
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

255 | P a g e
www.ijacsa.thesai.org

A Workflow Scheduling Algorithm for Reducing Data

Transfers in Cloud IaaS

Jean Edgard GNIMASSOUN1,

Souleymane OUMTANAGA4

Laboratoire de Recherche en

Informatique et Télécommunication

Institut National Polytechnique-HB

Yamoussoukro, Côte d’Ivoire

Tchimou N’TAKPE2

Laboratoire de Mathématiques et

Informatique

Université Nangui Abrogoua

Abidjan, Côte d’Ivoire

Gokou Hervé Fabrice DIEDIE3

Laboratoire de Recherche en

Mathématiques et Informatique

Université Peleforo Gon Coulibaly

Korhogo, Côte d’Ivoire

Abstract—The cloud IaaS easily offers to have homogeneous

multi-core machines (whether they are "bare metal" machines or

virtual machines). On each of these machines, there can be high-

performance input-output SSD disks. That allows to distribute

the files produced during the execution of the workflow to

different machines in order to minimize the additional costs

associated with transferring these files. In this paper, we propose

a scheduling algorithm called WSRDT (Workflow Scheduling

Reducing Data Transfers) whose purpose is to minimize the

makespan (execution time) of data-intensive workflows by

reducing transfers data between dependent tasks on the network.

Intermediate files produced by tasks are stored locally on the

disk of the machine where the tasks were executed. We

experimentally verify that the increase in the number of cores

per machine reduces the additional cost due to data transfers on

the network. Experiences with a veritable workflow show those

advantages of the algorithms presented. Data-driven scheduling

significantly reduces the execution time and the volume of data

transferred on the network, our approach outperforms one of the

best state-of-the-art algorithms that we have adapted with our
hypotheses.

Keywords—Workflow scheduling; makespan reduction; multi-

cores virtual machine; data-intensive workflows; IaaS cloud

I. INTRODUCTION

Scientists, to run their different parallel applications,
generally used clusters and grids computing. These different
execution platforms quickly have showed their limits giving
the ever-increasing demands for computing, storage resources,
and so on. To solve this issue, cloud computing offers an
illusion of infinite resources where scientists can request the
resources needed to run a parallel application. Cloud
computing typically offers three (03) types of services, SaaS
(Software as a Service), PaaS (Platform as a Service), IaaS
(Infrastructure as a Service). The use of these different services
is flexible and scalable from the request of the user, via a pay-
as-you-go model. With three (03) basic services, the most
suitable for running parallel applications is the IaaS cloud. The
providers of this service offer computing and storage resources
essential for running all parallel applications that require a
significant resource due to its complex structure.

Parallel applications come from several research fields such
as biology, astronomy, physics, agriculture, etc., and have in
common, on the one hand, their complex structure with

dependencies between the different tasks, and on the other
hand a need for high computing and storage service, given the
large volume of data to be processed and transferred. These
scientific applications are very often modeled as scientific
workflow. These scientific workflows require a High-
Performance Computing (HPC) environment for their
execution.

The evolution of the computing environment from grid to
cloud computing has always considered scientific workflows.
However, with this new paradigm, scientific workflows are
now executed on virtual, dynamic and scalable resources as an
instance in cloud computing. The challenge of mapping
workflow tasks, which is a task scheduling problem in a cloud
computing environment, is the subject of several scientific
studies to find algorithms to execute workflows in a reasonable
time and budget. This problem of scheduling on IaaS
infrastructures of cloud computing is known as NP-hard [1],
for this purpose, several heuristics [2][3][4] and metaheuristics
[5][6] have been proposed in the literature in order to minimize
either the total execution time of the workflow (makespan), the
cost of using IaaS resources in the cloud, or both.

Solutions for workflow scheduling on cloud IaaS
infrastructures exist, but these algorithms generally consider
the execution of a task on a VM with a single computational
core. And depending on the complex structure of the
workflows, this could lead to several data transfers
(communications) in networks thus constituted. According to
the Amazon EC2's VM deployment model, users will be able
to order VMs with a maximum of ninety-six (96) parallel
computing cores in the same VM1. However, minimizing the
makespan of a workflow, one must consider in addition to the
execution time of the task on the computing resource, the time
of transfer from a task to its successor(s), because large
volumes of data are must be transferred. Using multi-core VMs
for scheduling could give better results for the makespan, as it
could reduce the amount of data exchanged in the network.
Indeed, if two dependent tasks running on the same VM, the
communication time (between these two tasks) is assumed to
be zero.

Most of the algorithms in the literature are not clairvoyant,
i.e., they do not consider the location of data coming from

1https://aws.amazon.com/fr/ec2/instance-types/m5/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

256 | P a g e
www.ijacsa.thesai.org

predecessors and data going to successors of a task. In order to
improve the execution time of a workflow, the execution time
of each task in the workflow and the data transfer time between
dependent tasks must be considered. The works in the literature
consider only the data coming from the predecessor tasks, i.e.
from top to bottom, since the scientific application is modeled
as a DAG. However, an improvement can be done on the
location of the data. Moreover, the algorithms in the literature
do not exploit multi-core machines for the simultaneous
execution of several tasks in the same machine and the
distributed storage of the data produced during the execution of
the workflow.

Reducing the execution time of a scientific application
means considering the execution time of each task of the
application, but also the file transfer time between the different
dependent tasks through the network. The main problem
addressed in this paper is how to do a good mapping of the
different tasks from a data-intensive application by reducing
the files to be transferred in the network in order to obtain a
better execution time.

