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Abstract—The cloud IaaS easily offers to have homogeneous 

multi-core machines (whether they are "bare metal" machines or 

virtual machines). On each of these machines, there can be high-

performance input-output SSD disks. That allows to distribute 

the files produced during the execution of the workflow to 

different machines in order to minimize the additional costs 

associated with transferring these files. In this paper, we propose 

a scheduling algorithm called WSRDT (Workflow Scheduling 

Reducing Data Transfers) whose purpose is to minimize the 

makespan (execution time) of data-intensive workflows by 

reducing transfers data between dependent tasks on the network. 

Intermediate files produced by tasks are stored locally on the 

disk of the machine where the tasks were executed. We 

experimentally verify that the increase in the number of cores 

per machine reduces the additional cost due to data transfers on 

the network. Experiences with a veritable workflow show those 

advantages of the algorithms presented. Data-driven scheduling 

significantly reduces the execution time and the volume of data 

transferred on the network, our approach outperforms one of the 

best state-of-the-art algorithms that we have adapted with our 
hypotheses. 

Keywords—Workflow scheduling; makespan reduction; multi-

cores virtual machine; data-intensive workflows; IaaS cloud 

I. INTRODUCTION 

Scientists, to run their different parallel applications, 
generally used clusters and grids computing. These different 
execution platforms quickly have showed their limits giving 
the ever-increasing demands for computing, storage resources, 
and so on. To solve this issue, cloud computing offers an 
illusion of infinite resources where scientists can request the 
resources needed to run a parallel application. Cloud 
computing typically offers three (03) types of services, SaaS 
(Software as a Service), PaaS (Platform as a Service), IaaS 
(Infrastructure as a Service). The use of these different services 
is flexible and scalable from the request of the user, via a pay-
as-you-go model. With three (03) basic services, the most 
suitable for running parallel applications is the IaaS cloud. The 
providers of this service offer computing and storage resources 
essential for running all parallel applications that require a 
significant resource due to its complex structure. 

Parallel applications come from several research fields such 
as biology, astronomy, physics, agriculture, etc., and have in 
common, on the one hand, their complex structure with 

dependencies between the different tasks, and on the other 
hand a need for high computing and storage service, given the 
large volume of data to be processed and transferred. These 
scientific applications are very often modeled as scientific 
workflow. These scientific workflows require a High-
Performance Computing (HPC) environment for their 
execution. 

The evolution of the computing environment from grid to 
cloud computing has always considered scientific workflows. 
However, with this new paradigm, scientific workflows are 
now executed on virtual, dynamic and scalable resources as an 
instance in cloud computing. The challenge of mapping 
workflow tasks, which is a task scheduling problem in a cloud 
computing environment, is the subject of several scientific 
studies to find algorithms to execute workflows in a reasonable 
time and budget. This problem of scheduling on IaaS 
infrastructures of cloud computing is known as NP-hard [1], 
for this purpose, several heuristics [2][3][4] and metaheuristics 
[5][6] have been proposed in the literature in order to minimize 
either the total execution time of the workflow (makespan), the 
cost of using IaaS resources in the cloud, or both. 

Solutions for workflow scheduling on cloud IaaS 
infrastructures exist, but these algorithms generally consider 
the execution of a task on a VM with a single computational 
core. And depending on the complex structure of the 
workflows, this could lead to several data transfers 
(communications) in networks thus constituted. According to 
the Amazon EC2's VM deployment model, users will be able 
to order VMs with a maximum of ninety-six (96) parallel 
computing cores in the same VM1. However, minimizing the 
makespan of a workflow, one must consider in addition to the 
execution time of the task on the computing resource, the time 
of transfer from a task to its successor(s), because large 
volumes of data are must be transferred. Using multi-core VMs 
for scheduling could give better results for the makespan, as it 
could reduce the amount of data exchanged in the network. 
Indeed, if two dependent tasks running on the same VM, the 
communication time (between these two tasks) is assumed to 
be zero. 

Most of the algorithms in the literature are not clairvoyant, 
i.e., they do not consider the location of data coming from 

                                                        
1https://aws.amazon.com/fr/ec2/instance-types/m5/ 
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predecessors and data going to successors of a task. In order to 
improve the execution time of a workflow, the execution time 
of each task in the workflow and the data transfer time between 
dependent tasks must be considered. The works in the literature 
consider only the data coming from the predecessor tasks, i.e. 
from top to bottom, since the scientific application is modeled 
as a DAG. However, an improvement can be done on the 
location of the data. Moreover, the algorithms in the literature 
do not exploit multi-core machines for the simultaneous 
execution of several tasks in the same machine and the 
distributed storage of the data produced during the execution of 
the workflow. 

Reducing the execution time of a scientific application 
means considering the execution time of each task of the 
application, but also the file transfer time between the different 
dependent tasks through the network. The main problem 
addressed in this paper is how to do a good mapping of the 
different tasks from a data-intensive application by reducing 
the files to be transferred in the network in order to obtain a 
better execution time. 

