
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Genetic Algorithm with Comprehensive Sequential
Constructive Crossover for the Travelling Salesman

Problem
Zakir Hussain Ahmed

Department of Mathematics and Statistics, College of Science
Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia

Abstract—The travelling salesman problem (TSP) is a very
famous NP-hard problem in operations research as well as in
computer science. To solve the problem several genetic
algorithms (GAs) are developed which depend primarily on
crossover operator. The crossover operators are classified as
distance-based crossover operators and blind crossover
operators. The distance-based crossover operators use distances
between nodes to generate the offspring(s), whereas blind
crossover operators are independent of any kind of information
of the problem, except follow the problem’s constraints. Selecting
better crossover operator can lead to successful GA. Several
crossover operators are available in the literature for the TSP,
but most of them are not leading good GA. In this study, we
propose reverse greedy sequential constructive crossover
(RGSCX) and then comprehensive sequential constructive
crossover (CSCX) for developing better GAs for solving the TSP.
The usefulness of our proposed crossover operators is shown by
comparing with some distance-based crossover operators on
some TSPLIB instances. It can be concluded from the
comparative study that our proposed operator CSCX is the best
crossover in this study for the TSP.

Keywords—Genetic algorithm; reverse greedy sequential
constructive crossover; comprehensive sequential constructive
crossover; travelling salesman problem; NP-hard

I. INTRODUCTION
The travelling Salesman Problem (TSP) is an old and

famous combinatorial optimization problem in computer
science and operations research which was documented in
1759 by Euler, of course not by that name, whose aim was to
solve the Knights’ tour problem. A solution of the problem is a
knight visit of each of the 64-squares of a chessboard exactly
once in its tour. In 1932, the term ‘travelling salesman’ was
first used in a German book ‘The travelling salesman, how and
what he should do to get commissions and be successful in his
business’, written by a veteran travelling salesman. In 1948, the
problem was formally introduced by RAND Corporation. The
problem became popular by the Corporation’s reputation and
then by introducing linear programming for solving
combinatorial optimization problems. The problem aims to
obtain a least cost Hamiltonian cycle in a network of nodes [1].
The TSP has applications in automatic drilling of printed
circuit boards and circuits, very-large-scale-integrated (VLSI)
circuit, X-ray crystallography, movement of people, computer
wiring [2]. The problem can be defined as follows:

A A network of n nodes, with 'node 1' as ‘depot’ and a
travel cost (or distance, or travel time etc.,) matrix C= [cij] of
order n related to ordered pairs (i, j) of nodes is given. The aim
of the problem is to obtain a least cost Hamiltonian cycle.
Symmetric and asymmetric TSPs are two cases of TSP. It is
symmetric if cij = cji, for all i, j; else, asymmetric. For
asymmetric case, there are possibly)!1(−n solutions out of
which at least one provides the minimum cost, and for
symmetric case, there are likely

2
)!1(−n solutions along with

same cost opposite cyclic permutations in n-node network. The
possible number of solutions is very huge in both cases and the
problem is NP-Hard [3]. The problem is very famous, and it is
researched by many researchers because of its difficulty and its
usability to model many other difficult real-life problems.

In the literature for the TSP, numerous exact and heuristic
methods have been proposed, and most of them are
heuristic/metaheuristic methods. Genetic algorithm, tabu
search, artificial neural network, ant colony optimization,
particle swarm optimization, etc. are some of the effective
metaheuristic algorithms [1]. Among them genetic algorithm is
seen to be one of the best metaheuristic algorithms for the
problem [4].

Genetic algorithm (GA) is a search process that is inspired
by natural biological evolution process. It was proposed by John
Holland in 1970s [5]. It starts initially with a population of
strings, called chromosomes, that encode solutions to a problem,
and operates probably three operators - selection, crossover and
mutation, to produce new and probably better populations in
successive generations. Crossover operator is the leading
operator in GAs [1]. Mutation enlarges search space as well as
protects GAs from damaging any genetic element resulted from
crossover and selection operators. Among three operators,
crossover is the primary operator, and hence, numerous
crossover operators have been suggested as well as improved for
finding better solution to the TSP [5].

In this present study, we propose first reverse greedy
sequential constructive crossover (RGSCX) and then
comprehensive sequential constructive crossover (CSCX) by
combining greedy sequential constructive crossover (GSCX)
[6] with RGSCX for the TSP. We then applied the proposed
operators manually on two chromosomes to produce
offspring(s). Finally, the usefulness of our proposed crossover

245 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

operators is shown by comparing with some distance-based
crossover operators on some TSPLIB instances. One can
conclude from the comparative study that our proposed
operator CSCX is the best crossover operator in this study for
the TSP.

This paper is organized as follows: A survey on related
work for the TSP is reported in Section II. Section III develops
proposed crossover operators for the problem, whereas, Section
IV reports computational experiments for six crossover
operators. Finally, Section V presents conclusion and future
works.

II. RELATED WORK
There are numerous crossover operators suggested for

solving the TSP. Two kinds of crossover operators have been
suggested for the problem, namely distance-based crossover
and blind crossover. In distance-based crossover operators,
offspring are created using distance between nodes, whereas, in
blind crossover operators, offspring are not created using any
information of the problem, rather they bother only about the
problem’s constraints. The partially mapped crossover (PMX)
[7], ordered crossover (OX)[8], order based crossover (OBX)
and position based operator (PBX) [9], alternating edges
crossover (AEX) [10], cycle crossover (CX) [11], edge
recombination crossover (ERX) [12], generalized N-point
crossover (GNX) [13], etc. are some of the blind crossover
operators, and greedy crossover (GX) [10], heuristic crossover
(HX) [14], distance preserving crossover (DPX) [15],
sequential constructive crossover (SCX) [4], etc. are some of
the popular distance-based crossover operators.

Selecting better crossover operator can lead to successful
GA. Though several crossover operators are available in the
literature for the TSP, but most of them are not leading good
GA. So, our aim is to develop distance-based crossover
operators and then compare them with some existing crossover
operators for showing the effectiveness of the proposed
operators. Osaba et al. [16] pointed that comparisons between
heuristic/metaheuristic methods using blind operators and
heuristic methods using optimizing functions must be avoided.
Otherwise, comparison would not be reliable, because nature
of the methods is different. If someone wants to verify the
quality of any distance-based crossover operator, suppose
SCX, the results found by the operator should be compared
against the one found by another distance-based crossover
operator, such as HX, GX or DPX. Now, if performance of
SCX is compared against other blind operators, such as the
PMX, OX, CX, ERX or AEX, the comparison will not be fair.
Since, we propose to modify SCX, hence modified SCXs will
be compared with only some distance-based crossovers such as
HX, GX and SCX. So, we are going to explain some of these
operators only through an example of pair of parent
chromosomes. To represent solution by chromosome, the path
representation that lists the permutation of node is considered
here. For example, let {1, 2, 3, 4, 5, 6, 7, 8, 9} is the list of
node labels for a 9-node problem example, then the tour
{1→7→6→3→8 → 9→2→4→ 5 →1} is represented by (1, 7,
6, 3, 8, 9, 2, 4, 5). The objective function cost (value) is the
total cost of all edges in this tour.

