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Abstract—The Capacitated Multiple Traveling Repairmen
Problem (CmTRP) is an extension of the Multiple Traveling
Repairmen Problem (mTRP). In the CmTRP, the number of
vehicles is dispatched to serve a set of customers, while each
vehicle’s capacity is limited by a predefined-value as well as each
customer is visited exactly once. The goal is to find a tour that
minimizes the sum of waiting times. The problem is NP-hard
because it is harder than the mTRP. Even finding a feasible
solution is also NP-hard problem. To solve medium and large size
instances, a metaheuristic algorithm is proposed. The first phase
constructs a feasible solution by combining between the Nearest
Neighborhood Search (NNS) and Variable Neighborhood Search
(VNS), while the optimization phase develops the feasible solution
by the General Variable Neighborhood Search (GVNS). The
combination maintains the balance between intensification and
diversification to escape local optima. The proposed algorithm
is implemented on benchmark instances from the literature. The
results indicate that the developed algorithm obtains good feasible
solutions in a short time, even for the cases with up to 200 vertices.
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I. INTRODUCTION

A. Motivation and Definition

A particular variant of the CmTRP is the Multiple Trav-
eling Repairmen Problem (mTRP) that considers multiple
vehicles or travelers to find a tour minimizing the waiting time
of all customers [1], [7], [9]. Applications of the mTRP can be
found in [1], [7], [9]. The mTRP is based on an assumption that
there is no limit to the capacity of each vehicle. That means
vehicles can carry as many goods as they want. However, real
situations imply that it does not always hold because vehicles
have strict regulations on capacity. In this work, the mTRP is
involved the capacity constraint. In the CmTRP, the maximum
capacity of each vehicle does not exceed a predefined capacity
(Q). In the CmTRP, there are k vehicles at a main depot s, and
n customers. The goal is to find a tour such that each vertex is
visited exactly once, while the capacity constraint is satisfied,
and the total waiting time of overall customers is minimized.

In this paper, we formulate the CmTRP as followings: We
consider a complete graph Kn that has the vertex set V =
{1, 2, ..., n} and a symmetric distance matrix C = {c(i, j) |
i, j = 1, 2, ..., n} (c(i, j) is the traveling cost between vertex
i and vertex j). Each vertex i has the demand di. Let R =
(1, 2, ..., k) be the number of k vehicles which begin at a main
depot v1. Let Q denote the capacity of a vehicle. Assume that
a tour T = (R1, ..., Rl, ..., Rk) includes a set of routes from k
vehicles. Rl = (v1, ..., vh, ..., vm) (1 < m ≤ n) is a route of

vehicle l. Let P (v1, vh), l(P (v1, vh)) be respectively the path
from vertex v1 to vertex vh on Rl, and its length. The waiting
time of vh (1 < h ≤ m) on Rl is the cost of the path from
v1 to vh:

l(P (v1, vh)) =
h−1∑
i=1

c(vi, vi+1).

Let W (Rl) be the sum of waiting times of all vertices. The
capacity of this route must satisfy the following constraint:

W (Rl) =
m∑

h=2

l(P (v1, vh)).

D(Rl) =
m∑
i=1

di ≤ Q.

The objective function of the problem is:

W (T ) =
k∑

l=1

W (Rl).

The CmTRP asks for a tour, which starts at a depot v1, visits
each vertex once exactly with the waiting time of all vertices
being minimized.

B. Related Works

In the general case, the CmTRP has, to the best of our
knowledge, previously not been studied much, even though it
is an extension of the mTRP case. However, some variants of
the CmTRP are introduced in numerous works in the literature
as follows:

• The mTRP is a particular case when the capacity con-
straint does not involve. Numerous works for mTRP
can be found in [1], [7], [9]. In the metaheuristic
approach, several algorithms [1], [7], [9] produce good
solutions fast for instances with up to 200 vertices.

• The mTRP with distance constraint (mTRPD) is a
particular case since the route length or maximum du-
ration of each vehicle cannot exceed a predetermined
limit. Metaheuristic algorithms in [3], [12] can solve
the problem well for instances with up to 200 vertices.

• The mTRP with Profits (mTRPP) aims is to find a
travel plan for server maximizing the total revenue.
In this problem, not all customers need to be visited.
Metaheuristic algorithm in [11] solves the problem
well with up to 200 vertices.

www.ijacsa.thesai.org 377 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

• The Traveling Repairman Problem is a special case
where there is only a repairman. Numerous meta-
heuristic algorithms [2], [4], [5], [17] for the problem
have proposed in the literature.

The above algorithms are the state-of-the-art algorithms for
some variants of the CmTRP case. However, they do not
include the capacity constraint, and their corresponding algo-
rithms cannot be adapted to the CmTRP. That means that we
cannot use the above algorithms to solve the CmTRP.

C. Our Methodology

Like other NP-hard problems, the CmTRP can be solved by
exact or heuristic methods. Exact algorithms obtain the optimal
solution but they often take exponential time in the worst case.
Heuristic approaches are divided into the classical heuristic
and metaheuristic approach. The classical heuristic approach
finds one solution quickly, but this solution may have a large
disparity in comparison with the best solution. The metaheuris-
tic approach, on the other hand, obtains near-optimal or even
global optimal solutions. Therefore, metaheuristic is usually
used to reach optimal solutions for the problem with large
sizes.

