges, but may have two edges with different directions on
the same two end vertices (called anti-parallel edges).

A. Assumptions for Perturbation

Here, the first assumption is that one or multiple adversaries
who are knowledgeable about the network distribution, its
topology, or its power domination relation, and the identities
of the current driver control nodes ND can compromise the ND
properties. These driver nodes that also belong to V satisfy the
two observation rules for controllability defining by two rules,
simplified by Kneis et al. [7] from the original formulation by
Haynes, et al. [5]:
[OR1] A vertex in ND observes itself and all of its neighbours.
[OR2] If an observed vertex v of degree d ≥ 2 is adjacent
to d − 1 observed vertices, then the remaining unobserved
neighbour becomes observed as well.

As this paper focuses on the problem of structural control-
lability for directed networks, here we consider a straightfor-
ward extension to directed networks for identifying minimum
driver node subsets. To identify the minimum driver node
subsets ND, we follow the approach based on the PDS problem,
which is described in more detail in [5] (note that the PDS
problem gives an equivalent formulation for identifying min-
imum driver node subsets). The construction of ND depends
on choosing vertices that fulfil OR1 and such ND can control
all vertices in V \ND through utilising OR2. Note that PDS
differs from DS problem only by the inclusion of OR2, and
DS (and hence PDS) are known to be NP-complete for general
graphs; PDS is W [2]-hard and only Θ(logn) approximable for
general graphs [8]. This paper endeavours to further explore
the occurrence of the scenarios given below and develop a
recovering strategy that can repair the controllability

SCENARIO: After attaining ND for a given network, it is as-
sumed that an attacker having thorough knowledge concerning
the structure of the network and its ND can compromise the
set ND as well as its dependent nodes through violating the
configuration of ND from the network and then disrupting the
network control.

Hence, this attack scenario may as in the case of electric
power networks result in leading to significant loss of control
of a network or temporary loss of observability as well as
partial observability. For resolving this problem concerning the
PDS formulation, overall controllability should be recovered
by complete re-computation of the ND structure under the
above type of the attack leading to the ND properties getting
violated.

B. Assumptions for Recovery

There are several assumptions being depended on for
recovering structural controllability of a compromised ND. For
recovering controllability it is important for the candidates in
ND to possess the following properties :

• Fulfil the constraint of OR1 by selecting an nd ∈ ND
that can observe itself as well as an unobserved u∈U
using a new link (nd ,u) ∈ E such that |ND| ≥ 1.

• Confirm that the candidate nd does not breach the
observation rule OR2

Note that although the ability to minimise the candidate driver
nodes is highly desirable while recovering the controllability
of a network, the driver nodes obtained may increase such that
in the worst case |ND|= |V |. It is also important, however, to
take into account the handicap of non-locality of PDS as well
as the NP-complete property presented by Haynes et al. [5].

IV. RECOVERY OF STRUCTURAL CONTROLLABILITY

The Laplacian matrices of graphs are fundamental to
represent the network topology and is a useful approach
for analysing network structure. To ensure that the observa-
tion rules given in Section III are satisfied while recovering
structural controllability of a given compromised network,
the following approaches are considered when designing the
algorithm:

• APPR-1 Find the adjacency matrix A(G) of a given
network G such that the m× n matrix whose entries
ai j are given by

ai j =

{
1 if there is outgoing edge (vi,v j) ∈ E
0 otherwise.

• APPR-2 Find the out-degree matrix for G, denoted
by D(G), where for every node v ∈V , the out-degree
d(v) of v is the number of edges leaving v such that
v : d(v) = |u ∈V |(v,u) ∈ E or (u,v) ∈ E|.

After APPR-1 and APPR-2 are obtained, the following two re-
covering rules should be considered to select the best candidate
in ND such that the two observation rules [OR1] and [OR2]
specified above are satisfied, which are the basic constraints
to address the recovery strategy.

• RR1: Determine a vertex having maximum out-
degree, providing the controlling of unobserved nodes
in the set of unobserved nodes U .

• RR2: In case of equality in out-degree, an initial ver-
tex should be selected randomly, offering the coverage
of unobserved nodes in U .