The remainder of this paper is organized as follows.
Section II introduces the related work in this field and section
III present the platform and application models. Sections IV
and V describes the proposed approach: WSRDT and section
V validates the effectiveness WSRDT. Concluding remarks are
given in section VI.

II. RELATED WORK

Two main approaches exist for scheduling tasks in the
cloud, which are list scheduling algorithms [7][8][9] and
clustering algorithms [10][11][12]. Most of the list scheduling
algorithms are inspired by HEFT [13], which aims to minimize
the makespan and was originally proposed for computational
grid environment and has long been studied and adapted for the
cloud environment.

In this section present a review of the literature on
algorithms whose objective is to minimize makespan. Running
a scientific workflow application in the cloud requires efficient
mapping so that tasks do not have to wait too long, which
could result in a very long execution time. Typically, the
resources provided in the cloud to run workflows are VMs with
computational units, storage, etc. Reducing the execution time
of a workflow consisting of hundreds or even thousands of
tasks in the cloud is a challenge, given the flexibility of
available resources. The key part of resource management in a
cloud environment is the mapping of these tasks to these on-
demand computing resources. Rimal et al. [14] propose a
model based on the public cloud (Amazon EC2), in order to
minimize the makespan, the proposed algorithm is based on the
principle of critical path (Critical Path: CP). Critical path tasks
are assigned to different resources in the cloud, and to
maximize the use of these leased resources, other tasks that are
not part of the critical path are assigned to those resources
already leased, taking into account the billing that is done per
unit of time; knowing that a VM used during 01H01mn would
be charged for 02H. This approach based on the "multi-tenant
cloud" consists in deploying the tasks of the same CP at the
cloud provider whose resources allow to finish these different
tasks at the earliest possible time in order to reduce the

completion time of the workflow. The study of Rimal et al.
showed that their approach gives better results compared to the
FCFS algorithm, which is not a clear-sighted algorithm
because it does not take into account all the dependencies that
would exist between the different tasks of the workflow. In
addition to the critical path approach, Gamal et al. [10] propose
a new approach based on task classification. Their task
clustering approach, where groupings are done according to a
certain neighborhood, minimizes the makespan based on the
Min-Min [9] algorithm for mapping tasks to cloud resources.
Min-Min algorithm can be used in cloud computing. Min-Min
algorithm depends on execution time for scheduling tasks.
Tasks with minimum execution time will be scheduled first.
Tasks with long execution time have high delay. The Min-Min
algorithm is not suitable for running a parallel application
where the tasks are dependent just like the FCFS algorithm.
Almi'ani and Lee [15] proposed a three-step approach to
minimizing the makespan: (i) the partitioning step; in this step,
the number of tasks assigned to each partition is first
determined taking into consideration the execution time for the
CP in the workflow. Since the sum of task execution times
along CP (i.e., critical path length) represents the lower bound
of makespan (i.e., the optimal solution), this step tries to ensure
the total execution time for tasks belonging to the same
partition to be less than CP length. While critical path length
only includes execution times as tasks along CP are meant to
assigned to the same resource, the length of tasks in any other
partition should include execution times and communication
times. To ensure that partitions created in the partitioning step
are at the optimal granularity for the final resource allocation,
tasks of different partitions are (ii) rearranged/adjusted. The
optimality here primarily concerns the number of tasks in each
partition with respect to the capacity of potentially assigned
resource and data locality. As partitions are expected to have
dependency relationships due to task precedence constraints
primarily dictated by data dependencies, rearranging tasks
between different partitions involves the recalculation of
timing values. To execute each task the (iii) resource
assignment step consists of the resource set identification to
identify types of resource set allocated to partitions such that
the amount of time partitions are required to wait due to the
presence of the data dependencies between partitions is
minimized. To assess their approach Almi’ani et al. compared
their approach to HEFT, but HEFT provided better makespan
compared to their approach which gives better cost of using
cloud resources. The most suitable algorithms for scheduling a
parallel application where tasks are dependent are list
algorithms because this type of algorithm takes into account
the dependencies between all the tasks in the workflow.

The Heterogeneous Earliest Finish Time Algorithm
(HEFT) is a popular list-based heuristic scheduling algorithm
for optimizing the makespan [13] in workflow applications,
whose pseudo-code is very close to algorithm 1. The method
consists of two phases: ranking and mapping. In the ranking
phase (line 1) based on the (1), the order in which the tasks are
being mapped is computed using the bottom-level metric
(distance of the beginning task to the end task of the
workflow). The idea of this ranking is to execute before those
tasks having more dependent tasks than others. Further details
about how to sort the tasks can be found in [13]. Once the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

257 | P a g e
www.ijacsa.thesai.org

execution order is determined, the second phase consists in
assigning each task to the resources following the order
computed in the first phase. For each task and for each
resource, the completion time of that task on that resource is
computed. Finally, the task is mapped onto the resource where
it is finished earlier. After all tasks have been mapped, the
workflow can be executed.

𝑏𝑙𝑖𝜔𝑖 max
𝑗 ∈ 𝑠𝑢𝑐𝑐 (𝑖)

(𝑐𝑖,𝑗 + 𝑏𝑙𝑗) (1)

Where succ (i) is the set of immediate successors of task 𝑣𝑖,
𝑐𝑖,𝑗 is the data transfers time from task 𝑣𝑖 to task 𝑣𝑗, and 𝜔𝑖 is

the execution time of task 𝑣𝑖 . Since the bottom-level is
computed recursively by traversing the DAG upward, starting
from the end task. For the end task 𝑣𝑒𝑛𝑑, the bottom-level value
is equal to.