A. Modified Heuristic Crossover Operator
Liepins et al. [17] proposed a modified HX for the TSP that

initially selects a node and copy it to the offspring then its
nearest node is copied to the offspring until the offspring is
complete. Jog et al. [18] described a modified heuristic
crossover (MHX) of the HX [17] that creates an offspring
chromosome from two parent chromosomes as follows. Select
a node randomly as the starting node for offspring
chromosome. Compare two arcs leaving the starting node in
both parents and select the cheaper one. Continue to copy the
cheaper arc of two arcs in both parents into the offspring. If the
cheaper parent arc introduces a cycle (repeating any node) into
offspring (illegal chromosome), check whether the other parent
arc introduces a cycle. If the second arc does not introduce a
cycle, copy this arc into the offspring, otherwise, copy the
cheaper arc into the offspring from a group of maximum 20
randomly selected arcs that do not introduce a cycle. Continue
until a complete offspring is created and the first parent
chromosome is replaced by this offspring. This operator
generates an offspring using two parent chromosomes.

We illustrate the MHX using the 9-node problem example
shown in Table I as the cost matrix. Suppose parent
chromosomes P1: (1, 2, 3, 4, 6, 9, 5, 7, 8) and P2: (1, 3, 5, 7, 8,
9, 4, 2, 6) with costs 83 and 75 respectively are selected as
parent chromosomes. We use these same chromosomes to
illustrate all crossover operators. Also, as we fixed ‘node 1’ as
depot node (first gene), so, we always start the procedure for
all crossover operators from the ‘node 1’.

Since the procedure starts from the node 1, so, initially the
offspring is (1). The arcs in both parents going out from the
node 1 are considered, i.e. 1→2 and 1→3 with costs 7 and 15
respectively. So, node 2 is added and the incomplete offspring
becomes: (1, 2). Next, the parent arcs leaving the node 2 are
considered, i.e. 2→3 and 2→6 with costs 8 and 3 respectively.
Among them 2→6 is cheaper, So, node 6 is added and the
incomplete offspring becomes: (1, 2, 6). Then the arcs 6→9
and 6→1 must be considered, but the second one is illegal it
leads to already visited node, so, 6→9 is chosen which leads to
the incomplete offspring: (1, 2, 6, 9). Continuing in this way,
one can obtain a complete offspring as: (1, 2, 6, 9, 4, 8, 5, 7, 3)
having cost 56.

TABLE I. THE COST MATRIX

Node 1 2 3 4 5 6 7 8 9

1 999 7 15 9 10 6 8 9 10

2 11 999 8 7 11 3 6 4 3

3 15 5 999 16 12 5 8 13 4

4 2 5 11 999 9 13 14 4 2

5 8 6 3 5 999 6 7 10 9

6 6 13 8 11 5 999 5 4 5

7 5 15 3 7 12 6 999 8 9

8 9 3 9 14 3 11 8 999 10

9 11 16 3 9 10 7 9 10 999

246 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

B. Very Greedy Crossover Operator
Julstrom [19] proposed a greedy extension of HX [18],

named very greedy crossover (VGX), for solving the TSP,
which is as follows. It selects a starting node randomly, then
constructs a tour by investigating the four arcs leaving that
node in both parents, according to their costs. It copies the first
arc that does not make a cycle. If all four parent arcs from any
node make cycles, then it uses the cheapest arc to an unvisited
node. If the parents share an edge from the current node to one
unvisited node, the operator copies that arc, even if it is not
cheapest. The VGX operator creates an offspring using two
parents. We illustrate the VGX using same example shown
above.

Initially, the offspring is (1). The arcs in both parents
leaving the node 1 are considered, i.e. 1→2 and 1→8 with
costs 7 and 9 respectively in P1 and 1→3 and 1→6 with costs
15 and 6 respectively in P2. So, node 6 is copied that gives the
incomplete offspring as: (1, 6). Next, the parent arcs leaving
the node 6 are considered, i.e. 6→9, 6→4, 6→1 and 6→2
having their respective costs 5, 11, 6 and 13. Among them
6→9 is cheaper, So, node 9 is copied that gives an incomplete
offspring as: (1, 6, 9). Continuing in this way, one can obtain a
complete offspring as: (1, 6, 9, 4, 2, 3, 5, 7, 8) having cost 69.

C. Adaptive Sequential Constructive Crossover Operator
The sequential constructive crossover (SCX) is proposed in

[4] for solving the TSP which found very good solution for
symmetric and asymmetric TSPLIB instances. In [20], SCX is
modified as follows: after current node, if no any legitimate
node is available in any parent, then it searches from the
starting of the parent chromosome and the first legitimate node
is selected as next node. In [21], a comparative study is
reported that shows that SCX is the best among eight crossover
operators. A modified SCX, named bidirectional circular SCX
(BCSCX) is developed in [22]. In [23], an adaptive SCX
(ASCX) is proposed that creates an offspring adaptively, either
in forward or in backward or in mixed direction that depends
on next node’s cost. Hence, eight neighbour nodes of any
current node is considered, four for each of the two nodes
(genes).

Since in a chromosome number of genes is n, the 'node 1' is
selected as the first as well the (n+1)th genes. The algorithm for
the ASCX is stated as follows [23].

Step 1: Start from the first gene, 'node 1’ (i.e., current node
p =1 in position i=1) in forward direction and from the (n+1)th
gene, ‘node 1’ (it is not shown in the chromosome), (i.e.,
current node q =1 in position j=n+1) in backward direction.

Step 2: Sequentially search both parent chromosomes in
right direction and consider the first ‘legitimate node' (the node
that is not yet visited) appeared after 'node p’ in each parent. If
no 'legitimate node' after 'node p’ is present in any of the
parents, search sequentially from the starting of the parent
(wrap around) and consider the first 'legitimate node'. Suppose
the 'node α' and the 'node β' are found in 1st and 2nd parent
respectively. Go to Step 3.

