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Abstract—The travelling salesman problem (TSP) is a very 
famous NP-hard problem in operations research as well as in 
computer science. To solve the problem several genetic 
algorithms (GAs) are developed which depend primarily on 
crossover operator. The crossover operators are classified as 
distance-based crossover operators and blind crossover 
operators. The distance-based crossover operators use distances 
between nodes to generate the offspring(s), whereas blind 
crossover operators are independent of any kind of information 
of the problem, except follow the problem’s constraints. Selecting 
better crossover operator can lead to successful GA. Several 
crossover operators are available in the literature for the TSP, 
but most of them are not leading good GA. In this study, we 
propose reverse greedy sequential constructive crossover 
(RGSCX) and then comprehensive sequential constructive 
crossover (CSCX) for developing better GAs for solving the TSP. 
The usefulness of our proposed crossover operators is shown by 
comparing with some distance-based crossover operators on 
some TSPLIB instances. It can be concluded from the 
comparative study that our proposed operator CSCX is the best 
crossover in this study for the TSP. 
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I. INTRODUCTION 
The travelling Salesman Problem (TSP) is an old and 

famous combinatorial optimization problem in computer 
science and operations research which was documented in 
1759 by Euler, of course not by that name, whose aim was to 
solve the Knights’ tour problem. A solution of the problem is a 
knight visit of each of the 64-squares of a chessboard exactly 
once in its tour. In 1932, the term ‘travelling salesman’ was 
first used in a German book ‘The travelling salesman, how and 
what he should do to get commissions and be successful in his 
business’, written by a veteran travelling salesman. In 1948, the 
problem was formally introduced by RAND Corporation. The 
problem became popular by the Corporation’s reputation and 
then by introducing linear programming for solving 
combinatorial optimization problems. The problem aims to 
obtain a least cost Hamiltonian cycle in a network of nodes [1]. 
The TSP has applications in automatic drilling of printed 
circuit boards and circuits, very-large-scale-integrated (VLSI) 
circuit, X-ray crystallography, movement of people, computer 
wiring [2]. The problem can be defined as follows: 

A A network of n nodes, with 'node 1' as ‘depot’ and a 
travel cost (or distance, or travel time etc.,) matrix C= [cij] of 
order n related to ordered pairs (i, j) of nodes is given. The aim 
of the problem is to obtain a least cost Hamiltonian cycle. 
Symmetric and asymmetric TSPs are two cases of TSP. It is 
symmetric if cij = cji, for all i, j; else, asymmetric. For 
asymmetric case, there are possibly )!1( −n solutions out of 
which at least one provides the minimum cost, and for 
symmetric case, there are likely 

2
)!1( −n solutions along with 

same cost opposite cyclic permutations in n-node network. The 
possible number of solutions is very huge in both cases and the 
problem is NP-Hard [3]. The problem is very famous, and it is 
researched by many researchers because of its difficulty and its 
usability to model many other difficult real-life problems. 

In the literature for the TSP, numerous exact and heuristic 
methods have been proposed, and most of them are 
heuristic/metaheuristic methods. Genetic algorithm, tabu 
search, artificial neural network, ant colony optimization, 
particle swarm optimization, etc. are some of the effective 
metaheuristic algorithms [1]. Among them genetic algorithm is 
seen to be one of the best metaheuristic algorithms for the 
problem [4]. 

Genetic algorithm (GA) is a search process that is inspired 
by natural biological evolution process. It was proposed by John 
Holland in 1970s [5]. It starts initially with a population of 
strings, called chromosomes, that encode solutions to a problem, 
and operates probably three operators - selection, crossover and 
mutation, to produce new and probably better populations in 
successive generations. Crossover operator is the leading 
operator in GAs [1]. Mutation enlarges search space as well as 
protects GAs from damaging any genetic element resulted from 
crossover and selection operators. Among three operators, 
crossover is the primary operator, and hence, numerous 
crossover operators have been suggested as well as improved for 
finding better solution to the TSP [5]. 

In this present study, we propose first reverse greedy 
sequential constructive crossover (RGSCX) and then 
comprehensive sequential constructive crossover (CSCX) by 
combining greedy sequential constructive crossover (GSCX) 
[6] with RGSCX for the TSP. We then applied the proposed 
operators manually on two chromosomes to produce 
offspring(s). Finally, the usefulness of our proposed crossover 

245 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

operators is shown by comparing with some distance-based 
crossover operators on some TSPLIB instances. One can 
conclude from the comparative study that our proposed 
operator CSCX is the best crossover operator in this study for 
the TSP. 

This paper is organized as follows: A survey on related 
work for the TSP is reported in Section II. Section III develops 
proposed crossover operators for the problem, whereas, Section 
IV reports computational experiments for six crossover 
operators. Finally, Section V presents conclusion and future 
works. 

II. RELATED WORK 
There are numerous crossover operators suggested for 

solving the TSP. Two kinds of crossover operators have been 
suggested for the problem, namely distance-based crossover 
and blind crossover. In distance-based crossover operators, 
offspring are created using distance between nodes, whereas, in 
blind crossover operators, offspring are not created using any 
information of the problem, rather they bother only about the 
problem’s constraints. The partially mapped crossover (PMX) 
[7], ordered crossover (OX)[8], order based crossover (OBX) 
and position based operator (PBX) [9], alternating edges 
crossover (AEX) [10], cycle crossover (CX) [11], edge 
recombination crossover (ERX) [12], generalized N-point 
crossover (GNX) [13], etc. are some of the blind crossover 
operators, and greedy crossover (GX) [10], heuristic crossover 
(HX) [14], distance preserving crossover (DPX) [15], 
sequential constructive crossover (SCX) [4], etc. are some of 
the popular distance-based crossover operators. 