𝑏𝑙𝑒𝑛𝑑𝜔𝑒𝑛𝑑 (2)

HEFT is a very popular list scheduling algorithm that aims
at minimizing the makespan when resources are fixed, but
HEFT does not perform well in minimizing the makespan of a
workflow when the volumes of data exchanged between tasks
are large. Indeed HEFT, after having sorted the tasks according
to their priorities, tries to minimize the end date of execution of
each task in the order of this list. It is therefore a ‘’blind’’
algorithm through which the decision taken for a task is final
and can have a negative impact on lower priority tasks. In
addition, these algorithms use a naive adaptation of HEFT for
Cloud IaaS platforms using a single centralized storage service
for data exchanges between tasks. This significantly increases
the additional cost of inter-task data exchange.

In all these studies, the VMs considered are heterogeneous
and are in fact distinguished by their differences in terms of the
number of cores. The authors therefore assume that the
workflow tasks are parallel tasks that can run on any number of
cores. However, in reality, the workflows on which they make
their assessments are inspired by real workflows studied by
Juve et al. [16]. In their study, Juve et al. show that almost all
tasks in real workflows are single-core. There is only one task
in one of the studied workflows that can use up to two cores. In
this study, the workflows considered are therefore comprised
of single-core tasks only.

All the studies in the literature do not take into account that
one can take advantage of the rental of multi-core machines
containing local storage disks in order to reduce the makespan
by reducing data transfers. However, storing all the files used
and produced by a workflow on a single central storage service
can cause contention on the network. This study is based on the
use of local VM disks to propose an algorithm to minimize
makespan. The algorithm will also take advantage of the fact
that the same multicore VM can be used to execute several
tasks in parallel.

III. PLATFORM AND APPLICATION MODELS

In this paper, the platform model is based on a typical IaaS
cloud configuration. Multiple virtual machine (VM) instances
are deployed on physical servers within a single datacenter.
More precisely, a set of VMs like Amazon EC2 M5 instances
is considered. Specifically, these are the M5d instances that are
provided with local storage on the NVMe SSD, while regular
M5 instances must rely on Amazon Elastic Block Storage
(EBS) to store the data. Table I details the characteristics of the
available M5d instances. The indicated costs in dollars per
hour correspond to on-demand Linux instances in the US-East
region (Ohio) at the time of writing of this article.

The number of virtual cores (vCPUs) in this instance series
ranges from 2 to 96, with a constant amount of memory per
core of 4GiB. These instances are typically deployed by
Amazon on nodes featuring an Intel Xeon Platinum 8000 series
processor. The specific feature of the M5d instances is to attach
a fast block-level storage on SSD drives that is coupled to the
lifetime of the instance. This work, aim at leveraging this fast
storage that is shared by the vCPUs of an instance to store the
intermediate files produced during the execution of a workflow,
hence reducing the number of data transfer over the network
for tasks scheduled on the same virtual machine. Only the entry
and exit files of the workflow will be stored on an external
storage node.

In terms of network connectivity with other instances or the
Elastic Block Storage (EBS) service, the available bandwidth
depends on the size of the instance. Only the largest instances
that can exploit a full node, i.e., with 64 or 96 vCPUs, have a
guaranteed network bandwidth of 20 and 25 Gbps respectively.
For smaller instances, i.e., from 2 to 16 cores, the bandwidth is
proportional to the vCPUs.

TABLE I. CHARACTERISTICS OF THE AWS M5D INSTANCE TYPES

Model vCPU Memory (GiB) Instances Storage (GiB) Network Bandwidth (Gbps) EBS Bandwidth (Mbps) Cost ($/H)

M5d.large 2 8 1 x 75 NVMe SSD Up to 10 Up to 3,500 0,113

M5d.xlarge 4 16 1 x 150 NVMe SSD Up to 10 Up to 3,500 0,226

M5d.2xlarge 8 32 1 x 300 NVMe SSD Up to 10 Up to 3,500 0,452

 M5d.4xlarge 16 64 2 x 300 NVMe SSD Up to 10 3,500 0,904

M5d.8xlarge 32 128 2 x 600 NVMe SSD 10 5,000 1,808

M5d.12xlarge 48 192 2 x 900 NVMe SSD 10 7,000 2,712

M5d.16xlarge 64 256 4 x 600 NVMe SSD 20 10,000 3,616

M5d.24xlarge 96 384 4 x 900 NVMe SSD 25 14,000 5,424

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

258 | P a g e
www.ijacsa.thesai.org

In this study, large VMs are preferred in each platform,
because they allow multiple tasks to be executed in parallel. In
their study Juve et al. [16] have shown that each task in a real
scientific workflow is a single-core activity, i.e. can only be
executed on a single computing core, rather than using all the
cores of a VM. It is on this same principle that this study is
based. Thus, a user who wants to run his parallel application in
the cloud must rent a number of cores in total, the proposed
approach provides him with a platform that would minimize
the application completion time. For example, if the user wants
to use 100 cores in total, the platform will consist of a VM with
96 cores and a VM with 4 cores. In the case of 200 cores total,
the platform will consist of three VMs, two VMs of 96 cores
and one of 8 cores and so on.

The scientific workflows (cf. Fig. 1) to schedule are
represented by Directed Acyclic Graphs (DAGs) G = {Ѵ,
Ɛ}where Ѵ= {𝑣𝑖 | 𝑖 = 1, … , 𝑉} is a set of vertices representing
the computational tasks of the workflow and Ɛ = {𝑒𝑖,𝑗 | (𝑖, 𝑗) ∈
{1, … , V} × {1, … , V} } is a set of edges between vertices,
representing either a data dependency, i.e., a file transfer, or a
flow dependency between two tasks. Each of the task
composing the workflow has a predefined (estimated) duration,
requires a set of input files to start its execution, and will
produce a set of output files upon completion.