Step 3: Sequentially search both parent chromosomes in
left direction and consider the first ‘legitimate node' appeared
after 'node p’ in each parent. If no 'legitimate node' after 'node

p’ is present in any of the parents, search sequentially from the
end of the parent (wrap around) and consider the first
'legitimate node'. Suppose the 'node γ’ and the 'node δ' are
found in 1st and 2nd parent respectively. Now, suppose among
four nodes, 'node u' is the cheapest with cost s=min. {cpα, cpβ,
cpγ, cpδ}. Go to Step 4.

Step 4: Sequentially search both parent chromosomes in
left direction and consider the first ‘legitimate node' appeared
after 'node q’ in each parent. If no 'legitimate node' after 'node
q’ is present in any of the parents, search sequentially from the
end of the parent (wrap around) and consider the first
'legitimate node'. Suppose the 'node w' and the 'node x' are
found in 1st and 2nd parent respectively. Go to Step 5.

Step 5: Sequentially search both parent chromosomes in
right direction and consider the first ‘legitimate node' appeared
after 'node q’ in each parent. If no 'legitimate node' after 'node
q’ is present in any of the parents, search sequentially from the
beginning of the parent (wrap around) and consider the first
'legitimate node'. Suppose the 'node y’ and the 'node z' are
found in 1st and 2nd parent respectively. Now, suppose among
four nodes, 'node v' is the cheapest with cost t=min. {cwq, cxq,
cyq, czq}. Now, for selecting the next node as well as adding it
in a position in the offspring chromosome go to Step 6.

Step 6: If s ≤ t, then add 'node u' in position ‘i' in the
partially constructed offspring chromosome and set p=u, i=i+1.
Otherwise, add 'node v' in position ‘j' in the partially
constructed offspring chromosome and set q=v, j=j-1. Now, If
the offspring is a complete chromosome, then stop, otherwise,
go to Step 2.

We illustrate the ASCX using same example shown above.
As number of genes in the chromosomes is 9, the 'node 1' is the
first as well as the 10th gene (not displayed in the
chromosomes). After ‘node 1’ (first gene), the legitimate nodes
in P1 in forward direction is 2 and in backward direction (after
wrapping around) is 8, and in P2 they are 3 and (after wrapping
around) 6, having their respective costs 7, 9, 15 and 6. So, the
cheapest is node 6 having cost 6. From the end, before ‘node 1’
(10th gene), the legitimate nodes in P1, in backward direction is
8 and in forward direction (after wrapping around) is 2, and in
P2 they are 6 and (after wrapping around) 3, having their
respective costs 9, 7, 6 and 15. So, the cheapest is node 6
having cost 6. As both cheapest nodes are 6, it is added as the
second gene in the current offspring that leads the incomplete
offspring to (1, 6, *, *, *, *, *, *, *).

After ‘node 6’ (second gene), the legitimate nodes in P1 in
forward direction is 9 and in backward direction is 4, and in P2
they are (after wrapping around) 3 and 2, having their
respective costs 5, 11, 8 and 13. So, the cheapest is node 9
having cost 5. From the end, before ‘node 1’ (10th gene), the
legitimate nodes in P1, in backward direction is 8 and in
forward direction (after wrapping around) is 2, and in P2 they
are 2 and (after wrapping around) 3, having their respective
costs 9, 11, 11 and 15. So, the cheapest is node 8 having cost 9.
As node 9 is cheaper between the cheapest nodes, it is added as
the third gene in the current offspring that leads the incomplete
offspring to (1, 6, 9, *, *, *, *, *, *). Continuing in this way,
one can obtain a complete offspring as: (1, 6, 9, 4, 8, 2, 3, 5, 7)
having cost 59.

247 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

D. Greedy Sequential Constructive Crossover Operator
Recently, Ahmed [6] proposed the greedy SCX (GSCX) by

introducing a greedy method, which is as follows.

Step 1: Start from 'node 1’ (i.e., current node p =1).

Step 2: Sequentially search both parent chromosomes and
consider the first ‘legitimate node' (the node that is not yet
visited) appeared after 'node p’ in each parent. If ‘legitimate
node’ after 'node p’ is found in both parents, then go to Step 3,
otherwise, consider the cheapest ‘legitimate node’ from the
group of remaining legitimate nodes and concatenate it to the
partially constructed offspring chromosome. If the offspring is
a complete chromosome, then stop, otherwise, rename this
present node as 'node p' and repeat this Step 2

Step 3: Suppose the 'node α' and the 'node β' are found in 1st
and 2nd parent respectively, then for selecting the next node go
to Step 4.

Step 4: If cpα < cpβ, then select 'node α', otherwise, 'node β'
as the next node and concatenate it to the partially constructed
offspring chromosome. If the offspring is a complete
chromosome, then stop, otherwise, rename the present node as
'node p' and go to Step 2.

We illustrate the GSCX using same example shown above.
As 'node 1' is the first gene, after this node, the legitimate
nodes in P1 is 2 and in P2 is 3 having c12=7 and c13=15. As
c12<c13, the node 2 is added as the second gene in the current
offspring that leads the incomplete offspring to (1, 2).

After 'node 2', the legitimate nodes in P1 is 3 and in P2 is 6
having c23=8 and c26=3. As c26<c23, the node 6 is added as the
third gene in the current offspring that leads the incomplete
offspring to (1, 2, 6).

After 'node 6', the legitimate nodes in P1 is 9 and in P2 is
nothing. So, we search and find the cheapest legitimate node as
8, which is added as the fourth gene in the current offspring
that leads the incomplete offspring to (1, 2, 6, 8). Continuing in
this way, one can obtain a complete offspring as: (1, 2, 6, 8, 5,
7, 3, 9, 4) having cost 42.

III. PROPOSED CROSSOVER OPERATORS
We propose two crossover operators - reverse greedy

sequential constructive crossover operator and comprehensive
sequential constructive crossover operator.

A. Reverse Greedy Sequential Constructive Crossover
Operator
In this proposed operator, we apply the GSCX in reverse

direction and we name it as reverse GSCX (RGSCX). We
construct the offspring in reverse direction, that is, from the last
node (gene) of the offspring back to the first node (gene) of the
same. So, we define RGSCX as follows.

Step 1: Suppose the 'node α' and the 'node β' are the last
nodes in 1st and 2nd parent respectively. Since ‘node 1’ is the
first node (gene), then for selecting the last node, we check
whether cα1 < cβ1. If yes, then select 'node α', otherwise, 'node
β' as the last node and concatenate it to the partially constructed
offspring chromosome. Then rename this present node as 'node
p' and go to Step 2.