Selecting better crossover operator can lead to successful 
GA. Though several crossover operators are available in the 
literature for the TSP, but most of them are not leading good 
GA. So, our aim is to develop distance-based crossover 
operators and then compare them with some existing crossover 
operators for showing the effectiveness of the proposed 
operators. Osaba et al. [16] pointed that comparisons between 
heuristic/metaheuristic methods using blind operators and 
heuristic methods using optimizing functions must be avoided. 
Otherwise, comparison would not be reliable, because nature 
of the methods is different. If someone wants to verify the 
quality of any distance-based crossover operator, suppose 
SCX, the results found by the operator should be compared 
against the one found by another distance-based crossover 
operator, such as HX, GX or DPX. Now, if performance of 
SCX is compared against other blind operators, such as the 
PMX, OX, CX, ERX or AEX, the comparison will not be fair. 
Since, we propose to modify SCX, hence modified SCXs will 
be compared with only some distance-based crossovers such as 
HX, GX and SCX. So, we are going to explain some of these 
operators only through an example of pair of parent 
chromosomes. To represent solution by chromosome, the path 
representation that lists the permutation of node is considered 
here. For example, let {1, 2, 3, 4, 5, 6, 7, 8, 9} is the list of 
node labels for a 9-node problem example, then the tour 
{1→7→6→3→8 → 9→2→4→ 5 →1} is represented by (1, 7, 
6, 3, 8, 9, 2, 4, 5). The objective function cost (value) is the 
total cost of all edges in this tour. 

A. Modified Heuristic Crossover Operator 
Liepins et al. [17] proposed a modified HX for the TSP that 

initially selects a node and copy it to the offspring then its 
nearest node is copied to the offspring until the offspring is 
complete. Jog et al. [18] described a modified heuristic 
crossover (MHX) of the HX [17] that creates an offspring 
chromosome from two parent chromosomes as follows. Select 
a node randomly as the starting node for offspring 
chromosome. Compare two arcs leaving the starting node in 
both parents and select the cheaper one. Continue to copy the 
cheaper arc of two arcs in both parents into the offspring. If the 
cheaper parent arc introduces a cycle (repeating any node) into 
offspring (illegal chromosome), check whether the other parent 
arc introduces a cycle. If the second arc does not introduce a 
cycle, copy this arc into the offspring, otherwise, copy the 
cheaper arc into the offspring from a group of maximum 20 
randomly selected arcs that do not introduce a cycle. Continue 
until a complete offspring is created and the first parent 
chromosome is replaced by this offspring. This operator 
generates an offspring using two parent chromosomes. 

We illustrate the MHX using the 9-node problem example 
shown in Table I as the cost matrix. Suppose parent 
chromosomes P1: (1, 2, 3, 4, 6, 9, 5, 7, 8) and P2: (1, 3, 5, 7, 8, 
9, 4, 2, 6) with costs 83 and 75 respectively are selected as 
parent chromosomes. We use these same chromosomes to 
illustrate all crossover operators. Also, as we fixed ‘node 1’ as 
depot node (first gene), so, we always start the procedure for 
all crossover operators from the ‘node 1’. 

Since the procedure starts from the node 1, so, initially the 
offspring is (1). The arcs in both parents going out from the 
node 1 are considered, i.e. 1→2 and 1→3 with costs 7 and 15 
respectively. So, node 2 is added and the incomplete offspring 
becomes: (1, 2). Next, the parent arcs leaving the node 2 are 
considered, i.e. 2→3 and 2→6 with costs 8 and 3 respectively. 
Among them 2→6 is cheaper, So, node 6 is added and the 
incomplete offspring becomes: (1, 2, 6). Then the arcs 6→9 
and 6→1 must be considered, but the second one is illegal it 
leads to already visited node, so, 6→9 is chosen which leads to 
the incomplete offspring: (1, 2, 6, 9). Continuing in this way, 
one can obtain a complete offspring as: (1, 2, 6, 9, 4, 8, 5, 7, 3) 
having cost 56. 

TABLE I. THE COST MATRIX 

Node 1 2 3 4 5 6 7 8 9 

1 999 7 15 9 10 6 8 9 10 

2 11 999 8 7 11 3 6 4 3 

3 15 5 999 16 12 5 8 13 4 

4 2 5 11 999 9 13 14 4 2 

5 8 6 3 5 999 6 7 10 9 

6 6 13 8 11 5 999 5 4 5 

7 5 15 3 7 12 6 999 8 9 

8 9 3 9 14 3 11 8 999 10 

9 11 16 3 9 10 7 9 10 999 

246 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

B. Very Greedy Crossover Operator 
Julstrom [19] proposed a greedy extension of HX [18], 

named very greedy crossover (VGX), for solving the TSP, 
which is as follows. It selects a starting node randomly, then 
constructs a tour by investigating the four arcs leaving that 
node in both parents, according to their costs. It copies the first 
arc that does not make a cycle. If all four parent arcs from any 
node make cycles, then it uses the cheapest arc to an unvisited 
node. If the parents share an edge from the current node to one 
unvisited node, the operator copies that arc, even if it is not 
cheapest. The VGX operator creates an offspring using two 
parents. We illustrate the VGX using same example shown 
above. 

Initially, the offspring is (1). The arcs in both parents 
leaving the node 1 are considered, i.e. 1→2 and 1→8 with 
costs 7 and 9 respectively in P1 and 1→3 and 1→6 with costs 
15 and 6 respectively in P2. So, node 6 is copied that gives the 
incomplete offspring as: (1, 6). Next, the parent arcs leaving 
the node 6 are considered, i.e. 6→9, 6→4, 6→1 and 6→2 
having their respective costs 5, 11, 6 and 13. Among them 
6→9 is cheaper, So, node 9 is copied that gives an incomplete 
offspring as: (1, 6, 9). Continuing in this way, one can obtain a 
complete offspring as: (1, 6, 9, 4, 2, 3, 5, 7, 8) having cost 69. 