The remainder of this paper is organized as follows. 
Section II introduces the related work in this field and section 
III present the platform and application models. Sections IV 
and V describes the proposed approach: WSRDT and section 
V validates the effectiveness WSRDT. Concluding remarks are 
given in section VI. 

II. RELATED WORK 

Two main approaches exist for scheduling tasks in the 
cloud, which are list scheduling algorithms [7][8][9] and 
clustering algorithms [10][11][12]. Most of the list scheduling 
algorithms are inspired by HEFT [13], which aims to minimize 
the makespan and was originally proposed for computational 
grid environment and has long been studied and adapted for the 
cloud environment. 

In this section present a review of the literature on 
algorithms whose objective is to minimize makespan. Running 
a scientific workflow application in the cloud requires efficient 
mapping so that tasks do not have to wait too long, which 
could result in a very long execution time. Typically, the 
resources provided in the cloud to run workflows are VMs with 
computational units, storage, etc. Reducing the execution time 
of a workflow consisting of hundreds or even thousands of 
tasks in the cloud is a challenge, given the flexibility of 
available resources. The key part of resource management in a 
cloud environment is the mapping of these tasks to these on-
demand computing resources. Rimal et al. [14] propose a 
model based on the public cloud (Amazon EC2), in order to 
minimize the makespan, the proposed algorithm is based on the 
principle of critical path (Critical Path: CP). Critical path tasks 
are assigned to different resources in the cloud, and to 
maximize the use of these leased resources, other tasks that are 
not part of the critical path are assigned to those resources 
already leased, taking into account the billing that is done per 
unit of time; knowing that a VM used during 01H01mn would 
be charged for 02H. This approach based on the "multi-tenant 
cloud" consists in deploying the tasks of the same CP at the 
cloud provider whose resources allow to finish these different 
tasks at the earliest possible time in order to reduce the 

completion time of the workflow. The study of Rimal et al. 
showed that their approach gives better results compared to the 
FCFS algorithm, which is not a clear-sighted algorithm 
because it does not take into account all the dependencies that 
would exist between the different tasks of the workflow. In 
addition to the critical path approach, Gamal et al. [10] propose 
a new approach based on task classification. Their task 
clustering approach, where groupings are done according to a 
certain neighborhood, minimizes the makespan based on the 
Min-Min [9] algorithm for mapping tasks to cloud resources. 
Min-Min algorithm can be used in cloud computing. Min-Min 
algorithm depends on execution time for scheduling tasks. 
Tasks with minimum execution time will be scheduled first. 
Tasks with long execution time have high delay. The Min-Min 
algorithm is not suitable for running a parallel application 
where the tasks are dependent just like the FCFS algorithm. 
Almi'ani and Lee [15] proposed a three-step approach to 
minimizing the makespan: (i) the partitioning step; in this step, 
the number of tasks assigned to each partition is first 
determined taking into consideration the execution time for the 
CP in the workflow. Since the sum of task execution times 
along CP (i.e., critical path length) represents the lower bound 
of makespan (i.e., the optimal solution), this step tries to ensure 
the total execution time for tasks belonging to the same 
partition to be less than CP length. While critical path length 
only includes execution times as tasks along CP are meant to 
assigned to the same resource, the length of tasks in any other 
partition should include execution times and communication 
times. To ensure that partitions created in the partitioning step 
are at the optimal granularity for the final resource allocation, 
tasks of different partitions are (ii) rearranged/adjusted. The 
optimality here primarily concerns the number of tasks in each 
partition with respect to the capacity of potentially assigned 
resource and data locality. As partitions are expected to have 
dependency relationships due to task precedence constraints 
primarily dictated by data dependencies, rearranging tasks 
between different partitions involves the recalculation of 
timing values. To execute each task the (iii) resource 
assignment step consists of the resource set identification to 
identify types of resource set allocated to partitions such that 
the amount of time partitions are required to wait due to the 
presence of the data dependencies between partitions is 
minimized. To assess their approach Almi’ani et al. compared 
their approach to HEFT, but HEFT provided better makespan 
compared to their approach which gives better cost of using 
cloud resources. The most suitable algorithms for scheduling a 
parallel application where tasks are dependent are list 
algorithms because this type of algorithm takes into account 
the dependencies between all the tasks in the workflow. 

The Heterogeneous Earliest Finish Time Algorithm 
(HEFT) is a popular list-based heuristic scheduling algorithm 
for optimizing the makespan [13] in workflow applications, 
whose pseudo-code is very close to algorithm 1. The method 
consists of two phases: ranking and mapping. In the ranking 
phase (line 1) based on the (1), the order in which the tasks are 
being mapped is computed using the bottom-level metric 
(distance of the beginning task to the end task of the 
workflow). The idea of this ranking is to execute before those 
tasks having more dependent tasks than others. Further details 
about how to sort the tasks can be found in [13]. Once the 
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execution order is determined, the second phase consists in 
assigning each task to the resources following the order 
computed in the first phase. For each task and for each 
resource, the completion time of that task on that resource is 
computed. Finally, the task is mapped onto the resource where 
it is finished earlier. After all tasks have been mapped, the 
workflow can be executed. 