Step 2: Sequentially search both parent chromosomes in
reverse direction and consider the first ‘legitimate node' (the
node that is not yet visited) appeared before 'node p’ in each
parent. If ‘legitimate node’ before 'node p’ is found in both
parents, then go to Step 3, otherwise, consider the cheapest
‘legitimate node’ from the group of remaining legitimate nodes
and concatenate it to the partially constructed offspring
chromosome. If the offspring is a complete chromosome, then
stop, otherwise, rename this present node as 'node p' and repeat
this Step 2.

Step 3: Suppose the 'node α' and the 'node β' are found in 1st
and 2nd parent respectively, then for selecting the previous node
go to Step 4.

Step 4: If cαp < cβp, then select 'node α', otherwise, 'node β'
as the previous node and concatenate it to the partially
constructed offspring chromosome. If the offspring is a
complete chromosome, then stop, otherwise, rename this
present node as 'node p' and go to Step 2.

We illustrate the RGSCX using same example shown
above. By default, the 10th node is 1. The last nodes (9th genes)
are 8 and 6 in P1 and P2 respectively having c81=9 and c61=6.
As c61<c81, the node 6 is considered as the 9th gene that
initiated the incomplete offspring as (6).

Before 'node 6', the legitimate nodes in P1 is 4 and in P2 is
2 having c46=13 and c26=3. As c26<c46, the node 2 is added as
the 8th gene in the current offspring that leads the incomplete
offspring to (2, 6).

Before 'node 2', the legitimate node in P1 is nothing. So, we
search and find the cheapest legitimate node as 8, which is
added as the 7th gene in the current offspring that leads the
incomplete offspring to (8, 2, 6).

Before 'node 8', the legitimate nodes in both P1 and in P2
are node 7, so it is added as the 6th gene in the current offspring
that leads the incomplete offspring to (7, 8, 2, 6).

Also, before 'node 7', the legitimate nodes in both P1 and in
P2 are node 5, so it is added as the fifth gene in the current
offspring that leads the incomplete offspring to (5, 7, 8, 2, 6).

Before 'node 5', the legitimate nodes in P1 is 9 and in P2 is
3 having c95=10 and c35=12. As c95<c35, the node 9 is added as
the fourth gene in the current offspring that leads the
incomplete offspring to (9, 5, 7, 8, 2, 6).

Before 'node 9', the legitimate nodes in P1 is 4 and in P2 is
3 having c49=2 and c39=4. As c49<c39, the node 4 is added as
the third gene in the current offspring that leads the incomplete
offspring to (4, 9, 5, 7, 8, 2, 6). Continuing in this way, one can
obtain a complete offspring as: (1, 3, 4, 9, 5, 7, 8, 2, 6) having
cost 70.

B. Comprehensive Sequential Constructive Crossover
Operator
We propose a comprehensive SCX (CSCX) by combining

two crossover operators GSCX and RGSCX that produces two
offspring. So, by using above example parents, it produces
both offspring (1, 2, 6, 8, 5, 7, 3, 9, 4) and (1, 3, 4, 9, 5, 7, 8, 2,
6) with cost 42 and 70 respectively which are less than costs of
both the parent chromosomes.

248 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Our GA is non-hybrid, simple, which uses basic GA
processes and operators, but does not incorporate any other
heuristic algorithm. In our simple GA, starting with random
chromosome population, good chromosomes are selected by
stochastic remainder selection technique, then population
passes through one selected crossover operator and swap
mutation operator. Our simple GA may be designed as follows.

SimpleGA ()
{ Initialize random population of size Ps;
 Evaluate the population;
 Generation = 0;
 While stopping condition is not satisfied
 { Generation = Generation + 1;
 Select good chromosomes by selection operator;
 Select a crossover operator and do crossover with crossover

probability Pc;
 Do swap mutation with mutation probability Pm;
 Evaluate the population;
 }
}

IV. COMPUTATIONAL EXPERIMENTS
The simple GAs using six crossover operators (MHX,

VGX, ASCX, GSCX, RGSCX and CSCX) have been encoded
in Visual C++. To compare the competence of these operators,
simple GAs are applied on twenty eight TSPLIB instances [24]
and then executed on a Laptop with specification i3-3217U
CPU@1.80 GHz and 4 GB RAM under MS Windows 7.
Among the twenty eight problem instances, instances ftv33,
ftv35, ftv38, p43, ftv44, ftv47, ry48p, ft53, ftv55, ftv64, ft70,
ftv70, kro124p, ftv170, rbg323, rbg358, rbg403 and rbg443 are
asymmetric, and instances gr21, fri26, bayg29, dantzig42,
eil51, berlin52, pr76, lin105, d198 and a280 are symmetric. For
all simple GAs, the parameters are set as follows: 50 is
population size, 1.0 is crossover probability, 0.20 is mutation
probability, and 1,000 is maximum generations that is set as
the stopping condition. For each instance, the experiments
were repeated 50 times. Figures 1 shows results for rbg443
(considering only 100 generations) by all simple GAs. Each
graph is for one crossover operator that shows the
improvement of the solution as the number of generations
increases. In the figure, the label on the left margin denotes the
percentage of excess (Excess (%)) to the best known solution
reported in TSPLIB website, which is calculated by the
formula.

𝐸𝑥𝑐𝑒𝑠𝑠 (%) = 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 −𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝐵𝑒𝑠𝑡 𝐾𝑛𝑜𝑤𝑛 𝑆𝑜𝑙

 𝑥 100.

It is seen for the Figure 1 that MHX has some deviations,
but not the best. GSCX has limited deviation but gets stuck
very quickly in local minimum. Though ASCX and CSCX
have less deviations and they are competing, however CSCX
finds best results.

Fig. 1. Excess(%) by GAs using different Crossover Operators.

We summarize the results of our experiments using six
crossover operators in Tables II and IV. We have organized the
tables as follows: a row corresponds to the summarized results
for a problem instance using variant GAs, first column reports
a problem instance and its best-known solution (within
brackets), second column reports the size of the instance, third
column reports title of the summarized results and remaining
each column is for GA using the mentioned crossover operator.
The result using each crossover operator is designated by its
best solution cost (Best Sol), average solution cost (Avg. Sol),
percentage of excess of average solution to the best-known
solution (Avg. Exc(%)), standard deviation of solution costs
(S.D.), and average convergence time (Avg. Time) (in
seconds). The best result over these six crossover operators for
an instance is marked by bold face.