Notations such as 𝐼𝑛𝑝𝑢𝑡𝑖
𝑘 (resp. 𝑂𝑢𝑡𝑝𝑢𝑡𝑖

𝑘), represent the

𝑘𝑡ℎ input (resp. output) file of a given task 𝑣𝑖. When an output
file produced by a task 𝑣𝑖 is consumed as input by another task
𝑣𝑗 , this creates a data dependency between 𝑣𝑖 and 𝑣𝑗 ,

represented by the edge 𝑒𝑖,𝑗.

The input files that are not produced by any of the tasks in
the workflow are called the entry files of the workflow.
Conversely, the output files that are not consumed by any task
are called the exit files of the workflow. Finally, two quantities
associated with each task of the workflow that will be used
during the planning process have been defined. The Local
Input Volume of task 𝑣𝑖 on machine 𝑀𝑗, or 𝐿𝐼𝑉𝑖,𝑗, as the sum of

the size of the files that 𝑣𝑖 takes as input that are locally stored

on 𝑀𝑗. Respectively, the Local Output Volume, or 𝐿𝑂𝑉𝑖,𝑗 as the

sum of the sizes of the files produced by 𝑣𝑖 that are used by

successors of 𝑣𝑖 also scheduled on 𝑀𝑗.

Note that if a file is used by more than one successor, its
size is accounted for as many times as successors. The LIV
(resp. LOV) of an entry (resp. exit) task is by definition set to
zero. Bandwidth be proportional to the number of cores and
equal to 208.33 Mbps per core. All the virtual machine
instances started for the execution of a given workflow are
connected through a single switch.

According to the description of the M5d instances, the
connection from a VM to EBS goes through a dedicated
network connection, which is taken into account in the
simulated infrastructure. As for the network connections
between VMs, One of the assumptions made in this study is
that the bandwidth of the dedicated connection between VM
and EBS is proportional to the number of cores for small VMs
with up to 16 cores (i.e., 218.75 Mbps per core).

Fig. 1. Some Examples of Scientific Workflows.

During the execution of the workflow, all the intermediary
files, i.e. those that are produced by a task and consumed by
another, will be stored locally on the SSD storage of one or
several machines. Only the entry and exit files of the workflow
will be stored on an external storage service accessible by all
the machines. The time to transfer a file from one machine to
another includes the time to read the file on the disk of the
source machine, the duration of the data transfer over the
network and the time to write the file on disk at destination.

IV. A PLANNING ALGORITHM TO MINIMIZE DATA

TRANSFER OVER THE NETWORK

The proposed planning algorithm aims at leveraging two
main characteristics of the target IaaS cloud platform, i.e.
multi-core instances and a fast-local storage space shared
among cores, to minimize the impact of data transfers on the
execution of data-intensive scientific workflows.

In this section, the assumption is that the provisioning of
virtual machine instances has been done. Then, the objective of
this algorithm is to schedule the set Ѵ of V tasks composing the
workflow on a set M of n VMs instances. These instances can
have different sizes. Each of them has a unique id, the largest
instances having the smallest ids. How the set of instances is
defined will be explained in Section V.

Algorithm 1 starts by building a sorted scheduling list that
contains all the tasks of the workflow (lines 1-2). The tasks are
sorted by decreasing bottom level value [13].The bottom level
of a task 𝑣𝑖, or 𝑏𝑙𝑖, is the length of the longest path from 𝑣𝑖 to
the end of the workflow. This ordering gives the highest
priorities to the most critical tasks and ensures the respect of
the dependencies between tasks.

Then, the algorithm determines a first mapping for each

task 𝑣𝑖 in Ѵ (line3-7). The selected machine 𝑀𝑗 in M is the one

that first minimizes the start time of 𝑣𝑖 (denotes as 𝑠𝑡𝑗(𝑣𝑖)) and

then maximizes the volume of the input files needed by 𝑣𝑖 for

its execution that are already locally stored on 𝑀𝑗 . The

rationale is that between two virtual machines able to start 𝑣𝑖
start its execution at the same time, the algorithm favor the one
that minimizes the amount of data transfer over the network.

As all the considered virtual machine instances have
multiple cores, scheduling a task 𝑣𝑖 on a machine M implies to
maintain a local schedule inside the virtual machine. In order to
maximize the utilization of the cores within a virtual machine,
each machine is managed as a job and resource manager will

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

259 | P a g e
www.ijacsa.thesai.org

do. In particular, this study leverage the available information
on the (estimated) duration of each task to implement a
conservative backfilling mechanism [17] when building the
local schedule. Keeping such usage profile of a virtual machine
up to date is mandatory to determine the time when a new task

can start on this particular machine (i.e. 𝑠𝑡𝑗(𝑣𝑖)). Then, after

selecting M of the execution of 𝑣𝑖, it is essential to update the
usage profile of M (line 6). These usage profiles of the virtual
machines are also used in second step of Algorithm 1 in which
the tasks in this initial schedule are rearranged to further reduce
the amount of data transfers over the network.

This rearrangement step (lines 8 to 11) browses the
workflow DAG level by level from the bottom to the top. The
motivation of this second step is that during the initial
placement that proceeds from top to bottom, only the volume
of data coming from the direct predecessors of a task is
considered. It is indeed impossible to account for the locality of
the data needed by the direct descendants of a task when
scheduling it at their placement is not determined yet. This may
lead to avoidable data movements.