𝑏𝑙𝑖𝜔𝑖 max
𝑗 ∈ 𝑠𝑢𝑐𝑐 (𝑖)

(𝑐𝑖,𝑗 + 𝑏𝑙𝑗)            (1)

Where succ (i) is the set of immediate successors of task 𝑣𝑖, 
𝑐𝑖,𝑗  is the data transfers time from task 𝑣𝑖 to task 𝑣𝑗, and 𝜔𝑖 is 

the execution time of task 𝑣𝑖 . Since the bottom-level is 
computed recursively by traversing the DAG upward, starting 
from the end task. For the end task 𝑣𝑒𝑛𝑑, the bottom-level value 
is equal to. 

𝑏𝑙𝑒𝑛𝑑𝜔𝑒𝑛𝑑              (2) 

HEFT is a very popular list scheduling algorithm that aims 
at minimizing the makespan when resources are fixed, but 
HEFT does not perform well in minimizing the makespan of a 
workflow when the volumes of data exchanged between tasks 
are large. Indeed HEFT, after having sorted the tasks according 
to their priorities, tries to minimize the end date of execution of 
each task in the order of this list. It is therefore a ‘’blind’’ 
algorithm through which the decision taken for a task is final 
and can have a negative impact on lower priority tasks. In 
addition, these algorithms use a naive adaptation of HEFT for 
Cloud IaaS platforms using a single centralized storage service 
for data exchanges between tasks. This significantly increases 
the additional cost of inter-task data exchange. 

In all these studies, the VMs considered are heterogeneous 
and are in fact distinguished by their differences in terms of the 
number of cores. The authors therefore assume that the 
workflow tasks are parallel tasks that can run on any number of 
cores. However, in reality, the workflows on which they make 
their assessments are inspired by real workflows studied by 
Juve et al. [16]. In their study, Juve et al. show that almost all 
tasks in real workflows are single-core. There is only one task 
in one of the studied workflows that can use up to two cores. In 
this study, the workflows considered are therefore comprised 
of single-core tasks only. 

All the studies in the literature do not take into account that 
one can take advantage of the rental of multi-core machines 
containing local storage disks in order to reduce the makespan 
by reducing data transfers. However, storing all the files used 
and produced by a workflow on a single central storage service 
can cause contention on the network. This study is based on the 
use of local VM disks to propose an algorithm to minimize 
makespan. The algorithm will also take advantage of the fact 
that the same multicore VM can be used to execute several 
tasks in parallel. 

III. PLATFORM AND APPLICATION MODELS 

In this paper, the platform model is based on a typical IaaS 
cloud configuration. Multiple virtual machine (VM) instances 
are deployed on physical servers within a single datacenter. 
More precisely, a set of VMs like Amazon EC2 M5 instances 
is considered. Specifically, these are the M5d instances that are 
provided with local storage on the NVMe SSD, while regular 
M5 instances must rely on Amazon Elastic Block Storage 
(EBS) to store the data. Table I details the characteristics of the 
available M5d instances. The indicated costs in dollars per 
hour correspond to on-demand Linux instances in the US-East 
region (Ohio) at the time of writing of this article. 

The number of virtual cores (vCPUs) in this instance series 
ranges from 2 to 96, with a constant amount of memory per 
core of 4GiB. These instances are typically deployed by 
Amazon on nodes featuring an Intel Xeon Platinum 8000 series 
processor. The specific feature of the M5d instances is to attach 
a fast block-level storage on SSD drives that is coupled to the 
lifetime of the instance. This work, aim at leveraging this fast 
storage that is shared by the vCPUs of an instance to store the 
intermediate files produced during the execution of a workflow, 
hence reducing the number of data transfer over the network 
for tasks scheduled on the same virtual machine. Only the entry 
and exit files of the workflow will be stored on an external 
storage node. 

In terms of network connectivity with other instances or the 
Elastic Block Storage (EBS) service, the available bandwidth 
depends on the size of the instance. Only the largest instances 
that can exploit a full node, i.e., with 64 or 96 vCPUs, have a 
guaranteed network bandwidth of 20 and 25 Gbps respectively. 
For smaller instances, i.e., from 2 to 16 cores, the bandwidth is 
proportional to the vCPUs. 