A. Recovering Algorithm and Analysis

For the attack scenario given in Section III, the approach
involves finding the driver candidates ND that can provide
coverage to control each vertex contained in a given network
after ND has been perturbed. The correctness proof of the
approach is provided including induction:

The first phase (PHASE-1) is to initialise a set of unob-
served vertices U of the entire graph G and then, present the
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directed Laplacian matrix of G (APPR-1). After the out-degree
matrix D(G) is obtained satisfying the first recovery restoration
condition (RR1) given above, a vertex v∈U having maximum
out-degree is determined, and then a verification process is
performed to ensure that v does not include the set ND. If the
obtained vertex satisfies the first observation rules OR1 which
observes itself and all of its children, then v ∈ ND is added to
the set ND, and only after that the set ND and the observed
vertices, denoted by O is updated, guaranteeing that U is
updated to apply the second observation rules OR2. If there
is equality for out-degree of each vertex, then an initial vertex
should be selected randomly satisfying the second recovery
restoration condition (RR2). After the obtained vertex v ∈ ND
observes itself and all of its children (OR1), the second phase
(PHASE-2) is performed to extend the coverage of unobserved
nodes in U by ensuring that OR2 is applied for each child of
v ∈ ND. For this, from the adjacency matrix A(G) we search
the entries ai j of the values of ones in row v ∈ ND and apply
the following steps:

1) In order, select the first entry (i.e. the child of v ∈ ND)
with a value of one in the current row of v ∈ ND.

2) Verify that the selected element is not observed yet by
checking the set O. If so, then add this element to O and
update the set of O and U .

3) After that move on to the row of the selected element
(obtained from step 1) and search for the entries having
a value of one. In order, select the first entry with a value
of one in the current row of this element and apply step
2. If the selected element is already observed, then move
back to step 1 and select the next entry of the values of
ones in the current row of v ∈ ND.

4) Keep applying steps 1,2 and 3 till there is no vertex to
observe by v ∈ ND.

5) Now search for the next candidate in ND and apply the
steps 1-4.

Note that if the candidate node v ∈ ND is not able to control
any more vertex, then it should select the next a vertex having
maximum out-degree from the out-degree matrix D(G) and
apply PHASE-1 and PHASE-2 repeatedly till we ensure that
all the set U are controlled such that the algorithm must be
run recursively until U = /0.

• Precondition: O = /0 such that |ND−O| ≥ 1.

• Postcondition: U = /0, and OR1 and OR2 are met.

• Induction: Assuming that we are in step k (k > 1)
with U 6= /0, k = |U |. We apply PHASE-1 and PHASE-
2 repeatedly until the candidate node v∈ND is not able
to observe any more vertex, and only after that the set
ND, O, U and k are updated. In the next state k− 1,
the procedure applied is still valid, and therefore, the
postcondition U = /0 is not fulfilled and PHASE-1 and
PHASE-2 must be run again for the next state k until
k = 0. If k = 0, then the remaining unobserved nodes
become controlled such that O=V−ND, and therefore
the postcondition is met and the algorithm terminates.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section analyses the computational complexity of
recovering algorithm; followed by implementation of complete

re-computation of ND for repairing structural controllability
on real and model networks including directed Erdős-Rényi
networks after ND has been attacked.

For the computational complexity, the algorithm must find
the best candidates ND, satisfying the two observation rules
OR1 and OR2, to ensure the two recovering rules RR1 and
RR1 are met. For simplicity, we denote |V |= n, |E|= e, |ND|=
nd; the first part of the algorithm is to apply two approaches
for recovering the controllability by finding the candidate nd
capable of observing the entire U (i.e. it is required to process
the entire U where U = |V |). APPR-1 is to find the adjacency
matrix of a given network by tracing all its e, where the most
time-consuming part of this process is (O(n+ e)). After the
adjacency matrix is obtained, it is necessary to apply APPR-2
to find the out-degree matrix by searching the entire entries
of n in the adjacency matrix in order to obtain the maximum
out-degree for each vertex with a cost of (O(n)). The overhead
of the first part is O((n+ e)+(n)) = O(n2)

The second part of the algorithm involves performing the
coverage of unobserved nodes in U through PHASE-1 and
PHASE-1; the complicated task of these phases is to first find
the best driver control candidates that satisfy conditions RR1
and RR2, and these candidates can also provide coverage to
each vertex contained in U . To do this, it is required to process
the whole entries of the values of ones in each row of ND in
time O(n− 1) as it is not allowed to have self-loop in the
current entry; for these entries with the values of ones, it must
also consider every element containing the values of ones in
its rows and check if the coverage of OR2 can extend with
the remaining rows having the values of ones until there is no
vertex to cover. In the worst case, if the entire entries of a given
matrix have the values of ones except the diagonal entries to
avoid self-loop complying with the assumption given III, then
the verification of OR2 can consume time as the execution
of algorithm OR2 continues to check until it reaches the last
row of a matrix, where the most time-consuming part for this
scenario is O((n−1)2.(n−1))=O(n3−3n2+3n−1)=O(n3).