Level 0 is the topmost level of the DAG that comprises all
the entry tasks of the workflow. For each of the other tasks, the
level is recursively computed as the maximum level of its
predecessors plus one. Finally, L denote the number of levels
in the workflow.

Algorithm 1 Mapping workflow tasks without rearrangement

1 Compute 𝑏𝑙𝑖 of each task 𝑣𝑖

2 Sort Ѵ by decreasing 𝑏𝑙𝑖values

3 for all 𝑣𝑖∈Ѵ do

4 M ← {𝑀𝑗 ∈ M | 𝑠𝑡𝑗(𝑣𝑖) is minimal and 𝐿𝐼𝑉𝑖,𝑗 is maximal}

5 Map 𝑣𝑖 on M

6 Update the usage profile of M

7 end for

8 for l = L to 0 do

9 𝑉𝑙 ← tasks in level l sorted by decreasing bl values

10 Rearrange (𝑉𝑙) ►see Algorithm 2

11 end for

The principle of the rearrangement step is described in
Algorithm 2. It start by saving the current start time and

mapping (denoted as 𝑠𝑡𝑐 (𝑣𝑖) and 𝑀𝑖) for each task 𝑣𝑖 in 𝑉𝑙

(lines 2 and 3). Then, the local volume 𝐿𝑉𝑖,𝑗 for task 𝑣𝑖 on

machine 𝑀𝑗 (lines 4 to 7) is determined. Also, the local volume

for the current mapping of 𝑣𝑖 (line7) is saved before cancelling
this mapping (line 8). This last action creates some idle slots in
the usage profiles of different machines that can be used to
improve data locality by “migrating” some tasks from one
machine to another. The conditions to migrate a task 𝑣𝑖 from
its former mapping to a new mapping on 𝑀𝑘 are that it would
improve the data locality, i.e. 𝐿𝑉𝑖,𝑘 ≥ 𝐿𝑉𝑖

𝑐 , and reduce the

starting time of the task, i.e. 𝑠𝑡𝑘(𝑣𝑖) ≤ 𝑠𝑡𝑐(𝑣𝑖). Where 𝑠𝑡𝑘(𝑣𝑖) is
the new start time of 𝑣𝑖 on 𝑀𝑘.

The main loop in Algorithm 2 (lines 11 to 32) aims at
iteratively improving the mappings for tasks in 𝑉𝑙 . At each
step, the algorithm first try to find a better mapping (lines 15 to
21) for each task by considering the machine that leads to the
greatest increase the local volume first. If the task can also start
earlier on this machine, it is selected for a new tentative
mapping.

There are three exit cases to this while loop: (i) there exists

a better mapping for𝑣𝑖 on another machine 𝑀𝑗;(ii) 𝑣𝑖 has been

remapped on the same machine 𝑀𝑖 with a better or equal start
time; or(iii) no better mapping was found.

Algorithm 2 Rearrangement of tasks at level l

1 for all 𝑣𝑖∈𝑉𝑙do

2 𝑠𝑡𝑐(𝑣𝑖) ← current start time of 𝑣𝑖

3 𝑀𝑖← current mapping of 𝑣𝑖

4 for all 𝑀𝑗 ∈ M do

5 𝐿𝑉𝑖,𝑗 ← 𝐿𝐼𝑉𝑖,𝑗 + 𝐿𝑂𝑉𝑖,𝑗

6 end for

7 𝐿𝑉𝑖
𝑐← current local volume of 𝑣𝑖

8 cancel the current mapping of 𝑣𝑖

9 end for

10 level_is_rearranged ← FALSE

11 while ¬ level_is_rearranged do

12 level_is_rearranged ← TRUE

13 for all 𝑣𝑖∈𝑉𝑙 do

14 Sort M by decreasing 𝐿𝑉𝑖,𝑗 value

15 while 𝐿𝑉𝑖,𝑗 ≥ 𝐿𝑉𝑖
𝑐do

16 if 𝑠𝑡𝑗(𝑣𝑖) ≤ 𝑠𝑡𝑐(𝑣𝑖) then

17 map 𝑣𝑖 on 𝑀𝑗

18 update the usage profile of 𝑀𝑗

19 break

20 end if

21 end while

22 if 𝑣𝑖 is mapped on 𝑀𝑖 or

 𝑠𝑡𝑀𝑖(𝑣𝑖) >𝑠𝑡𝑐(𝑣𝑖) then ►no better mapping

23 𝑉𝑙 ← 𝑉𝑙 \ {𝑣𝑖} ►mapping is definitive

24 level_is_rearranged ← FALSE

25 end if

26 end for

27 if ¬level_is_rearranged then

28 for all 𝑣𝑖∈𝑉𝑙 do

29 cancel the current mapping of 𝑣𝑖

30 end for

31 end if

32 end while

This last case means that a task with a higher priority has
been mapped on 𝑀𝑖 and 𝑠𝑡𝑐(𝑣𝑖) can no longer be guaranteed.
In both cases, 𝑣𝑖 is set back to its original mapping, which
becomes definitive (lines 22 to 26). However, this decision
may invalidate some of the migrations (e.g., the task with
higher priority mapped on 𝑀𝑖). Then, all the tentative
mappings determined in this step (lines 28 to 30) are cancelled
and another rearrangement of the remaining tasks is searched.
Algorithm 2 ends when only migration decisions are taken
during the current step. The level is then considered as fully
rearranged and the decided mappings become definitive.