TABLE I. CHARACTERISTICS OF THE AWS M5D INSTANCE TYPES 

Model vCPU Memory (GiB) Instances Storage (GiB) Network Bandwidth (Gbps) EBS Bandwidth (Mbps) Cost ($/H) 

M5d.large 2   8 1 x 75 NVMe SSD  Up to 10  Up to 3,500   0,113 

M5d.xlarge  4  16  1 x 150 NVMe SSD   Up to 10  Up to 3,500   0,226 

M5d.2xlarge  8  32  1 x 300 NVMe SSD   Up to 10  Up to 3,500   0,452 

 M5d.4xlarge  16  64 2 x 300 NVMe SSD  Up to 10   3,500 0,904  

M5d.8xlarge 32 128 2 x 600 NVMe SSD  10 5,000 1,808 

M5d.12xlarge 48 192 2 x 900 NVMe SSD  10 7,000 2,712 

M5d.16xlarge 64 256 4 x 600 NVMe SSD  20 10,000 3,616 

M5d.24xlarge 96 384 4 x 900 NVMe SSD  25 14,000 5,424 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

258 | P a g e  
www.ijacsa.thesai.org 

In this study, large VMs are preferred in each platform, 
because they allow multiple tasks to be executed in parallel. In 
their study Juve et al. [16] have shown that each task in a real 
scientific workflow is a single-core activity, i.e. can only be 
executed on a single computing core, rather than using all the 
cores of a VM. It is on this same principle that this study is 
based. Thus, a user who wants to run his parallel application in 
the cloud must rent a number of cores in total, the proposed 
approach provides him with a platform that would minimize 
the application completion time. For example, if the user wants 
to use 100 cores in total, the platform will consist of a VM with 
96 cores and a VM with 4 cores. In the case of 200 cores total, 
the platform will consist of three VMs, two VMs of 96 cores 
and one of 8 cores and so on. 

The scientific workflows (cf. Fig. 1) to schedule are 
represented by Directed Acyclic Graphs (DAGs) G = {Ѵ, 
Ɛ}where Ѵ= {𝑣𝑖  | 𝑖 = 1, … , 𝑉} is a set of vertices representing 
the computational tasks of the workflow and Ɛ = {𝑒𝑖,𝑗  | (𝑖, 𝑗) ∈
{1, … , V} × {1, … , V} } is a set of edges between vertices, 
representing either a data dependency, i.e., a file transfer, or a 
flow dependency between two tasks. Each of the task 
composing the workflow has a predefined (estimated) duration, 
requires a set of input files to start its execution, and will 
produce a set of output files upon completion. 

Notations such as 𝐼𝑛𝑝𝑢𝑡𝑖
𝑘 (resp. 𝑂𝑢𝑡𝑝𝑢𝑡𝑖

𝑘 ), represent the 

𝑘𝑡ℎ input (resp. output) file of a given task 𝑣𝑖. When an output 
file produced by a task 𝑣𝑖 is consumed as input by another task 
𝑣𝑗 , this creates a data dependency between 𝑣𝑖  and 𝑣𝑗 , 

represented by the edge 𝑒𝑖,𝑗. 

The input files that are not produced by any of the tasks in 
the workflow are called the entry files of the workflow. 
Conversely, the output files that are not consumed by any task 
are called the exit files of the workflow. Finally, two quantities 
associated with each task of the workflow that will be used 
during the planning process have been defined. The Local 
Input Volume of task 𝑣𝑖  on machine 𝑀𝑗, or 𝐿𝐼𝑉𝑖,𝑗, as the sum of 

the size of the files that 𝑣𝑖 takes as input that are locally stored 

on 𝑀𝑗. Respectively, the Local Output Volume, or 𝐿𝑂𝑉𝑖,𝑗 as the 

sum of the sizes of the files produced by 𝑣𝑖 that are used by 

successors of 𝑣𝑖 also scheduled on 𝑀𝑗. 

Note that if a file is used by more than one successor, its 
size is accounted for as many times as successors. The LIV 
(resp. LOV) of an entry (resp. exit) task is by definition set to 
zero. Bandwidth be proportional to the number of cores and 
equal to 208.33 Mbps per core. All the virtual machine 
instances started for the execution of a given workflow are 
connected through a single switch. 

According to the description of the M5d instances, the 
connection from a VM to EBS goes through a dedicated 
network connection, which is taken into account in the 
simulated infrastructure. As for the network connections 
between VMs, One of the assumptions made in this study is 
that the bandwidth of the dedicated connection between VM 
and EBS is proportional to the number of cores for small VMs 
with up to 16 cores (i.e., 218.75 Mbps per core). 

 

Fig. 1. Some Examples of Scientific Workflows. 

During the execution of the workflow, all the intermediary 
files, i.e. those that are produced by a task and consumed by 
another, will be stored locally on the SSD storage of one or 
several machines. Only the entry and exit files of the workflow 
will be stored on an external storage service accessible by all 
the machines. The time to transfer a file from one machine to 
another includes the time to read the file on the disk of the 
source machine, the duration of the data transfer over the 
network and the time to write the file on disk at destination. 

IV. A PLANNING ALGORITHM TO MINIMIZE DATA 

TRANSFER OVER THE NETWORK 

The proposed planning algorithm aims at leveraging two 
main characteristics of the target IaaS cloud platform, i.e. 
multi-core instances and a fast-local storage space shared 
among cores, to minimize the impact of data transfers on the 
execution of data-intensive scientific workflows. 

In this section, the assumption is that the provisioning of 
virtual machine instances has been done. Then, the objective of 
this algorithm is to schedule the set Ѵ of V tasks composing the 
workflow on a set M of n VMs instances. These instances can 
have different sizes. Each of them has a unique id, the largest 
instances having the smallest ids. How the set of instances is 
defined will be explained in Section V. 