The Table II reports results using the GAs for the
asymmetric instances. The crossover operators MHX and
GSCX could not obtain either lowest best solution cost or
average solution cost for any asymmetric instance. The
crossover operators VGX and RGSCX obtain lowest best
solution cost for the instance p43, whereas CSCX obtains
lowest best solution costs for remaining seventeen instances.
The crossover operator ASCX obtains lowest average solution
cost for the instance p43 with lowest S.D., whereas CSCX
obtains lowest average solution cost with lowest S.D. for
remaining seventeen instances. By looking at average of Avg.
Exc (%), one can make rank of the crossover operators.
Accordingly, CSCX produce the best results, while ASCX is
the second best, MHX and RGSCX are competing for the third
best, and VGX is the worst. The results are also depicted in
Figure 2, which also demonstrates the usefulness of our
proposed crossover CSCX.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

E
xc

es
s(

%
)

Generations

MHX VGX

ASCX GSCX

RGSCX CSCX

249 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

TABLE II. RESULTS BY THE CROSSOVER OPERATORS FOR ASYMMETRIC TSPLIB INSTANCES

Instance n Results MHX VGX ASCX GSCX RGSCX CSCX

ftv33
(1286) 34

Best Sol 1376 1404 1371 1380 1396 1341
Avg. Sol 1479.56 1501.18 1394.72 1458.48 1464.16 1382.86
Avg. Exc (%) 15.05 16.73 8.45 13.41 13.85 7.53
S.D. 50.71 39.65 2.85 47.24 43.98 14.42
Avg. Time 0.18 0.09 0.18 0.05 0.08 0.10

ftv35
(1473) 36

Best Sol 1520 1543 1586 1531 1583 1499
Avg. Sol 1623.68 1649.28 1657.08 1631.32 1705.56 1551.44
Avg. Exc (%) 10.23 11.97 12.50 10.75 15.79 5.33
S.D. 55.93 46.01 31.98 47.09 56.93 32.17
Avg. Time 0.18 0.15 0.07 0.05 0.08 0.17

ftv38
(1530) 39

Best Sol 1604 1618 1679 1613 1672 1550
Avg. Sol 1678.08 1714.04 1748.64 1690.50 1722.22 1605.72
Avg. Exc (%) 9.68 12.03 14.29 10.49 12.56 4.95
S.D. 40.17 44.37 25.88 39.65 59.15 32.38
Avg. Time 0.23 0.13 0.12 0.05 0.10 0.22

p43
(5620) 43

Best Sol 5631 5625 5631 5631 5625 5627
Avg. Sol 5640.96 5636.52 5635.70 5641.20 5640.18 5639.30
Avg. Exc (%) 0.37 0.29 0.28 0.38 0.36 0.34
S.D. 5.91 5.35 1.96 6.97 8.73 7.09
Avg. Time 0.29 0.34 0.37 0.17 0.14 0.27

ftv44
(1613) 45

Best Sol 1725 1686 1733 1706 1627 1613
Avg. Sol 1843.98 1863.24 1796.12 1853.28 1793.12 1669.48
Avg. Exc (%) 14.32 15.51 11.35 14.90 11.17 3.50
S.D. 59.21 68.81 28.08 60.57 71.07 37.33
Avg. Time 0.41 0.37 0.73 0.12 0.21 0.19

ftv47
(1776) 48

Best Sol 1860 1902 2054 1864 1919 1833
Avg. Sol 2046.38 2065.80 2111.08 2021.72 2102.62 1936.26
Avg. Exc (%) 15.22 16.32 18.87 13.84 18.39 9.02
S.D. 84.14 91.77 21.98 70.92 69.51 43.12
Avg. Time 0.57 0.46 0.74 0.26 0.23 0.27

ry48p
(14422) 48

Best Sol 15629 15204 15290 15469 15293 14983
Avg. Sol 16120.54 16062.36 15744.88 16150.78 15664.34 15479.70
Avg. Exc (%) 11.78 11.37 9.17 11.99 8.61 7.33
S.D. 287.99 306.73 200.95 278.65 186.04 278.44
Avg. Time 0.45 0.36 0.50 0.17 0.18 0.13

ft53
(6905) 53

Best Sol 8061 7899 7631 7882 7973 7486
Avg. Sol 8617.90 8529.00 8127.34 8614.86 8427.90 7816.04
Avg. Exc (%) 24.81 23.52 17.70 24.76 22.06 13.19
S.D. 278.54 291.14 156.51 277.13 224.61 194.86
Avg. Time 0.49 0.59 0.38 0.35 0.31 0.34

ftv55
(1608) 56

Best Sol 1773 1753 1749 1723 1705 1639
Avg. Sol 1872.60 1846.58 1798.86 1841.82 1773.14 1712.58
Avg. Exc (%) 16.46 14.84 11.87 14.54 10.27 6.50
S.D. 56.81 60.22 20.58 50.89 48.93 39.74
Avg. Time 0.56 0.54 1.05 0.36 0.34 0.28

ftv64
(1839) 65

Best Sol 2010 2079 2145 1990 1999 1879
Avg. Sol 2196.10 2228.14 2236.32 2140.28 2178.94 1921.62
Avg. Exc (%) 19.42 21.16 21.61 16.38 18.49 4.49
S.D. 85.06 71.79 44.42 76.32 89.40 39.74
Avg. Time 0.66 0.90 1.01 0.29 0.53 0.49

ft70
(38673) 70

Best Sol 40976 40926 41592 41129 41445 40050
Avg. Sol 42208.68 42210.74 42447.92 42185.60 42283.14 41080.98
Avg. Exc (%) 9.14 9.15 9.76 9.08 9.34 6.23
S.D. 517.87 480.29 292.36 571.46 442.49 376.74
Avg. Time 0.99 0.91 1.80 0.64 0.72 0.53

ftv70
(1950) 71

Best Sol 2145 2154 2276 2118 2068 1975
Avg. Sol 2326.06 2350.86 2332.22 2296.32 2294.38 2065.54
Avg. Exc (%) 19.29 20.56 19.60 17.76 17.66 5.93
S.D. 80.56 90.05 41.54 69.83 91.22 59.63
Avg. Time 0.76 1.08 1.16 0.48 0.63 0.68

kro124p
(36230) 100

Best Sol 41199 41764 41246 41251 40956 38432
Avg. Sol 43371.14 43167.84 42471.12 42829.16 42967.98 40303.68
Avg. Exc (%) 19.71 19.15 17.23 18.21 18.60 11.24
S.D. 990.53 781.36 462.23 780.6 1057.48 877.77
Avg. Time 0.94 1.12 0.58 0.42 0.92 0.79