V. RESULTS AND DISCUSSION

To evaluate this approach with HEFT, a simulator based on
the WRENCH project2[18] was wrote, a Cyber-Infrastructure
simulation framework that provides high-level simulation
abstractions for building accurate and scalable full-fledged
simulators with minimal software development efforts.
WRENCH is an open-source C++ library composed of two
layers: the core simulation models and base abstractions
(computing, communicating, storing) are provided by SimGrid
[19][20] on top of which services to simulate the execution of

2 https://wrench-project.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

260 | P a g e
www.ijacsa.thesai.org

computational workloads (compute services, storage services,
network proximity services, data location services, etc.) are
defined. By leveraging SimGrid’s accurate models and their
scalable implementations, WRENCH simulators can yield
nearly identical behaviours when compared to actual systems.

A. Determinig the Data Transferred through Simulation

The planning produced by Algorithms 1 and 2 minimizes
the amount of data transferred over the network during the
execution of the workflow. However, the quality of that
planning strongly depends on the set of multi-core virtual
machines that share a fast storage space given as input.

In Table II, VS is the size of VM used; mksp is the
makespan; TVF is Total volume of files and VFT is the volume
of file transferred. This table provides a detailed description of
the set of files for the five literature’s workflows and the
volumes of file to be transferred if either Algorithm 1 (without
rearrangement) or Algorithm 2 (with rearrangement) was
applied. These transferred files are obtained after simulation on
platforms where each VM has 16 or 96 cores. With platforms
with 96 cores per VM, there's a slight difference in the volume
of files transferred compared to platforms with 16 cores. On
the other hand, compared to the total volume of each
workflow, the rearrangement approach allows to transfer fewer
files across the network. This is explained by the fact that
before executing a task, algorithms 1 and 2 have to search on
one hand for each task the VM on which its parent tasks have
stored the maximum amount of files (because after its
execution, each task stores locally i.e. on the VM where it has
executed all the output files) and on the other hand, with
rearrangement minimizing file transfers to the child tasks.

The use of large VMs allows several tasks to run in parallel
and favours the execution of dependent tasks on the same VM,
thus allowing negligible communication time between these
tasks (i.e. for dependent tasks running on the same VM).

Table II shows that when the rearrangement approach is
applied, 21.33%, 0.9% and 49.36% of files are respectively
avoided being transferred for Epigenomics, CyberShake and
Montage workflows. The platforms used in this study have a
total number of cores of 384, 288 and 972 for the CyberShake,
Epigenomics and Montage workflows, respectively. These
platforms are multiples of 96 and are greater than the total
number of cores used in parallel for each workflow.

To generate the different platforms and avoid wasting
resources, i.e. avoid leasing resources that will not be used, the
number of tasks that can be executed in parallel for each of the
workflows is determined. To do this, the platform is oversized,
i.e. this platform has as many cores as there are tasks in the
workflow. In the case of the workflows used in this study, there
are 1000 tasks, so the platform with 1000 cores is considered.
This allowed to determine the total number of cores that could
be used in parallel for each of the workflows. Thus, for
CyberShake, 374 cores are used in parallel while for
Epigenomics and Montage it is respectively 246 and 662 cores
used in parallel. This preliminary study will be used in section
V in order to determine the limit of platforms to be used for
each workflow in experiments.

TABLE II. IMPACT OF REARRANGEMENT

wf VS
Rearrangement No Rearrangement

TVF
mksp VFT mksp VFT

Cyb
16 593.83 382 1247.98 386

400.39
96 311.03 315 351.1 317

Epi
16 34227.2 1221.65 34231.6 1222.13

1230.93
96 34330.4 1219.81 34314.2 1219.84

Mont
16 380.312 10.56 380.89 10.81

17.32
96 375.44 8.77 376.1 9.33

B. Impact of Rearrangement’s Step

To evaluate the contributions, three real-world scientific
workflows from the five scientific workflows in the Pegasus
Gallery3 are used, as these three workflows (mentioned above)
are data-intensive compared to the other two. These
applications are:

 CyberShake: is an application of the Southern
California Earthquake Center to characterize
earthquake hazards;

 Epigenomics: is a data processing pipeline to automate
the execution of various genome sequencing
operations;

 Montage: is an astronomy application that creates
custom mosaics of the sky from multiple images.

This assessment start by evaluating the impact of the size of
the virtual machine on the execution time of the scientific
workflow. For each workflow, we consider infrastructures
where we vary (i.e. increase) the maximum number of cores
per VM (from 2 cores to 96 cores maximum). For a total
number of cores to be used, we generate platforms with 2 cores
per VM, 4 cores per VM, ..., 96 cores per VM.

On Figs. 2, 3, and 4, platforms composed of 2 cores per
VM provide poor execution times compared to platforms of 32
cores per VM and themselves provide poor execution times
compared to platforms of 96 cores per VM. The increasing of
the total number of cores per VM provides good execution
times. It is for this reason that this study favor large VMs (i.e.
VMs with several cores) because these VMs can execute
several tasks in parallel and considerably reducing the
makespan.

In Figs. 2, 3 and 4, max_ft represents the minimum bound
if there was no communication during the execution of the
workflow. The execution time obtained on platforms with large
VMs (i.e. having 96 cores) is approaching this theoretical
minimum limit. Here, the rearrangement step (Algorithm 2) is
applied to measure the performance of the initial offline
planning.