Algorithm 1 starts by building a sorted scheduling list that 
contains all the tasks of the workflow (lines 1-2). The tasks are 
sorted by decreasing bottom level value [13].The bottom level 
of a task 𝑣𝑖, or 𝑏𝑙𝑖, is the length of the longest path from 𝑣𝑖 to 
the end of the workflow. This ordering gives the highest 
priorities to the most critical tasks and ensures the respect of 
the dependencies between tasks. 

Then, the algorithm determines a first mapping for each 

task 𝑣𝑖 in Ѵ (line3-7). The selected machine 𝑀𝑗 in M is the one 

that first minimizes the start time of 𝑣𝑖 (denotes as 𝑠𝑡𝑗(𝑣𝑖)) and 

then maximizes the volume of the input files needed by 𝑣𝑖 for 

its execution that are already locally stored on 𝑀𝑗 . The 

rationale is that between two virtual machines able to start 𝑣𝑖 
start its execution at the same time, the algorithm favor the one 
that minimizes the amount of data transfer over the network. 

As all the considered virtual machine instances have 
multiple cores, scheduling a task 𝑣𝑖 on a machine M implies to 
maintain a local schedule inside the virtual machine. In order to 
maximize the utilization of the cores within a virtual machine, 
each machine is managed as a job and resource manager will 
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do. In particular, this study leverage the available information 
on the (estimated) duration of each task to implement a 
conservative backfilling mechanism [17] when building the 
local schedule. Keeping such usage profile of a virtual machine 
up to date is mandatory to determine the time when a new task 

can start on this particular machine (i.e. 𝑠𝑡𝑗(𝑣𝑖)). Then, after 

selecting M of the execution of 𝑣𝑖, it is essential to update the 
usage profile of M (line 6). These usage profiles of the virtual 
machines are also used in second step of Algorithm 1 in which 
the tasks in this initial schedule are rearranged to further reduce 
the amount of data transfers over the network. 

This rearrangement step (lines 8 to 11) browses the 
workflow DAG level by level from the bottom to the top. The 
motivation of this second step is that during the initial 
placement that proceeds from top to bottom, only the volume 
of data coming from the direct predecessors of a task is 
considered. It is indeed impossible to account for the locality of 
the data needed by the direct descendants of a task when 
scheduling it at their placement is not determined yet. This may 
lead to avoidable data movements. 

Level 0 is the topmost level of the DAG that comprises all 
the entry tasks of the workflow. For each of the other tasks, the 
level is recursively computed as the maximum level of its 
predecessors plus one. Finally, L denote the number of levels 
in the workflow. 

Algorithm 1 Mapping workflow tasks without rearrangement 

1 Compute 𝑏𝑙𝑖  of each task 𝑣𝑖 

2 Sort Ѵ by decreasing 𝑏𝑙𝑖values 

3 for all 𝑣𝑖∈Ѵ do 

4  M ← {𝑀𝑗 ∈ M | 𝑠𝑡𝑗(𝑣𝑖) is minimal and 𝐿𝐼𝑉𝑖,𝑗 is maximal} 

5  Map 𝑣𝑖 on M 

6  Update the usage profile of M 

7 end for 

8 for l = L to 0 do 

9  𝑉𝑙  ← tasks in level l sorted by decreasing bl values 

10  Rearrange (𝑉𝑙) ►see Algorithm 2 

11 end for  

The principle of the rearrangement step is described in 
Algorithm 2. It start by saving the current start time and 

mapping (denoted as 𝑠𝑡𝑐 (𝑣𝑖 ) and 𝑀𝑖 ) for each task 𝑣𝑖  in 𝑉𝑙  

(lines 2 and 3). Then, the local volume 𝐿𝑉𝑖,𝑗  for task 𝑣𝑖  on 

machine 𝑀𝑗 (lines 4 to 7) is determined. Also, the local volume 

for the current mapping of 𝑣𝑖 (line7) is saved before cancelling 
this mapping (line 8). This last action creates some idle slots in 
the usage profiles of different machines that can be used to 
improve data locality by “migrating” some tasks from one 
machine to another. The conditions to migrate a task 𝑣𝑖 from 
its former mapping to a new mapping on 𝑀𝑘 are that it would 
improve the data locality, i.e. 𝐿𝑉𝑖,𝑘 ≥ 𝐿𝑉𝑖

𝑐 , and reduce the 

starting time of the task, i.e. 𝑠𝑡𝑘(𝑣𝑖) ≤ 𝑠𝑡𝑐(𝑣𝑖). Where 𝑠𝑡𝑘(𝑣𝑖) is 
the new start time of 𝑣𝑖 on 𝑀𝑘. 

The main loop in Algorithm 2 (lines 11 to 32) aims at 
iteratively improving the mappings for tasks in 𝑉𝑙 . At each 
step, the algorithm first try to find a better mapping (lines 15 to 
21) for each task by considering the machine that leads to the 
greatest increase the local volume first. If the task can also start 
earlier on this machine, it is selected for a new tentative 
mapping. 