C. Adaptive Sequential Constructive Crossover Operator 
The sequential constructive crossover (SCX) is proposed in 

[4] for solving the TSP which found very good solution for 
symmetric and asymmetric TSPLIB instances. In [20], SCX is 
modified as follows: after current node, if no any legitimate 
node is available in any parent, then it searches from the 
starting of the parent chromosome and the first legitimate node 
is selected as next node. In [21], a comparative study is 
reported that shows that SCX is the best among eight crossover 
operators. A modified SCX, named bidirectional circular SCX 
(BCSCX) is developed in [22]. In [23], an adaptive SCX 
(ASCX) is proposed that creates an offspring adaptively, either 
in forward or in backward or in mixed direction that depends 
on next node’s cost. Hence, eight neighbour nodes of any 
current node is considered, four for each of the two nodes 
(genes). 

Since in a chromosome number of genes is n, the 'node 1' is 
selected as the first as well the (n+1)th genes. The algorithm for 
the ASCX is stated as follows [23]. 

Step 1: Start from the first gene, 'node 1’ (i.e., current node 
p =1 in position i=1) in forward direction and from the (n+1)th 
gene, ‘node 1’ (it is not shown in the chromosome), (i.e., 
current node q =1 in position j=n+1) in backward direction. 

Step 2: Sequentially search both parent chromosomes in 
right direction and consider the first ‘legitimate node' (the node 
that is not yet visited) appeared after 'node p’ in each parent. If 
no 'legitimate node' after 'node p’ is present in any of the 
parents, search sequentially from the starting of the parent 
(wrap around) and consider the first 'legitimate node'. Suppose 
the 'node α' and the 'node β' are found in 1st and 2nd parent 
respectively. Go to Step 3. 

Step 3: Sequentially search both parent chromosomes in 
left direction and consider the first ‘legitimate node' appeared 
after 'node p’ in each parent. If no 'legitimate node' after 'node 

p’ is present in any of the parents, search sequentially from the 
end of the parent (wrap around) and consider the first 
'legitimate node'. Suppose the 'node γ’ and the 'node δ' are 
found in 1st and 2nd parent respectively. Now, suppose among 
four nodes, 'node u' is the cheapest with cost s=min. {cpα, cpβ, 
cpγ, cpδ}. Go to Step 4. 

Step 4: Sequentially search both parent chromosomes in 
left direction and consider the first ‘legitimate node' appeared 
after 'node q’ in each parent. If no 'legitimate node' after 'node 
q’ is present in any of the parents, search sequentially from the 
end of the parent (wrap around) and consider the first 
'legitimate node'. Suppose the 'node w' and the 'node x' are 
found in 1st and 2nd parent respectively. Go to Step 5. 

Step 5: Sequentially search both parent chromosomes in 
right direction and consider the first ‘legitimate node' appeared 
after 'node q’ in each parent. If no 'legitimate node' after 'node 
q’ is present in any of the parents, search sequentially from the 
beginning of the parent (wrap around) and consider the first 
'legitimate node'. Suppose the 'node y’ and the 'node z' are 
found in 1st and 2nd parent respectively. Now, suppose among 
four nodes, 'node v' is the cheapest with cost t=min. {cwq, cxq, 
cyq, czq}. Now, for selecting the next node as well as adding it 
in a position in the offspring chromosome go to Step 6. 

Step 6: If s ≤ t, then add 'node u' in position ‘i' in the 
partially constructed offspring chromosome and set p=u, i=i+1. 
Otherwise, add 'node v' in position ‘j' in the partially 
constructed offspring chromosome and set q=v, j=j-1. Now, If 
the offspring is a complete chromosome, then stop, otherwise, 
go to Step 2. 

We illustrate the ASCX using same example shown above. 
As number of genes in the chromosomes is 9, the 'node 1' is the 
first as well as the 10th gene (not displayed in the 
chromosomes). After ‘node 1’ (first gene), the legitimate nodes 
in P1 in forward direction is 2 and in backward direction (after 
wrapping around) is 8, and in P2 they are 3 and (after wrapping 
around) 6, having their respective costs 7, 9, 15 and 6. So, the 
cheapest is node 6 having cost 6. From the end, before ‘node 1’ 
(10th gene), the legitimate nodes in P1, in backward direction is 
8 and in forward direction (after wrapping around) is 2, and in 
P2 they are 6 and (after wrapping around) 3, having their 
respective costs 9, 7, 6 and 15. So, the cheapest is node 6 
having cost 6. As both cheapest nodes are 6, it is added as the 
second gene in the current offspring that leads the incomplete 
offspring to (1, 6, *, *, *, *, *, *, *). 

After ‘node 6’ (second gene), the legitimate nodes in P1 in 
forward direction is 9 and in backward direction is 4, and in P2 
they are (after wrapping around) 3 and 2, having their 
respective costs 5, 11, 8 and 13. So, the cheapest is node 9 
having cost 5. From the end, before ‘node 1’ (10th gene), the 
legitimate nodes in P1, in backward direction is 8 and in 
forward direction (after wrapping around) is 2, and in P2 they 
are 2 and (after wrapping around) 3, having their respective 
costs 9, 11, 11 and 15. So, the cheapest is node 8 having cost 9. 
As node 9 is cheaper between the cheapest nodes, it is added as 
the third gene in the current offspring that leads the incomplete 
offspring to (1, 6, 9, *, *, *, *, *, *). Continuing in this way, 
one can obtain a complete offspring as: (1, 6, 9, 4, 8, 2, 3, 5, 7) 
having cost 59. 