Different behaviors for each of the three considered
workflows are observed. First, the number of total cores used
has almost no influence on the execution time for the
CyberShake application while for Epigenomics, a plateau is

3 https://pegasus.isi.edu/workflow_gallery

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

261 | P a g e
www.ijacsa.thesai.org

observed from two total cores used. For Montage, the
execution time decreases up to seven total cores used. This
evolution of the execution time is directly related to the level of
parallelism a workflow can exploit, i.e., how many tasks can be
executed concurrently. Second, the execution time decreases
when the size of the virtual machine instances grows, but that
the improvement becomes very limited for sizes above 32.
More interestingly, the CyberShake workflow which produces
much more intermediate data than the two other workflows,
relying on the local storage of small instances (i.e., with up to
eight cores) leads to execution times worse than the solution
with one core per VM where all the intermediate data are
stored on the EBS service. This is because using too many
small VMs on a single host (i.e., up to 48 instances with two
cores) increases the number of data transfers between instances
and cause contention on the network. Conversely, in the
baseline configuration, each VM benefits of a dedicated
network connection to the shared storage service.

Fig.5 shows the impact of the rearrangement step on the
execution time. For the Montage workflow, the structure of the
workflow is such that rearrangement has no influence on the
offline planning hence neither on the execution time. For the
two other workflows, rearranging the offline planning to
further reduce the amount of transfers over the network can
only improve the execution time.

In this study, two offline scheduling algorithms are
proposed whose objective is to minimize makespan by
reducing file transfers over the network. Algorithm 1 performs
the mapping by only considering the files comes from the
parent tasks. As for algorithm 2, it rearranges the mapping of
algorithm 1 by considering the tasks level by level in order to
improve the mapping of algorithm 1 by reducing the transfer of
files to the child tasks.

After showing the gain of rearrangement on CyberShake
and Epigenomics workflows, Fig. 6 shows more details of
rearrangement on CyberShake. Approach with rearrangement
gives better results compared to the approach without
rearrangement. In the next part of this work we will compare
this approach with the HEFT algorithm.

Fig. 2. Evolution of the Makespan of the CyberShake Workflow with

Variation of the Total Number of Cores per VM.

Fig. 3. Evolution of the Makespan of the Epigenomics Workflow with

Variation of the Total Number of Cores per VM.

Fig. 4. Evolution of the Makespan of the Montage Workflow with Variation

of the Total Number of Cores per VM.

Fig. 5. Impact of Rearrangement Step on the Makespan (Execution Time)

for different VM Instance Size, using Algorithm 1 vs Algoritm 2.

For data-intensive applications, such as the scientific
workflow CyberShake it is essential to perform a good
mapping of the different tasks, in order to have a good
execution time. For this type of application, approach with
rearrangement gives better results (cf. Fig.6). Since the use of
large VMs has an impact on the makespan, the evaluation of
both approaches is based on platforms whose total number of
cores is a multiple of 96.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

262 | P a g e
www.ijacsa.thesai.org

Fig. 6. Impact of Rearrangement on CyberShake Scientific Workflow.

C. Comparaison of HEFT and WSRDT Algorithms

The main objective of this study is to minimize the
execution time of an application. To achieve this goal, the
major contribution of this paper is the reduction of files to be
transferred during the execution of the application, which have
a considerable impact on the execution time. In order to
evaluate the performance of this algorithm, the proposed
approach is compared to HEFT which is a very popular
heuristic in the scheduling of parallel applications. HEFT is
adapted to the IaaS cloud resources and to the simulation
environment. The results of simulations show that approach
proposed provides good results compared to HEFT.

In the results of Figs.7, 8 and 9, we use platforms whose
total number of cores used varies from 2 cores to 374 cores for
CyberShake, from 2 to 246 cores for Epigenomics and up to
662 cores for Montage, by increments of 2. The principle of
platform generation was explained in section III.

If there are more VMs in a platform, then there will be
several files to transfer on the network. It is true that large VMs
are prioritized for the execution of applications, but the
important element for which this choice is do, is the use full
bandwidth for this type of machine that we have summarized
in Table I. With the HEFT algorithm, the more VMs there are
in the platform, the more files will be transferred in the
network. On the other hand, with approach proposed, files are
reduced on two levels for each task, i.e. the reduction coming
from the parent tasks (Algorithm 1) and the reduction going to
the child tasks (rearrangement of the mapping of the Algorithm
2). These two approaches allow us to have good results
compared to HEFT as is the case in Figures 7, 8 and 9.

These experiences allow to show that our approach
provides better results summarized through the following
gains. The CyberShake workflow allows to obtain a gain of
32.22% on the makespan compared to HEFT, as for the
Epigenomics workflow, a gain of 44.54% on the makespan and
a gain of 18.62% on the makespan with the workflow Montage
are obtained.

Fig. 7. Evaluation Results for the CyberShake Workflow.

Fig. 8. Evaluation Results for the Epigenomics Workflow.

Fig. 9. Evaluation Results for the Montage Workflow.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

263 | P a g e
www.ijacsa.thesai.org

VI. CONCLUSION

Infrastructure as a Service Clouds now allows scientists to
execute their data intensive workflows infrastructures that
match the computing and storage requirements of these
applications. Determining the set of virtual machine instances
that have to compose these infrastructures is a complex task,
usually delegated to Workflow Management Systems. A key to
performance is to be able to leverage the characteristics of
virtual machines instances.

In this paper, first showed the interest of using multi-core
machines, because by increasing the number of cores per
machine, several tasks are executed on this machine and the
bandwidth linking a machine to the switch is proportional to
the number of cores of the machine. Then we proposed
scheduling algorithms that minimize the makespan by reducing
data transfers between dependent tasks on the network. Finally,
the results of the experiments showed that the proposed
approach gives better results than HEFT, which is one of the
best list-scheduling algorithms.