There are three exit cases to this while loop: (i) there exists 

a better mapping for𝑣𝑖 on another machine 𝑀𝑗;(ii) 𝑣𝑖 has been 

remapped on the same machine 𝑀𝑖 with a better or equal start 
time; or(iii) no better mapping was found. 

Algorithm 2 Rearrangement of tasks at level l 

1 for all 𝑣𝑖∈𝑉𝑙do 

2  𝑠𝑡𝑐(𝑣𝑖) ← current start time of 𝑣𝑖 

3  𝑀𝑖← current mapping of 𝑣𝑖 

4  for all 𝑀𝑗 ∈ M do 

5  𝐿𝑉𝑖,𝑗 ← 𝐿𝐼𝑉𝑖,𝑗 + 𝐿𝑂𝑉𝑖,𝑗 

6  end for 

7  𝐿𝑉𝑖
𝑐← current local volume of 𝑣𝑖 

8  cancel the current mapping of 𝑣𝑖 

9 end for 

10 level_is_rearranged ← FALSE 

11 while ¬ level_is_rearranged do 

12  level_is_rearranged ← TRUE 

13  for all 𝑣𝑖∈𝑉𝑙  do 

14  Sort M by decreasing 𝐿𝑉𝑖,𝑗  value 

15  while 𝐿𝑉𝑖,𝑗 ≥ 𝐿𝑉𝑖
𝑐do 

16  if 𝑠𝑡𝑗(𝑣𝑖) ≤ 𝑠𝑡𝑐(𝑣𝑖) then 

17  map 𝑣𝑖 on 𝑀𝑗  

18  update the usage profile of 𝑀𝑗  

19  break 

20  end if 

21  end while 

22  if 𝑣𝑖 is mapped on 𝑀𝑖 or  

 𝑠𝑡𝑀𝑖(𝑣𝑖) >𝑠𝑡𝑐(𝑣𝑖) then ►no better mapping 

23  𝑉𝑙  ← 𝑉𝑙  \ {𝑣𝑖} ►mapping is definitive 

24  level_is_rearranged ← FALSE 

25  end if 

26  end for 

27  if ¬level_is_rearranged then 

28  for all 𝑣𝑖∈𝑉𝑙  do 

29  cancel the current mapping of 𝑣𝑖 

30  end for 

31  end if 

32 end while 

This last case means that a task with a higher priority has 
been mapped on 𝑀𝑖 and 𝑠𝑡𝑐(𝑣𝑖) can no longer be guaranteed. 
In both cases, 𝑣𝑖  is set back to its original mapping, which 
becomes definitive (lines 22 to 26). However, this decision 
may invalidate some of the migrations (e.g., the task with 
higher priority mapped on  𝑀𝑖 ). Then, all the tentative 
mappings determined in this step (lines 28 to 30) are cancelled 
and another rearrangement of the remaining tasks is searched. 
Algorithm 2 ends when only migration decisions are taken 
during the current step. The level is then considered as fully 
rearranged and the decided mappings become definitive. 

V. RESULTS AND DISCUSSION 

To evaluate this approach with HEFT, a simulator based on 
the WRENCH project2[18] was wrote, a Cyber-Infrastructure 
simulation framework that provides high-level simulation 
abstractions for building accurate and scalable full-fledged 
simulators with minimal software development efforts. 
WRENCH is an open-source C++ library composed of two 
layers: the core simulation models and base abstractions 
(computing, communicating, storing) are provided by SimGrid 
[19][20] on top of which services to simulate the execution of 

                                                        
2 https://wrench-project.org 
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computational workloads (compute services, storage services, 
network proximity services, data location services, etc.) are 
defined. By leveraging SimGrid’s accurate models and their 
scalable implementations, WRENCH simulators can yield 
nearly identical behaviours when compared to actual systems. 

A. Determinig the Data Transferred through Simulation 

The planning produced by Algorithms 1 and 2 minimizes 
the amount of data transferred over the network during the 
execution of the workflow. However, the quality of that 
planning strongly depends on the set of multi-core virtual 
machines that share a fast storage space given as input. 

In Table II, VS is the size of VM used; mksp is the 
makespan; TVF is Total volume of files and VFT is the volume 
of file transferred. This table provides a detailed description of 
the set of files for the five literature’s workflows and the 
volumes of file to be transferred if either Algorithm 1 (without 
rearrangement) or Algorithm 2 (with rearrangement) was 
applied. These transferred files are obtained after simulation on 
platforms where each VM has 16 or 96 cores. With platforms 
with 96 cores per VM, there's a slight difference in the volume 
of files transferred compared to platforms with 16 cores. On 
the other hand, compared to the total volume of each 
workflow, the rearrangement approach allows to transfer fewer 
files across the network. This is explained by the fact that 
before executing a task, algorithms 1 and 2 have to search on 
one hand for each task the VM on which its parent tasks have 
stored the maximum amount of files (because after its 
execution, each task stores locally i.e. on the VM where it has 
executed all the output files) and on the other hand, with 
rearrangement minimizing file transfers to the child tasks. 