247 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

D. Greedy Sequential Constructive Crossover Operator 
Recently, Ahmed [6] proposed the greedy SCX (GSCX) by 

introducing a greedy method, which is as follows. 

Step 1: Start from 'node 1’ (i.e., current node p =1). 

Step 2: Sequentially search both parent chromosomes and 
consider the first ‘legitimate node' (the node that is not yet 
visited) appeared after 'node p’ in each parent. If ‘legitimate 
node’ after 'node p’ is found in both parents, then go to Step 3, 
otherwise, consider the cheapest ‘legitimate node’ from the 
group of remaining legitimate nodes and concatenate it to the 
partially constructed offspring chromosome. If the offspring is 
a complete chromosome, then stop, otherwise, rename this 
present node as 'node p' and repeat this Step 2 

Step 3: Suppose the 'node α' and the 'node β' are found in 1st 
and 2nd parent respectively, then for selecting the next node go 
to Step 4. 

Step 4: If cpα < cpβ, then select 'node α', otherwise, 'node β' 
as the next node and concatenate it to the partially constructed 
offspring chromosome. If the offspring is a complete 
chromosome, then stop, otherwise, rename the present node as 
'node p' and go to Step 2. 

We illustrate the GSCX using same example shown above. 
As 'node 1' is the first gene, after this node, the legitimate 
nodes in P1 is 2 and in P2 is 3 having c12=7 and c13=15. As 
c12<c13, the node 2 is added as the second gene in the current 
offspring that leads the incomplete offspring to (1, 2). 

After 'node 2', the legitimate nodes in P1 is 3 and in P2 is 6 
having c23=8 and c26=3. As c26<c23, the node 6 is added as the 
third gene in the current offspring that leads the incomplete 
offspring to (1, 2, 6). 

After 'node 6', the legitimate nodes in P1 is 9 and in P2 is 
nothing. So, we search and find the cheapest legitimate node as 
8, which is added as the fourth gene in the current offspring 
that leads the incomplete offspring to (1, 2, 6, 8). Continuing in 
this way, one can obtain a complete offspring as: (1, 2, 6, 8, 5, 
7, 3, 9, 4) having cost 42. 

III. PROPOSED CROSSOVER OPERATORS 
We propose two crossover operators - reverse greedy 

sequential constructive crossover operator and comprehensive 
sequential constructive crossover operator. 

A. Reverse Greedy Sequential Constructive Crossover 
Operator 
In this proposed operator, we apply the GSCX in reverse 

direction and we name it as reverse GSCX (RGSCX). We 
construct the offspring in reverse direction, that is, from the last 
node (gene) of the offspring back to the first node (gene) of the 
same. So, we define RGSCX as follows. 

Step 1: Suppose the 'node α' and the 'node β' are the last 
nodes in 1st and 2nd parent respectively. Since ‘node 1’ is the 
first node (gene), then for selecting the last node, we check 
whether cα1 < cβ1. If yes, then select 'node α', otherwise, 'node 
β' as the last node and concatenate it to the partially constructed 
offspring chromosome. Then rename this present node as 'node 
p' and go to Step 2. 

Step 2: Sequentially search both parent chromosomes in 
reverse direction and consider the first ‘legitimate node' (the 
node that is not yet visited) appeared before 'node p’ in each 
parent. If ‘legitimate node’ before 'node p’ is found in both 
parents, then go to Step 3, otherwise, consider the cheapest 
‘legitimate node’ from the group of remaining legitimate nodes 
and concatenate it to the partially constructed offspring 
chromosome. If the offspring is a complete chromosome, then 
stop, otherwise, rename this present node as 'node p' and repeat 
this Step 2. 

Step 3: Suppose the 'node α' and the 'node β' are found in 1st 
and 2nd parent respectively, then for selecting the previous node 
go to Step 4. 

Step 4: If cαp < cβp, then select 'node α', otherwise, 'node β' 
as the previous node and concatenate it to the partially 
constructed offspring chromosome. If the offspring is a 
complete chromosome, then stop, otherwise, rename this 
present node as 'node p' and go to Step 2. 

We illustrate the RGSCX using same example shown 
above. By default, the 10th node is 1. The last nodes (9th genes) 
are 8 and 6 in P1 and P2 respectively having c81=9 and c61=6. 
As c61<c81, the node 6 is considered as the 9th gene that 
initiated the incomplete offspring as (6). 

Before 'node 6', the legitimate nodes in P1 is 4 and in P2 is 
2 having c46=13 and c26=3. As c26<c46, the node 2 is added as 
the 8th gene in the current offspring that leads the incomplete 
offspring to (2, 6). 

Before 'node 2', the legitimate node in P1 is nothing. So, we 
search and find the cheapest legitimate node as 8, which is 
added as the 7th gene in the current offspring that leads the 
incomplete offspring to (8, 2, 6). 

Before 'node 8', the legitimate nodes in both P1 and in P2 
are node 7, so it is added as the 6th gene in the current offspring 
that leads the incomplete offspring to (7, 8, 2, 6). 

Also, before 'node 7', the legitimate nodes in both P1 and in 
P2 are node 5, so it is added as the fifth gene in the current 
offspring that leads the incomplete offspring to (5, 7, 8, 2, 6). 

Before 'node 5', the legitimate nodes in P1 is 9 and in P2 is 
3 having c95=10 and c35=12. As c95<c35, the node 9 is added as 
the fourth gene in the current offspring that leads the 
incomplete offspring to (9, 5, 7, 8, 2, 6). 

Before 'node 9', the legitimate nodes in P1 is 4 and in P2 is 
3 having c49=2 and c39=4. As c49<c39, the node 4 is added as 
the third gene in the current offspring that leads the incomplete 
offspring to (4, 9, 5, 7, 8, 2, 6). Continuing in this way, one can 
obtain a complete offspring as: (1, 3, 4, 9, 5, 7, 8, 2, 6) having 
cost 70. 