As part of our future work, we plan to compare the
simulated executions with actual runs on the AWS computing
cloud with M5d instances in order to confirm the impact of the
proposed algorithms. We also plan to study the multi-objective
aspect of the scheduling problem so that users can favor either
a shorter execution time or a lowest cost by proposing a
complementary approach where one of the objective is fixed,
i.e., either a given budget or a fixed deadline.

REFERENCES

[1] J. K. Lenstra and A. H. G. Rinnooy Kan, “Complexity of Scheduling

under Precedence Constraints,” Oper. Res., vol. 26, no. 1, pp. 22–35,
1978, doi: 10.1287/opre.26.1.22.

[2] V. Arabnejad, K. Bubendorfer, B. Ng, and K. Chard, “A Deadline

Constrained Critical Path Heuristic for Cost-Effectively Scheduling
Workflows,” in Proc. IEEE/ACM 8th Int. Conf. Utility and Cloud

Computing (UCC), 2015, pp. 242–250, doi: 10.1109/UCC.2015.41.

[3] V. Arabnejad, K. Bubendorfer, and B. Ng, “A budget-aware algorithm
for scheduling scientific workflows in cloud,” IEEE Int. Conf. High

Perform. Comput. Commun., pp. 1188–1195, 2007.

[4] P. Lu, G. Zhang, Z. Zhu, X. Zhou, J. Sun, and J. Zhou, “A Review of
Cost and Makespan-Aware Workflow Scheduling in Clouds,” J.

Circuits, Syst. Comput., p. 1930006, 2018.

[5] X. Wang, B. Cao, C. Hou, L. Xiong, and J. Fan, “Scheduling budget

constrained cloud workflows with particle swarm optimization,” in 2015
IEEE Conference on Collaboration and Internet Computing (CIC), 2015,

pp. 219–226.

[6] L. Singh and S. Singh, “A genetic algorithm for scheduling workflow
applications in unreliable cloud environment,” in International

Conference on Security in Computer Networks and Distributed Systems,
2014, pp. 139–150.

[7] K. Almi’ani, Y. C. Lee, and B. Mans, “On efficient resource use for

scientific workflows in clouds,” Comput. Networks, vol. 146, pp. 232–
242, 2018, doi: 10.1016/j.comnet.2018.10.003.

[8] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, “Minimizing

cost and makespan for workflow scheduling in cloud using fuzzy
dominance sort based HEFT,” Futur. Gener. Comput. Syst., vol. 93, pp.

278–289, 2019, doi: 10.1016/j.future.2018.10.046.

[9] Z. G. Chen, K. J. Du, Z. H. Zhan, and J. Zhang, “Deadline constrained
cloud computing resources scheduling for cost optimization based on

dynamic objective genetic algorithm,” in Proc. IEEE Congress
Evolutionary Computation (CEC), 2015, pp. 708–714, doi:

10.1109/CEC.2015.7256960.

[10] H. Gamal El Din Hassan Ali, I. A. Saroit, and A. M. Kotb, “Grouped
tasks scheduling algorithm based on QoS in cloud computing network,”

Egypt. Informatics J., vol. 18, no. 1, pp. 11–19, 2017, doi:
10.1016/j.eij.2016.07.002.

[11] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-

constrained workflow scheduling algorithms for Infrastructure as a
Service Clouds,” Futur. Gener. Comput. Syst., vol. 29, no. 1, pp. 158–

169, 2013, doi: 10.1016/j.future.2012.05.004.

[12] A. Deldari, M. Naghibzadeh, and S. Abrishami, “CCA: a deadline-

constrained workflow scheduling algorithm for multicore resources on
the cloud,” J. Supercomput., vol. 73, no. 2, pp. 756–781, 2017.

[13] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and

low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, 2002, doi:

10.1109/71.993206.

[14] B. P. Rimal and M. Maier, “Workflow Scheduling in Multi-Tenant
Cloud Computing Environments,” IEEE Trans. Parallel Distrib. Syst.,

vol. 28, no. 1, pp. 290–304, 2017, doi: 10.1109/TPDS.2016.2556668.

[15] K. Almi’ani and Y. C. Lee, “Partitioning-Based Workflow Scheduling
in Clouds,” in Proc. IEEE 30th Int. Conf. Advanced Information

Networking and Applications (AINA), 2016, pp. 645–652, doi:
10.1109/AINA.2016.83.

[16] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,

“Characterizing and profiling scientific workflows,” Futur. Gener.
Comput. Syst., vol. 29, no. 3, pp. 682–692, 2013, doi:

10.1016/j.future.2012.08.015.

[17] D. G. Feitelson and A. M. Weil, “Utilization and predictability in
scheduling the IBM SP2 with backfilling,” in Parallel Processing

Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged
International... and Symposium on Parallel and Distributed Processing

1998, 1998, pp. 542–546.

[18] H. Casanova, S. Pandey, J. Oeth, R. Tanaka, F. Suter, and R. F. da Silva,

“WRENCH: A Framework for Simulating Workflow Management
Systems,” in 2018 IEEE/ACM Workflows in Support of Large-Scale

Science (WORKS), 2018, pp. 74–85.

[19] H. Casanova, “Simgrid: A toolkit for the simulation of application
scheduling,” in Proceedings First IEEE/ACM International Symposium

on Cluster Computing and the Grid, 2001, pp. 430–437.

[20] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications

and platforms,” J. Parallel Distrib. Comput., vol. 74, no. 10, pp. 2899–
2917, 2014.