The use of large VMs allows several tasks to run in parallel 
and favours the execution of dependent tasks on the same VM, 
thus allowing negligible communication time between these 
tasks (i.e. for dependent tasks running on the same VM). 

Table II shows that when the rearrangement approach is 
applied, 21.33%, 0.9% and 49.36% of files are respectively 
avoided being transferred for Epigenomics, CyberShake and 
Montage workflows. The platforms used in this study have a 
total number of cores of 384, 288 and 972 for the CyberShake, 
Epigenomics and Montage workflows, respectively. These 
platforms are multiples of 96 and are greater than the total 
number of cores used in parallel for each workflow. 

To generate the different platforms and avoid wasting 
resources, i.e. avoid leasing resources that will not be used, the 
number of tasks that can be executed in parallel for each of the 
workflows is determined. To do this, the platform is oversized, 
i.e. this platform has as many cores as there are tasks in the 
workflow. In the case of the workflows used in this study, there 
are 1000 tasks, so the platform with 1000 cores is considered. 
This allowed to determine the total number of cores that could 
be used in parallel for each of the workflows. Thus, for 
CyberShake, 374 cores are used in parallel while for 
Epigenomics and Montage it is respectively 246 and 662 cores 
used in parallel. This preliminary study will be used in section 
V in order to determine the limit of platforms to be used for 
each workflow in experiments. 

TABLE II. IMPACT OF REARRANGEMENT 

wf VS 
Rearrangement  No Rearrangement 

TVF 
mksp VFT mksp VFT 

Cyb  
16 593.83 382 1247.98 386 

400.39 
96 311.03 315 351.1 317 

Epi  
16 34227.2 1221.65 34231.6 1222.13 

1230.93 
96 34330.4 1219.81 34314.2 1219.84 

Mont  
16 380.312 10.56 380.89 10.81 

17.32 
96 375.44 8.77 376.1 9.33 

B. Impact of Rearrangement’s Step 

To evaluate the contributions, three real-world scientific 
workflows from the five scientific workflows in the Pegasus 
Gallery3 are used, as these three workflows (mentioned above) 
are data-intensive compared to the other two. These 
applications are: 

 CyberShake: is an application of the Southern 
California Earthquake Center to characterize 
earthquake hazards; 

 Epigenomics: is a data processing pipeline to automate 
the execution of various genome sequencing 
operations; 

 Montage: is an astronomy application that creates 
custom mosaics of the sky from multiple images. 

This assessment start by evaluating the impact of the size of 
the virtual machine on the execution time of the scientific 
workflow. For each workflow, we consider infrastructures 
where we vary (i.e. increase) the maximum number of cores 
per VM (from 2 cores to 96 cores maximum). For a total 
number of cores to be used, we generate platforms with 2 cores 
per VM, 4 cores per VM, ..., 96 cores per VM. 

On Figs. 2, 3, and 4, platforms composed of 2 cores per 
VM provide poor execution times compared to platforms of 32 
cores per VM and themselves provide poor execution times 
compared to platforms of 96 cores per VM. The increasing of 
the total number of cores per VM provides good execution 
times. It is for this reason that this study favor large VMs (i.e. 
VMs with several cores) because these VMs can execute 
several tasks in parallel and considerably reducing the 
makespan. 

In Figs. 2, 3 and 4, max_ft represents the minimum bound 
if there was no communication during the execution of the 
workflow. The execution time obtained on platforms with large 
VMs (i.e. having 96 cores) is approaching this theoretical 
minimum limit. Here, the rearrangement step (Algorithm 2) is 
applied to measure the performance of the initial offline 
planning. 

Different behaviors for each of the three considered 
workflows are observed. First, the number of total cores used 
has almost no influence on the execution time for the 
CyberShake application while for Epigenomics, a plateau is 

                                                        
3 https://pegasus.isi.edu/workflow_gallery 
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observed from two total cores used. For Montage, the 
execution time decreases up to seven total cores used. This 
evolution of the execution time is directly related to the level of 
parallelism a workflow can exploit, i.e., how many tasks can be 
executed concurrently. Second, the execution time decreases 
when the size of the virtual machine instances grows, but that 
the improvement becomes very limited for sizes above 32. 
More interestingly, the CyberShake workflow which produces 
much more intermediate data than the two other workflows, 
relying on the local storage of small instances (i.e., with up to 
eight cores) leads to execution times worse than the solution 
with one core per VM where all the intermediate data are 
stored on the EBS service. This is because using too many 
small VMs on a single host (i.e., up to 48 instances with two 
cores) increases the number of data transfers between instances 
and cause contention on the network. Conversely, in the 
baseline configuration, each VM benefits of a dedicated 
network connection to the shared storage service. 

Fig.5 shows the impact of the rearrangement step on the 
execution time. For the Montage workflow, the structure of the 
workflow is such that rearrangement has no influence on the 
offline planning hence neither on the execution time. For the 
two other workflows, rearranging the offline planning to 
further reduce the amount of transfers over the network can 
only improve the execution time. 