B. Comprehensive Sequential Constructive Crossover 
Operator 
We propose a comprehensive SCX (CSCX) by combining 

two crossover operators GSCX and RGSCX that produces two 
offspring. So, by using above example parents, it produces 
both offspring (1, 2, 6, 8, 5, 7, 3, 9, 4) and (1, 3, 4, 9, 5, 7, 8, 2, 
6) with cost 42 and 70 respectively which are less than costs of 
both the parent chromosomes.  
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Our GA is non-hybrid, simple, which uses basic GA 
processes and operators, but does not incorporate any other 
heuristic algorithm. In our simple GA, starting with random 
chromosome population, good chromosomes are selected by 
stochastic remainder selection technique, then population 
passes through one selected crossover operator and swap 
mutation operator. Our simple GA may be designed as follows.  

SimpleGA ( ) 
{ Initialize random population of size Ps; 
 Evaluate the population; 
 Generation = 0; 
 While stopping condition is not satisfied 
 { Generation = Generation + 1; 
 Select good chromosomes by selection operator; 
 Select a crossover operator and do crossover with crossover 

probability Pc; 
 Do swap mutation with mutation probability Pm; 
 Evaluate the population;  
 } 
} 

IV. COMPUTATIONAL EXPERIMENTS 
The simple GAs using six crossover operators (MHX, 

VGX, ASCX, GSCX, RGSCX and CSCX) have been encoded 
in Visual C++. To compare the competence of these operators, 
simple GAs are applied on twenty eight TSPLIB instances [24] 
and then executed on a Laptop with specification i3-3217U 
CPU@1.80 GHz and 4 GB RAM under MS Windows 7. 
Among the twenty eight problem instances, instances ftv33, 
ftv35, ftv38, p43, ftv44, ftv47, ry48p, ft53, ftv55, ftv64, ft70, 
ftv70, kro124p, ftv170, rbg323, rbg358, rbg403 and rbg443 are 
asymmetric, and instances gr21, fri26, bayg29, dantzig42, 
eil51, berlin52, pr76, lin105, d198 and a280 are symmetric. For 
all simple GAs, the parameters are set as follows: 50 is 
population size, 1.0 is crossover probability, 0.20 is mutation 
probability, and 1,000 is maximum generations that is set as 
the stopping condition. For each instance, the experiments 
were repeated 50 times. Figures 1 shows results for rbg443 
(considering only 100 generations) by all simple GAs. Each 
graph is for one crossover operator that shows the 
improvement of the solution as the number of generations 
increases. In the figure, the label on the left margin denotes the 
percentage of excess (Excess (%)) to the best known solution 
reported in TSPLIB website, which is calculated by the 
formula. 

𝐸𝑥𝑐𝑒𝑠𝑠 (%) = 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 −𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝑆𝑜𝑙

 𝑥 100. 

It is seen for the Figure 1 that MHX has some deviations, 
but not the best. GSCX has limited deviation but gets stuck 
very quickly in local minimum. Though ASCX and CSCX 
have less deviations and they are competing, however CSCX 
finds best results. 

 
Fig. 1. Excess(%) by GAs using different Crossover Operators. 

We summarize the results of our experiments using six 
crossover operators in Tables II and IV. We have organized the 
tables as follows: a row corresponds to the summarized results 
for a problem instance using variant GAs, first column reports 
a problem instance and its best-known solution (within 
brackets), second column reports the size of the instance, third 
column reports title of the summarized results and remaining 
each column is for GA using the mentioned crossover operator. 
The result using each crossover operator is designated by its 
best solution cost (Best Sol), average solution cost (Avg. Sol), 
percentage of excess of average solution to the best-known 
solution (Avg. Exc(%)), standard deviation of solution costs 
(S.D.), and average convergence time (Avg. Time) (in 
seconds). The best result over these six crossover operators for 
an instance is marked by bold face. 

The Table II reports results using the GAs for the 
asymmetric instances. The crossover operators MHX and 
GSCX could not obtain either lowest best solution cost or 
average solution cost for any asymmetric instance. The 
crossover operators VGX and RGSCX obtain lowest best 
solution cost for the instance p43, whereas CSCX obtains 
lowest best solution costs for remaining seventeen instances. 
The crossover operator ASCX obtains lowest average solution 
cost for the instance p43 with lowest S.D., whereas CSCX 
obtains lowest average solution cost with lowest S.D. for 
remaining seventeen instances. By looking at average of Avg. 
Exc (%), one can make rank of the crossover operators. 
Accordingly, CSCX produce the best results, while ASCX is 
the second best, MHX and RGSCX are competing for the third 
best, and VGX is the worst. The results are also depicted in 
Figure 2, which also demonstrates the usefulness of our 
proposed crossover CSCX. 
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TABLE II. RESULTS BY THE CROSSOVER OPERATORS FOR ASYMMETRIC TSPLIB INSTANCES 