250 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

(CONTD.) RESULTS BY THE CROSSOVER OPERATORS FOR ASYMMETRIC TSPLIB INSTANCES

Instance n Results MHX VGX ASCX GSCX RGSCX CSCX

ftv170
(2755) 171

Best Sol 3303 3551 3232 3656 3517 2968
Avg. Sol 3607.68 3835.46 3393 3799.50 3767.42 3178.74
Avg. Exc (%) 30.95 39.22 23.16 37.91 36.75 15.38
S.D. 130.91 159.74 95.42 130.15 214.40 79.22
Avg. Time 1.79 4.05 0.93 1.74 2.74 2.99

rbg323
(1326) 323

Best Sol 1553 1558 1611 1597 1617 1400
Avg. Sol 1594.20 1644.42 1618.8 1677.12 1677.76 1443.04
Avg. Exc (%) 20.23 24.01 22.08 26.48 26.53 8.83
S.D. 19.15 28.06 17.7 34.19 28.94 15.82
Avg. Time 13.45 20.24 23.53 15.76 17.71 24.28

rbg358
(1163) 358

Best Sol 1481 1495 1327 1522 1514 1325
Avg. Sol 1541.4 1555.36 1387.92 1591.04 1650.14 1373.36
Avg. Exc (%) 32.54 33.74 19.34 36.80 41.89 18.09
S.D. 26.05 27.79 24.05 36.93 48.64 22.04
Avg. Time 8.86 25.67 30.77 18.16 24.36 19.5

rbg403
(2465) 403

Best Sol 3033 3104 2922 3149 2833 2636
Avg. Sol 3110 3172.66 2983.38 3214.22 2980.9 2704.58
Avg. Exc (%) 26.17 28.71 21.03 30.39 20.93 9.72
S.D. 38.51 35.02 21.43 42.23 46.77 30.76
Avg. Time 42.8 33.66 38.93 28.96 32.33 27.67

rbg443
(2720) 443

Best Sol 3399 3517 3252 3573 3188 2932
Avg. Sol 3498.92 3604.94 3321.58 3678.86 3329.06 2993.72
Avg. Exc (%) 28.64 32.53 22.12 35.25 22.39 10.06
S.D. 41.53 33.71 20.95 48.04 60.93 28.09
Avg. Time 53.28 45.97 50.82 30.78 38.33 33.07

Average of Avg. Exc (%) 18.00 19.49 15.58 19.07 18.09 8.20

Fig. 2. Average Excess(%) by different GAs for Asymmetric Instances.

To validate the above observations, we also carried out an
adequate statistical analysis. By considering that reported
results in Table II are random and independent samples, a set
of Student’s t-tests were conducted. Indeed, for every pair of
crossover operator, the hypothesis is tested whether one of the
operators is better than the other. The efficiency of an operator
is categorized by its average of average excess (%) computed
over the all problem instances with best-known solutions.

The results of our hypotheses testing are summarized in
Table III. In the table, each row contains two columns, where
the first lists a crossover operator and the second column lists

its inferior crossover operators. The results are statistically
significant at the significance level 0.05 [25]. In Table III, each
crossover is ranked according to its number of inferior
crossover operators. It is found that there is statistically
significant difference between CSCX and other crossover
operators at level 0.05, and so, as expected the best ranked
crossover is CSCX. Also, the second best is ASCX. No
significant difference is found between RGSCX and MHX, as
expected, they share the third rank. Also, no significant
difference is found between GSCX and VGX, and hence, they
share the worst rank.

The Table IV reports results by the GAs for the symmetric
TSPLIB instances. The crossover MHX and ASCX obtain
lowest best solution cost only for two instances - gr21 and
fri26; VGX obtains lowest best solution cost for three instances
– dantzig42, eil51 and lin105; GSCX and RGSCX obtain
lowest best solution cost for three instances – gr21, fri26 and
bayg29; and CSCX obtains lowest best solution cost for six
instances – gr21, fri26, berlin52, pr76, pr226 and a280. The
crossover operators MHX, VGX, ASCX and GSCX could not
obtain lowest average solution cost for any symmetric instance.
The proposed RGSCX obtains lowest average solution cost
with lowest S.D. for the only one instance bayg29, and CSCX
finds lowest average costs along with lower S.D. for remaining
9 instances. So, our proposed crossover CSCX is the best.
Also, by looking at average of Avg. Exc (%), one can make it
clear that CSCX produces best results, while VGX, RGSCX
and GSCX are competing for the second best, and MHX is the
worst. The results are also depicted in Figure 3, which also
demonstrates the usefulness of our proposed crossover CSCX.

0

5

10

15

20

25

30

35

40

45

ftv
33

ftv
35

ftv
38 p4

3
ftv

44
ftv

47
ry

48
p

ft5
3

ftv
55

ftv
64 ft7
0

ftv
70

kr
o1

24
p

ftv
17

0
rb

g3
23

rb
g3

58
rb

g4
03

rb
g4

43

A
ve

ra
ge

 E
xc

es
s(

%
)

Instances

MHX VGX
ASCX GSCX
RGSCX CSCX

251 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

TABLE III. RESULTS OF STATISTICAL HYPOTHESES TESTING ON ASYMMETRIC INSTANCES

Crossover Inferior crossovers
CSCX MHX, VGX, ASCX, GSCX, RGSCX
ASCX MHX, VGX, GSCX, RGSCX
RGSCX VGX, GSCX
MHX VGX, GSCX
GSCX ------
VGX ------

TABLE IV. RESULTS BY THE CROSSOVER OPERATORS FOR SYMMETRIC TSPLIB INSTANCES

Instance n Results MHX VGX ASCX GSCX RGSCX CSCX
gr21 21 Best Sol 2707 2754 2707 2707 2707 2707
(2707) Avg. Sol 2874.78 2927.70 2825.2 2845.28 2829.58 2806.88
 Avg. Exc(%) 6.20 8.15 4.37 5.11 4.53 3.69
 S.D. 109.00 89.03 61.29 86.33 87.07 55.14

 Avg. Time 0.03 0.02 0.04 0.01 0.02 0.04
fri26 26 Best Sol 937 953 937 937 937 937
(937) Avg. Sol 989.30 987.30 944.04 972.62 969.62 937.00
 Avg. Exc(%) 5.58 5.37 0.75 3.80 3.48 0.00
 S.D. 29.86 24.51 11.27 17.72 20.05 0.00