TABLE I. THE RESULTS OF THE SIMULATIONS FOR DIFFERENT DIRECTED
ER NETWORKS SIZES WITH VARYING CONNECTIVITY PROBABILITIES.

n p e nd Visolated

100 0.03 149 27 9
1000 0.0025 1249 296 88
2000 0.0011 2199 602 215
3000 0.0007 3149 919 376

On the other hand, we implemented the strategy and consid-
ered connected directed Erdős-Rényi networks with a positive
integer n and a probability value 0≤ p≤ 1, where n denotes
the number of nodes in a network, and p denotes the link
probability p such that for all pair of vertices u,v ∈ n, each
link (v,u) included in the graph is determined independently
with probability p. The development is based on Matlab 1

to produce a more realistic scenario with sparse distributions,
using a probability value 0≤ p≤ 1 and networks with medium
(≤ 1000) and large (≤ 3000) numbers of nodes. The results of
the simulations are summarised in Table I, which show the

1The code is available from author
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efficiency of the recovering strategy with regard to the size of
networks when ND has been perturbed by attacks. Figure 1
shows the restoration process of structural controllability to
identify the candidates in ND for controlling a network of
100 nodes after ND has been perturbed using the recovering
strategy. Note that the isolated nodes are excluded from the
network to comply with the assumption given in Section III
when performing the algorithm. In addition, the node with in-
degree equal to zero must be considered as the candidate in ND
as there is no link pointing out to it as shown in Fig (2b, 2d, 2f).
This, however, can increase the number of ND as the in-degree
of links per node can vary as per a connectivity probability
value. It can be also deduced from Table I that the variation
of the size of the networks can increase the number of driver
nodes because the number of links compared to the number of
nodes is not high as the connectivity probability value is low.
In contrast, by increasing a connectivity probability value of
the distribution of links, the number of ND can become small
as shown in Table II and Figure 3. It should be also noted
that the instances of ND are not unique and clearly depend on
choosing vertices satisfying OR1.
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p = 0.03 without its isolated
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Fig. 1. Recovery of structural controllability for a directed network after ND
has been attacked.

The results confirm also that the recovery of structural con-
trollability can be obtained by searching driver nodes in
polynomial time complexity in the worst case nc, where n is the
number of nodes in a given network and c is a constant number.
However, the limitation of this strategy requires a trade-
off in the complexity against the achievable approximation
factor to obtaining optimal driver nodes in a network. This
because of the fact that the possibility of effectively checking
controllability of a given network is prohibitively expensive
for large networks.

TABLE II. THE SIMULATION RESULTS FOR THE CONSTRUCTION OF ND IN
NETWORK SIZE n = 2000 NODES WITH VARYING CONNECTIVITY

PROBABILITIES.

n p e nd Visolated

2000 0.0011 2199 611 241
2000 0.0012 2399 594 199
2000 0.0013 2599 566 162
2000 0.0014 2799 560 134

(a) nd = 296 in a network of
n=1000 nodes without isolated

nodes.

(b) Structural controllability for ND
after complete re-computation.

(c) nd = 602 (d)

(e) nd = 919 (f)

Fig. 2. The complete re-computation of the driver candidates for controlling
nodes in different networks sizes as shown in Table I.
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VI. CONCLUSION

Structural controllability is a highly interesting concept for
understanding the properties of critical nodes and its power
domination in a control network when a control system is
under adverse conditions. The timely recovery of control is
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a significant problem in control systems. This requires the
ability to recover its damage controllability to ensure high
performance and to restore the control network when the driver
control nodes have been attacked. The main contribution of
this paper is to propose the recovering strategy for control-
lability in large-scale infrastructure networks using the PDS
formulation to understand the effects of topology constraints
on the repair strategy. This involves a computationally efficient
solution, especially on the Erdős-Rényi networks with directed
control links of hundreds of thousands of nodes, by complete
re-computing the driver control nodes after an attack. The
strategy has been analysed as well as a complexity analysis
and the simulation results on model networks provided to
show the effectiveness of the recovering strategy. The results
highlight that the use of directed Laplacian matrix can be
a useful approach for analysing structural controllability of
a network. The results highlight also that an increase of a
connectivity probability of the distribution of links in ER
networks can minimise the number of driver control nodes
which is highly desirable while monitoring the entire network
as the cost of these devices is rather high. Our future work
will further investigate the possibility of maintaining network
controllability without complete re-computation if adversaries
are able to remove partially implicit links and develop novel
methods to improve the restoration of network controllability.
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