Instance n Results MHX VGX ASCX GSCX RGSCX CSCX 

ftv33 
(1286) 34 

Best Sol 1376 1404 1371 1380 1396 1341 
Avg. Sol 1479.56 1501.18 1394.72 1458.48 1464.16 1382.86 
Avg. Exc (%) 15.05 16.73 8.45 13.41 13.85 7.53 
S.D. 50.71 39.65 2.85 47.24 43.98 14.42 
Avg. Time 0.18 0.09 0.18 0.05 0.08 0.10 

ftv35 
(1473) 36 

Best Sol 1520 1543 1586 1531 1583 1499 
Avg. Sol 1623.68 1649.28 1657.08 1631.32 1705.56 1551.44 
Avg. Exc (%) 10.23 11.97 12.50 10.75 15.79 5.33 
S.D. 55.93 46.01 31.98 47.09 56.93 32.17 
Avg. Time 0.18 0.15 0.07 0.05 0.08 0.17 

ftv38 
(1530) 39 

Best Sol 1604 1618 1679 1613 1672 1550 
Avg. Sol 1678.08 1714.04 1748.64 1690.50 1722.22 1605.72 
Avg. Exc (%) 9.68 12.03 14.29 10.49 12.56 4.95 
S.D. 40.17 44.37 25.88 39.65 59.15 32.38 
Avg. Time 0.23 0.13 0.12 0.05 0.10 0.22 

p43 
(5620) 43 

Best Sol 5631 5625 5631 5631 5625 5627 
Avg. Sol 5640.96 5636.52 5635.70 5641.20 5640.18 5639.30 
Avg. Exc (%) 0.37 0.29 0.28 0.38 0.36 0.34 
S.D. 5.91 5.35 1.96 6.97 8.73 7.09 
Avg. Time 0.29 0.34 0.37 0.17 0.14 0.27 

ftv44 
(1613) 45 

Best Sol 1725 1686 1733 1706 1627 1613 
Avg. Sol 1843.98 1863.24 1796.12 1853.28 1793.12 1669.48 
Avg. Exc (%) 14.32 15.51 11.35 14.90 11.17 3.50 
S.D. 59.21 68.81 28.08 60.57 71.07 37.33 
Avg. Time 0.41 0.37 0.73 0.12 0.21 0.19 

ftv47 
(1776) 48 

Best Sol 1860 1902 2054 1864 1919 1833 
Avg. Sol 2046.38 2065.80 2111.08 2021.72 2102.62 1936.26 
Avg. Exc (%) 15.22 16.32 18.87 13.84 18.39 9.02 
S.D. 84.14 91.77 21.98 70.92 69.51 43.12 
Avg. Time 0.57 0.46 0.74 0.26 0.23 0.27 

ry48p 
(14422) 48 

Best Sol 15629 15204 15290 15469 15293 14983 
Avg. Sol 16120.54 16062.36 15744.88 16150.78 15664.34 15479.70 
Avg. Exc (%) 11.78 11.37 9.17 11.99 8.61 7.33 
S.D. 287.99 306.73 200.95 278.65 186.04 278.44 
Avg. Time 0.45 0.36 0.50 0.17 0.18 0.13 

ft53 
(6905) 53 

Best Sol 8061 7899 7631 7882 7973 7486 
Avg. Sol 8617.90 8529.00 8127.34 8614.86 8427.90 7816.04 
Avg. Exc (%) 24.81 23.52 17.70 24.76 22.06 13.19 
S.D. 278.54 291.14 156.51 277.13 224.61 194.86 
Avg. Time 0.49 0.59 0.38 0.35 0.31 0.34 

ftv55 
(1608) 56 

Best Sol 1773 1753 1749 1723 1705 1639 
Avg. Sol 1872.60 1846.58 1798.86 1841.82 1773.14 1712.58 
Avg. Exc (%) 16.46 14.84 11.87 14.54 10.27 6.50 
S.D. 56.81 60.22 20.58 50.89 48.93 39.74 
Avg. Time 0.56 0.54 1.05 0.36 0.34 0.28 

ftv64 
(1839) 65 

Best Sol 2010 2079 2145 1990 1999 1879 
Avg. Sol 2196.10 2228.14 2236.32 2140.28 2178.94 1921.62 
Avg. Exc (%) 19.42 21.16 21.61 16.38 18.49 4.49 
S.D. 85.06 71.79 44.42 76.32 89.40 39.74 
Avg. Time 0.66 0.90 1.01 0.29 0.53 0.49 

ft70 
(38673) 70 

Best Sol 40976 40926 41592 41129 41445 40050 
Avg. Sol 42208.68 42210.74 42447.92 42185.60 42283.14 41080.98 
Avg. Exc (%) 9.14 9.15 9.76 9.08 9.34 6.23 
S.D. 517.87 480.29 292.36 571.46 442.49 376.74 
Avg. Time 0.99 0.91 1.80 0.64 0.72 0.53 

ftv70 
(1950) 71 

Best Sol 2145 2154 2276 2118 2068 1975 
Avg. Sol 2326.06 2350.86 2332.22 2296.32 2294.38 2065.54 
Avg. Exc (%) 19.29 20.56 19.60 17.76 17.66 5.93 
S.D. 80.56 90.05 41.54 69.83 91.22 59.63 
Avg. Time 0.76 1.08 1.16 0.48 0.63 0.68 

kro124p 
(36230) 100 

Best Sol 41199 41764 41246 41251 40956 38432 
Avg. Sol 43371.14 43167.84 42471.12 42829.16 42967.98 40303.68 
Avg. Exc (%) 19.71 19.15 17.23 18.21 18.60 11.24 
S.D. 990.53 781.36 462.23 780.6 1057.48 877.77 
Avg. Time 0.94 1.12 0.58 0.42 0.92 0.79 
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(CONTD.) RESULTS BY THE CROSSOVER OPERATORS FOR ASYMMETRIC TSPLIB INSTANCES 