 Avg. Time 0.08 0.03 0.13 0.02 0.03 0.04
bayg29 29 Best Sol 1642 1646 1686 1634 1634 1639
(1610) Avg. Sol 1741.78 1767.18 1756.52 1719.42 1718.42 1719.54
 Avg. Exc(%) 8.19 9.76 9.10 6.80 6.73 6.80
 S.D. 69.49 55.81 39.51 56.77 49.15 47.16

 Avg. Time 0.08 0.04 0.02 0.03 0.05 0.1
dantzig42 42 Best Sol 753 714 754 723 724 723
(699) Avg. Sol 807.44 788.60 813.36 781.80 792.60 774.26
 Avg. Exc(%) 15.51 12.82 16.36 11.85 13.39 10.77

 S.D. 29.64 33.92 22.3 26.27 26.83 23.89

 Avg. Time 0.35 0.24 0.29 0.08 0.14 0.02
eil51 51 Best Sol 444 432 444 436 442 437
(426) Avg. Sol 470.76 463.76 466.66 463.94 462.40 458.78

 Avg. Exc(%) 10.51 8.86 9.54 8.91 8.54 7.69

 S.D. 13.31 10.64 8.24 12.01 10.81 9.96

 Avg. Time 0.46 0.49 0.90 0.38 0.37 0.30
berlin52 52 Best Sol 7885 7919 7910 7926 7891 7646
(7542) Avg. Sol 8346.32 8217.40 8429.48 8156.70 8162.72 7995.52
 Avg. Exc(%) 10.66 8.96 11.77 8.15 8.23 6.01
 S.D. 247.93 224.64 154.44 189.50 237.35 137.83
 Avg. Time 0.62 0.39 0.70 0.22 0.29 0.22
pr76 76 Best Sol 118331 117411 120729 116844 117724 113676
(108159) Avg. Sol 129036.50 123427.82 128392.50 127293.76 127868.12 123337.58

 Avg. Exc(%) 19.30 14.12 18.71 17.69 18.22 14.03

 S.D. 4517.92 3464.34 2791.62 5273.80 5243.46 4268.20

 Avg. Time 0.65 0.78 1.05 0.48 0.53 0.18
lin105 105 Best Sol 16369 15245 15978 15921 15627 15622
(14379) Avg. Sol 17635.34 16616.80 16920.84 17118.08 17068.94 16575.84
 Avg. Exc(%) 22.65 15.56 17.68 19.05 18.71 15.28
 S.D. 772.10 635.92 320.38 557.25 637.83 413.79
 Avg. Time 1.34 1.79 1.97 1.10 1.03 0.23
pr226 226 Best Sol 93260 88768 91723 92428 90724 87477
(80369) Avg. Sol 103462.00 93261.56 95511.32 95315.32 94946.68 90411.98

 Avg. Exc(%) 28.73 16.04 18.84 18.60 18.14 12.50

 S.D. 6228.71 2996.66 1326.34 4740.22 5643.82 1395.34

 Avg. Time 4.70 5.05 5.09 3.18 3.30 2.02
a280 280 Best Sol 3022 2905 3059 2980 2891 2833
(2579) Avg. Sol 3197.00 3059.62 3179.67 3111.00 3094.10 2958.34
 Avg. Exc(%) 23.96 18.64 23.29 20.63 19.97 14.71
 S.D. 69.14 72.46 59.45 99.19 106.69 53.85
 Avg. Time 2.80 4.07 12.56 3.34 4.80 8.08
Average of Avg. Exc (%) 15.13 11.83 13.04 12.06 11.99 9.15

252 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Fig. 3. Average Excess(%) by different GAs for Symmetric Instances.

To validate the above observations, we carried out
statistical analysis for these instances also, and the results are
summarized in Table V. It is seen that there is statistically
significant difference between CSCX and other crossover
operators at the significance level 0.05, and so, as expected the
best ranked crossover is CSCX. However, there is no
significant difference found among VGX, RGSCX, GSCX and
ASCX, so, they share the second rank, and MHX is the worst
in the rank. From this whole study one can conclude that the
proposed crossover CSCX is the best.

TABLE V. RESULTS OF STATISTICAL HYPOTHESES TESTING ON
SYMMETRIC INSTANCES

Crossover Inferior crossovers
CSCX MHX, VGX, ASCX, GSCX, RGSCX
VGX MHX
RGSCX MHX
GSCX MHX
ASCX MHX

V. CONCLUSION AND FUTURE WORKS
The crossover operators are classified as distance-based

crossover operators and blind crossover operators. There are
several crossover operators available in the literature. In this
study, we proposed reverse greedy sequential constructive
crossover (RGSCX) and then comprehensive sequential
constructive crossover (CSCX) for the TSP. To show the
usefulness of our proposed crossover operators, we compared
with four distance-based crossover operators, such as MHX,
VGX, ASCX and GSCX. We applied these crossover operators
manually on two chromosomes to produce offspring(s) and
found that our proposed crossover CSCX is the best. After that,
GAs using all six crossover operators are developed and
performed comparative study among them on eighteen
asymmetric and ten symmetric TSPLIB instances. In terms of
solution quality, it is found that our proposed crossover CSCX
is the best. The observation is confirmed by Student’s t-test at
the significance level 0.05. So, CSCX might be worked good
for other associated combinatorial optimization problems.
However, the proposed RGSCX could not obtain good
solutions and it is competing for third position on asymmetric
instances.

In this study, our aim was to propose crossover operators
and compare them against some existing crossover operators. It

was not aimed to improve solution quality using them, and so,
no local search procedure was used for developing state-of-art
algorithm for the problem. Also, highest crossover probability
was used to display the exact characteristics of operators.
Though our proposed CSCX obtains best solutions, still it gets
stuck in local minima in the first half of the generations.
Hence, good local search along with immigration methods [26-
30] may be incorporated to it to develop hybrid genetic
algorithm to find better quality solutions to the problem
instances, which is under our investigation.

ACKNOWLEDGMENT
The author is very much thankful to the honourable

anonymous reviewers for their constructive comments and
constructive suggestions which helped the author to improve
this paper.

REFERENCES
[1] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution

Problems,” Second Edition, Springer-Verlag, New York, 1994.
[2] C.P. Ravikumar, “Solving large-scale travelling salesperson problems on

parallel machines,” Microprocessors and Microsystems, vol. 16, no. 3,
pp. 149-158, 1992.

[3] S. Arora, “Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems,” Journal of ACM, vol.
45, no. 5, pp. 753–782, 1998.

[4] Z.H. Ahmed, “Genetic algorithm for the traveling salesman problem
using sequential constructive crossover operator,” International Journal
of Biometrics & Bioinformatics, vol. 3, pp. 96-105, 2010.