In this study, two offline scheduling algorithms are 
proposed whose objective is to minimize makespan by 
reducing file transfers over the network. Algorithm 1 performs 
the mapping by only considering the files comes from the 
parent tasks. As for algorithm 2, it rearranges the mapping of 
algorithm 1 by considering the tasks level by level in order to 
improve the mapping of algorithm 1 by reducing the transfer of 
files to the child tasks. 

After showing the gain of rearrangement on CyberShake 
and Epigenomics workflows, Fig. 6 shows more details of 
rearrangement on CyberShake. Approach with rearrangement 
gives better results compared to the approach without 
rearrangement. In the next part of this work we will compare 
this approach with the HEFT algorithm. 

 

Fig. 2. Evolution of the Makespan of the CyberShake Workflow with 

Variation of the Total Number of Cores per VM. 

 

Fig. 3. Evolution of the Makespan of the Epigenomics Workflow with 

Variation of the Total Number of Cores per VM. 

 

Fig. 4. Evolution of the Makespan of the Montage Workflow with Variation 

of the Total Number of Cores per VM. 

 

Fig. 5. Impact of Rearrangement Step on the Makespan (Execution Time) 

for different VM Instance Size, using Algorithm 1 vs Algoritm 2. 

For data-intensive applications, such as the scientific 
workflow CyberShake it is essential to perform a good 
mapping of the different tasks, in order to have a good 
execution time. For this type of application, approach with 
rearrangement gives better results (cf. Fig.6). Since the use of 
large VMs has an impact on the makespan, the evaluation of 
both approaches is based on platforms whose total number of 
cores is a multiple of 96. 
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Fig. 6. Impact of Rearrangement on CyberShake Scientific Workflow. 

C. Comparaison of HEFT and WSRDT Algorithms 

The main objective of this study is to minimize the 
execution time of an application. To achieve this goal, the 
major contribution of this paper is the reduction of files to be 
transferred during the execution of the application, which have 
a considerable impact on the execution time. In order to 
evaluate the performance of this algorithm, the proposed 
approach is compared to HEFT which is a very popular 
heuristic in the scheduling of parallel applications. HEFT is 
adapted to the IaaS cloud resources and to the simulation 
environment. The results of simulations show that approach 
proposed provides good results compared to HEFT. 

In the results of Figs.7, 8 and 9, we use platforms whose 
total number of cores used varies from 2 cores to 374 cores for 
CyberShake, from 2 to 246 cores for Epigenomics and up to 
662 cores for Montage, by increments of 2. The principle of 
platform generation was explained in section III. 

If there are more VMs in a platform, then there will be 
several files to transfer on the network. It is true that large VMs 
are prioritized for the execution of applications, but the 
important element for which this choice is do, is the use full 
bandwidth for this type of machine that we have summarized 
in Table I. With the HEFT algorithm, the more VMs there are 
in the platform, the more files will be transferred in the 
network. On the other hand, with approach proposed, files are 
reduced on two levels for each task, i.e. the reduction coming 
from the parent tasks (Algorithm 1) and the reduction going to 
the child tasks (rearrangement of the mapping of the Algorithm 
2). These two approaches allow us to have good results 
compared to HEFT as is the case in Figures 7, 8 and 9. 

These experiences allow to show that our approach 
provides better results summarized through the following 
gains. The CyberShake workflow allows to obtain a gain of 
32.22% on the makespan compared to HEFT, as for the 
Epigenomics workflow, a gain of 44.54% on the makespan and 
a gain of 18.62% on the makespan with the workflow Montage 
are obtained. 

 

Fig. 7. Evaluation Results for the CyberShake Workflow. 

 

Fig. 8. Evaluation Results for the Epigenomics Workflow. 

 

Fig. 9. Evaluation Results for the Montage Workflow. 
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VI. CONCLUSION 

Infrastructure as a Service Clouds now allows scientists to 
execute their data intensive workflows infrastructures that 
match the computing and storage requirements of these 
applications. Determining the set of virtual machine instances 
that have to compose these infrastructures is a complex task, 
usually delegated to Workflow Management Systems. A key to 
performance is to be able to leverage the characteristics of 
virtual machines instances. 

In this paper, first showed the interest of using multi-core 
machines, because by increasing the number of cores per 
machine, several tasks are executed on this machine and the 
bandwidth linking a machine to the switch is proportional to 
the number of cores of the machine. Then we proposed 
scheduling algorithms that minimize the makespan by reducing 
data transfers between dependent tasks on the network. Finally, 
the results of the experiments showed that the proposed 
approach gives better results than HEFT, which is one of the 
best list-scheduling algorithms. 

As part of our future work, we plan to compare the 
simulated executions with actual runs on the AWS computing 
cloud with M5d instances in order to confirm the impact of the 
proposed algorithms. We also plan to study the multi-objective 
aspect of the scheduling problem so that users can favor either 
a shorter execution time or a lowest cost by proposing a 
complementary approach where one of the objective is fixed, 
i.e., either a given budget or a fixed deadline. 
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