Instance n Results MHX VGX ASCX GSCX RGSCX CSCX 

ftv170 
(2755) 171 

Best Sol 3303 3551 3232 3656 3517 2968 
Avg. Sol 3607.68 3835.46 3393 3799.50 3767.42 3178.74 
Avg. Exc (%) 30.95 39.22 23.16 37.91 36.75 15.38 
S.D. 130.91 159.74 95.42 130.15 214.40 79.22 
Avg. Time 1.79 4.05 0.93 1.74 2.74 2.99 

rbg323 
(1326) 323 

Best Sol 1553 1558 1611 1597 1617 1400 
Avg. Sol 1594.20 1644.42 1618.8 1677.12 1677.76 1443.04 
Avg. Exc (%) 20.23 24.01 22.08 26.48 26.53 8.83 
S.D. 19.15 28.06 17.7 34.19 28.94 15.82 
Avg. Time 13.45 20.24 23.53 15.76 17.71 24.28 

rbg358 
(1163) 358 

Best Sol 1481 1495 1327 1522 1514 1325 
Avg. Sol 1541.4 1555.36 1387.92 1591.04 1650.14 1373.36 
Avg. Exc (%) 32.54 33.74 19.34 36.80 41.89 18.09 
S.D. 26.05 27.79 24.05 36.93 48.64 22.04 
Avg. Time 8.86 25.67 30.77 18.16 24.36 19.5 

rbg403 
(2465) 403 

Best Sol 3033 3104 2922 3149 2833 2636 
Avg. Sol 3110 3172.66 2983.38 3214.22 2980.9 2704.58 
Avg. Exc (%) 26.17 28.71 21.03 30.39 20.93 9.72 
S.D. 38.51 35.02 21.43 42.23 46.77 30.76 
Avg. Time 42.8 33.66 38.93 28.96 32.33 27.67 

rbg443 
(2720) 443 

Best Sol 3399 3517 3252 3573 3188 2932 
Avg. Sol 3498.92 3604.94 3321.58 3678.86 3329.06 2993.72 
Avg. Exc (%) 28.64 32.53 22.12 35.25 22.39 10.06 
S.D. 41.53 33.71 20.95 48.04 60.93 28.09 
Avg. Time 53.28 45.97 50.82 30.78 38.33 33.07 

Average of Avg. Exc (%) 18.00 19.49 15.58 19.07 18.09 8.20 

 
Fig. 2. Average Excess(%) by different GAs for Asymmetric Instances. 

To validate the above observations, we also carried out an 
adequate statistical analysis. By considering that reported 
results in Table II are random and independent samples, a set 
of Student’s t-tests were conducted. Indeed, for every pair of 
crossover operator, the hypothesis is tested whether one of the 
operators is better than the other. The efficiency of an operator 
is categorized by its average of average excess (%) computed 
over the all problem instances with best-known solutions. 

The results of our hypotheses testing are summarized in 
Table III. In the table, each row contains two columns, where 
the first lists a crossover operator and the second column lists 

its inferior crossover operators. The results are statistically 
significant at the significance level 0.05 [25]. In Table III, each 
crossover is ranked according to its number of inferior 
crossover operators. It is found that there is statistically 
significant difference between CSCX and other crossover 
operators at level 0.05, and so, as expected the best ranked 
crossover is CSCX. Also, the second best is ASCX. No 
significant difference is found between RGSCX and MHX, as 
expected, they share the third rank. Also, no significant 
difference is found between GSCX and VGX, and hence, they 
share the worst rank. 

The Table IV reports results by the GAs for the symmetric 
TSPLIB instances. The crossover MHX and ASCX obtain 
lowest best solution cost only for two instances - gr21 and 
fri26; VGX obtains lowest best solution cost for three instances 
– dantzig42, eil51 and lin105; GSCX and RGSCX obtain 
lowest best solution cost for three instances – gr21, fri26 and 
bayg29; and CSCX obtains lowest best solution cost for six 
instances – gr21, fri26, berlin52, pr76, pr226 and a280. The 
crossover operators MHX, VGX, ASCX and GSCX could not 
obtain lowest average solution cost for any symmetric instance. 
The proposed RGSCX obtains lowest average solution cost 
with lowest S.D. for the only one instance bayg29, and CSCX 
finds lowest average costs along with lower S.D. for remaining 
9 instances. So, our proposed crossover CSCX is the best. 
Also, by looking at average of Avg. Exc (%), one can make it 
clear that CSCX produces best results, while VGX, RGSCX 
and GSCX are competing for the second best, and MHX is the 
worst. The results are also depicted in Figure 3, which also 
demonstrates the usefulness of our proposed crossover CSCX. 
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TABLE III. RESULTS OF STATISTICAL HYPOTHESES TESTING ON ASYMMETRIC INSTANCES 

Crossover Inferior crossovers 
CSCX MHX, VGX, ASCX, GSCX, RGSCX 
ASCX MHX, VGX, GSCX, RGSCX 
RGSCX VGX, GSCX 
MHX VGX, GSCX 
GSCX ------ 
VGX ------ 

TABLE IV. RESULTS BY THE CROSSOVER OPERATORS FOR SYMMETRIC TSPLIB INSTANCES 

Instance n Results MHX VGX ASCX GSCX RGSCX CSCX 
gr21 21 Best Sol 2707 2754 2707 2707 2707 2707 
(2707)  Avg. Sol 2874.78 2927.70 2825.2 2845.28 2829.58 2806.88 
  Avg. Exc(%) 6.20 8.15 4.37 5.11 4.53 3.69 
  S.D. 109.00 89.03 61.29 86.33 87.07 55.14 

  Avg. Time 0.03 0.02 0.04 0.01 0.02 0.04 
fri26 26 Best Sol 937 953 937 937 937 937 
(937)  Avg. Sol 989.30 987.30 944.04 972.62 969.62 937.00 
  Avg. Exc(%) 5.58 5.37 0.75 3.80 3.48 0.00 
  S.D. 29.86 24.51 11.27 17.72 20.05 0.00 

  Avg. Time 0.08 0.03 0.13 0.02 0.03 0.04 
bayg29 29 Best Sol 1642 1646 1686 1634 1634 1639 
(1610)  Avg. Sol 1741.78 1767.18 1756.52 1719.42 1718.42 1719.54 
  Avg. Exc(%) 8.19 9.76 9.10 6.80 6.73 6.80 
  S.D. 69.49 55.81 39.51 56.77 49.15 47.16 