[5] D.E. Goldberg, “Genetic algorithms in search, optimization, and
machine learning,” Addison-Wesley, New York, 1989.

[6] Z.H. Ahmed, “Solving the traveling salesman problem using greedy
sequential constructive crossover in a genetic algorithm,” IJCSNS
International Journal of Computer Science and Network Security, vol.
20, no. 2, pp. 99-112, 2020.

[7] D.E. Goldberg, and R. Lingle, “Alleles, loci and the travelling salesman
problem,” In J.J. Grefenstette (ed.) Proceedings of the 1st International
Conference on Genetic Algorithms and Their Applications. Lawrence
Erlbaum Associates, Hilladale, NJ, 1985.

[8] L. Davis, “Job-shop scheduling with genetic algorithms,” Proceedings of
an International Conference on Genetic Algorithms and Their
Applications, pp. 136-140, 1985.

[9] G. Syswerda, “Schedule optimization using genetic algorithms,” In
Davis, L. (ed.) Handbook of Genetic Algorithms, New York: Van
Nostrand Reinhold, pp. 332–349, 1991.

[10] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Gucht, “Genetic
algorithms for the traveling salesman problem,” In Proceedings of the
First International Conference on Genetic Algorithms and Their
Applications, (J. J. Grefenstette, Ed.), Lawrence Erlbaum Associates,
Mahwah NJ, pp. 160–168, 1985.

[11] I.M. Oliver, D. J. Smith and J.R.C. Holland, “A study of permutation
crossover operators on the travelling salesman problem,” In J.J.
Grefenstette (ed.). Genetic Algorithms and Their Applications:
Proceedings of the 2nd International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, Hilladale, NJ, 1987.

[12] D. Whitley, T. Starkweather and D. Shaner, “The traveling salesman and
sequence scheduling: quality solutions using genetic edge
recombination,” In L. Davis (Ed.) Handbook of Genetic Algorithms.
Van Nostrand Reinhold, New York, pp. 350-372, 1991.

[13] N.J. Radcliffe and P.D. Surry, “Formae and variance of fitness,” In D.
Whitley and M. Vose (Eds.) Foundations of Genetic Algorithms 3,
Morgan Kaufmann, San Mateo, CA, pp. 51-72, 1995.

[14] J. J. Grefenstette, “Incorporating problem specific knowledge into
genetic algorithms,” In L. Davis (Ed.), Genetic algorithms and simulated
annealing, London, UK: Pitman / Pearson, pp. 42–60, 1987.

0

10

20

30

40
A

ve
ra

ge
 E

xc
es

s(
%

)

Instances

MHX VGX
ASCX GSCX
RGSCX CSCX

253 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

[15] B. Freisleben and P. Merz, “A genetic local search algorithm for solving
symmetric and asymmetric traveling salesman problems,” in Proc. the
1996 IEEE International Conference on Evolutionary Computation,
(Nagoya, Japan), pp.616-621, 1996.

[16] E. Osaba, R. Carballedo, F. Diaz, E. Onieva, A.D. Masegosa, and
A.Perallos, “Good practice proposal for the implementation,
presentation, and comparison of metaheuristics for solving routing
problems,” Neurocomputing, vol. 271, no. 3, pp. 2-8, 2018.

[17] G. E. Liepins, M. R. Hilliard, M. Palmer and M. Morrow, “Greedy
genetics,” in Proc. the Second International Conference on Genetic
algorithms and their application, pp.90-99, October 1987.

[18] P. Jog, J.Y. Suh and D. Van Gucht, “The effects of population size,
heuristic crossover and local improvement on a genetic algorithm for the
traveling salesman problem,” in Proc. 3rd Int. Conf. Genetic Algorithms,
Morgan Kaufmann Publishers, pp. 110–115, 1989.

[19] B.A. Julstrom, “Very greedy crossover in a genetic algorithm for the
traveling salesman problem,” In: ACM symposium on Applied
computing, pp. 324-328, 1995.

[20] Z.H. Ahmed, “Improved genetic algorithms for the traveling salesman
problem,” International Journal of Process Management and
Benchmarking, vol. 4, no. 1, pp. 109-124, 2014.

[21] I. H. Khan, “Assessing different crossover operators for travelling
salesman problem,” IJISA International Journal of Intelligent Systems
and Applications, vol. 7, no. 11, pp. 19-25, 2015.

[22] S. Kang, S.-S. Kim, J.-H. Won, and Y.-M. Kang, “Bidirectional
constructive crossover for evolutionary approach to travelling salesman
problem,” 2015 5th IEEE International Conference on IT Convergence
and Security (ICITCS), pp. 1-4, 2015.

[23] Z.H. Ahmed, “Adaptive sequential constructive crossover operator in a
genetic algorithm for solving the traveling salesman problem,” IJACSA
International Journal of Advanced Computer Science and Applications,
vol. 11, no. 2, pp. 593-605, 2020.

[24] G. Reinelt, TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/

[25] M. Spiegel and L. Stephens, “Schaum’s Outline of Statistics,” Fourth
Edition, McGraw-Hill, New York, 2011.

[26] Z.H. Ahmed, “A hybrid genetic algorithm for the bottleneck traveling
salesman problem,” ACM Transactions on Embedded Computing
Systems, vol. 12, Art. No. 9, 2013.

[27] Z.H. Ahmed, “An experimental study of a hybrid genetic algorithm for
the maximum travelling salesman problem,” Mathematical Sciences,
vol. 7, pp. 1-7, 2013.

[28] Z.H. Ahmed, “The ordered clustered travelling salesman problem: A
hybrid genetic algorithm,” The Scientific World Journal, vol. 2014, Art
ID 258207, 13 pages, 2014.

[29] Z.H. Ahmed, “The minimum latency problem: a hybrid genetic
algorithm,” IJCSNS International Journal of Computer Science and
Network Security, vol. 18, no. 11, pp. 153-158, 2018.

[30] Z.H. Ahmed, “Performance analysis of hybrid genetic algorithms for the
generalized assignment problem,” IJCSNS International Journal of
Computer Science and Network Security, vol. 19, no. 9, pp. 216-222,
2019.

254 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	A. Modified Heuristic Crossover Operator
	B. Very Greedy Crossover Operator
	C. Adaptive Sequential Constructive Crossover Operator
	D. Greedy Sequential Constructive Crossover Operator

	III. Proposed Crossover Operators
	A. Reverse Greedy Sequential Constructive Crossover Operator
	B. Comprehensive Sequential Constructive Crossover Operator

	IV. Computational Experiments
	V. Conclusion and Future Works