  Avg. Time 0.08 0.04 0.02 0.03 0.05 0.1 
dantzig42 42 Best Sol 753 714 754 723 724 723 
(699)  Avg. Sol 807.44 788.60 813.36 781.80 792.60 774.26 
  Avg. Exc(%) 15.51 12.82 16.36 11.85 13.39 10.77 

  S.D. 29.64 33.92 22.3 26.27 26.83 23.89 

  Avg. Time 0.35 0.24 0.29 0.08 0.14 0.02 
eil51 51 Best Sol 444 432 444 436 442 437 
(426)  Avg. Sol 470.76 463.76 466.66 463.94 462.40 458.78 

  Avg. Exc(%) 10.51 8.86 9.54 8.91 8.54 7.69 

  S.D. 13.31 10.64 8.24 12.01 10.81 9.96 

  Avg. Time 0.46 0.49 0.90 0.38 0.37 0.30 
berlin52 52 Best Sol 7885 7919 7910 7926 7891 7646 
(7542)  Avg. Sol 8346.32 8217.40 8429.48 8156.70 8162.72 7995.52 
  Avg. Exc(%) 10.66 8.96 11.77 8.15 8.23 6.01 
  S.D. 247.93 224.64 154.44 189.50 237.35 137.83 
  Avg. Time 0.62 0.39 0.70 0.22 0.29 0.22 
pr76 76 Best Sol 118331 117411 120729 116844 117724 113676 
(108159)  Avg. Sol 129036.50 123427.82 128392.50 127293.76 127868.12 123337.58 

  Avg. Exc(%) 19.30 14.12 18.71 17.69 18.22 14.03 

  S.D. 4517.92 3464.34 2791.62 5273.80 5243.46 4268.20 

  Avg. Time 0.65 0.78 1.05 0.48 0.53 0.18 
lin105 105 Best Sol 16369 15245 15978 15921 15627 15622 
(14379)  Avg. Sol 17635.34 16616.80 16920.84 17118.08 17068.94 16575.84 
  Avg. Exc(%) 22.65 15.56 17.68 19.05 18.71 15.28 
  S.D. 772.10 635.92 320.38 557.25 637.83 413.79 
  Avg. Time 1.34 1.79 1.97 1.10 1.03 0.23 
pr226 226 Best Sol 93260 88768 91723 92428 90724 87477 
(80369)  Avg. Sol 103462.00 93261.56 95511.32 95315.32 94946.68 90411.98 

  Avg. Exc(%) 28.73 16.04 18.84 18.60 18.14 12.50 

  S.D. 6228.71 2996.66 1326.34 4740.22 5643.82 1395.34 

  Avg. Time 4.70 5.05 5.09 3.18 3.30 2.02 
a280 280 Best Sol 3022 2905 3059 2980 2891 2833 
(2579)  Avg. Sol 3197.00 3059.62 3179.67 3111.00 3094.10 2958.34 
  Avg. Exc(%) 23.96 18.64 23.29 20.63 19.97 14.71 
  S.D. 69.14 72.46 59.45 99.19 106.69 53.85 
  Avg. Time 2.80 4.07 12.56 3.34 4.80 8.08 
Average of Avg. Exc (%) 15.13 11.83 13.04 12.06 11.99 9.15 
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Fig. 3. Average Excess(%) by different GAs for Symmetric Instances. 

To validate the above observations, we carried out 
statistical analysis for these instances also, and the results are 
summarized in Table V. It is seen that there is statistically 
significant difference between CSCX and other crossover 
operators at the significance level 0.05, and so, as expected the 
best ranked crossover is CSCX. However, there is no 
significant difference found among VGX, RGSCX, GSCX and 
ASCX, so, they share the second rank, and MHX is the worst 
in the rank. From this whole study one can conclude that the 
proposed crossover CSCX is the best. 

TABLE V. RESULTS OF STATISTICAL HYPOTHESES TESTING ON 
SYMMETRIC INSTANCES 

Crossover Inferior crossovers 
CSCX MHX, VGX, ASCX, GSCX, RGSCX 
VGX MHX 
RGSCX MHX 
GSCX MHX 
ASCX MHX 

V. CONCLUSION AND FUTURE WORKS 
The crossover operators are classified as distance-based 

crossover operators and blind crossover operators. There are 
several crossover operators available in the literature. In this 
study, we proposed reverse greedy sequential constructive 
crossover (RGSCX) and then comprehensive sequential 
constructive crossover (CSCX) for the TSP. To show the 
usefulness of our proposed crossover operators, we compared 
with four distance-based crossover operators, such as MHX, 
VGX, ASCX and GSCX. We applied these crossover operators 
manually on two chromosomes to produce offspring(s) and 
found that our proposed crossover CSCX is the best. After that, 
GAs using all six crossover operators are developed and 
performed comparative study among them on eighteen 
asymmetric and ten symmetric TSPLIB instances. In terms of 
solution quality, it is found that our proposed crossover CSCX 
is the best. The observation is confirmed by Student’s t-test at 
the significance level 0.05. So, CSCX might be worked good 
for other associated combinatorial optimization problems. 
However, the proposed RGSCX could not obtain good 
solutions and it is competing for third position on asymmetric 
instances. 

In this study, our aim was to propose crossover operators 
and compare them against some existing crossover operators. It 

was not aimed to improve solution quality using them, and so, 
no local search procedure was used for developing state-of-art 
algorithm for the problem. Also, highest crossover probability 
was used to display the exact characteristics of operators. 
Though our proposed CSCX obtains best solutions, still it gets 
stuck in local minima in the first half of the generations. 
Hence, good local search along with immigration methods [26-
30] may be incorporated to it to develop hybrid genetic 
algorithm to find better quality solutions to the problem 
instances, which is under our investigation. 
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