The CmTRP is also NP-hard because it is a generaliza-
tion case of the mTRP. In many constrained optimization
problems like the CmTRP, even building a feasible solution
to the problem is also NP-hard problem. It indicates that
obtaining a good feasible solution is a challenge. A good
metaheuristic needs to ensure the balance between diversifi-
cation and intensification. In [14], H. Mladenovic et al. show
that the VNS generates local optima that are close to the
global optimum, in a more straightforward manner than the
other metaheuristics. However, the VNS only implements the
intensification well. In this work, we developed a metaheuristic
consisting of the constructive and optimization phase. The first
phase constructs a feasible solution by combining between the
Nearest Neighborhood Search (NNS) and Variable Neighbor-
hood Search (VNS), while the optimization phase develops the
feasible solution by the General Variable Neighborhood Search
(GVNS). The metaheuristic uses the shaking technique to
maintain diversification, while the VNS, and GVNS implement
intensification. Extensive numerical experiments on benchmark
instances show that the proposed algorithm reaches good
feasible solutions at a reasonable amount of time, even for
the instances with up to 200 vertices.

The rest of this paper is organized as follows. Section
2 introduces our algorithm. Computational evaluations are
presented in Section 3, and Sections 4 and 5 discusses and
concludes the work, respectively.

II. THE PROPOSED ALGORITHM

A. Several Variants of VNS

We describe some variants of VNS [14] such as the original
VNS, VND, and GVNS, shaking technique [13], respectively.

• The Variable Neighborhood Search (VNS) algorithm
is introduced by Mladenovic et al. [14]. It exe-
cutes neighborhood procedures alternately, and shak-
ing technique to escape from the local optima. At

each iteration, the best neighboring solution is chosen
from neighboring solutions that are generated from a
neighborhood procedure. If it is better than the current
best one, the procedure is repeated. Otherwise, the
search goes to the next neighborhood procedure.

• The Variable Neighborhood Descent (VND) algo-
rithm, which is a VNS variant, is proposed by
Mladenovic et al. [14]. In the VND, a change of
neighborhoods is performed in a deterministic way.
Assume that an initial solution is given. Local search
procedures in their descent phase are used to generate
neighborhoods. The final solution is the best solution
in all neighborhoods. The difference between the VNS
and VND is that the VNS uses Shaking.

• The General Variable Neighborhood Search (GVNS)
algorithm [14] is a variant of the VNS. It includes an
initial feasible solution, and a shaking procedure fol-
lowed by the VND local search. The GVNS is a VNS
variant where the VND is used as the improvement
procedure.

B. Neighborhoods

We use seven neighborhoods in the literature to explore the
search space of the problem. Let Nk(k = 1, ..., km) be a finite
set of pre-selected neighborhood structures. We describe more
details about seven neighborhoods:
For Inter-route: It is used to optimize on each route. We then
describe five neighborhoods’ structure in turn. Assume that,
R, and m are a route and its size, respectively.

• Remove-insert places each vertex in the route at the
end of it. Obviously, the complexity time of N1(R) is
O(m).

• Swap adjacent tries to swap each pair of adjacent
vertices in the route. The complexity time of N2(R)
is O(m).

• Swap neighborhood attempts to swap the positions
of each pair of vertices in the route. The complexity
time of N3(R) is O(m2).

• 3-opt neighborhood attempts to reallocate three ver-
tices to another position of the route. The complexity
time of N4(R) is O(m3).

• 4-opt neighborhood attempts to involve deleting four
edges and reconnecting the four sub-tours without
changing the orientation of them. The complexity time
of N5(R) is O(m4).

For intra-route: Intra-route is used to swap vertices between
two different routes or remove vertices from a route and then
insert them to another.Let Rl, Rh, ml, and mh be two different
routes and their sizes in T , respectively.

• swap-2-routes tries to exchange two vertices belong-
ing to different routes Rl and Rh. The complexity time
of N6(R) is O(ml ×mh)

• insert-2-routes removes one vertex Rl and inserts it
at the best possible position in Rh. The complexity
time of N7(R) is O(ml ×mh).
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Algorithm 1 The proposed algorithm
Input: T, nloop, tmax are an initial solution, the number of

neighborhoods, and the number of iterations, and the
maximum running time, respectively.

Output: the best solution T ∗.
1: repeat
2: {Construction phase}
3: T ← Construction(v1, V );
4: {Improvement phase}
5: Lvel = 1;
6: T = VND(T);
7: while (Lvel < nloop) do
8: T

′
= Perturbation(T,Lvel);

9: {implement VND}
10: T

′
= VND(T

′
);

11: if (W (T
′
) < W (T )) ‖ (W (T

′
) < W (T ∗)) then

12: T = T
′
;

13: if (W (T
′
) < W (T ∗)) then

14: T ∗ = T
′
;

15: end if
16: end if
17: if (T is equal T ′) then
18: Lvel = 1;
19: else
20: Lvel ++;
21: end if
22: end while
23: until time < tmax

24: return T ∗;

Algorithm 2 VND
Input: T, kmax are an initial solution, and the number of

neighborhoods, respectively.
Output: the best solution T ∗.

1: k = 1;
2: repeat
3: Find the best neighborhood T

′
of T ∈ Nk(T ); {T

′
must

be feasible solution}
4: if (W (T

′
) < W (T )) ‖ (W (T

′
) < W (T ∗)) then

5: T = T
′
; {centre the search around T

′
and search

again in the first neighborhood}
6: if ((W (T

′
) < W (T ∗)) then

7: T ∗ = T
′
;

8: end if
9: k = 1;

10: else
11: k = k + 1; {switch to another neighborhood}
12: end if
13: until k < kmax;
14: T ∗ = T

′
;

15: return T ∗;

The proposed algorithm includes two phases. The construction
phase finds a feasible solution, whereas the improvement phase
tries to improve it. Algorithm 1 depicts the whole process.

Algorithm 3 Construction
Input: v1,Kn, k, α are a depot, the graph, the number of

vehicles, the length of NL, respectively.
Output: An initial solution T .

1: for (l = 1; l < k; l ++) do
2: Rl = Rl ∪ v1; {All routes start at v1}
3: end for
4: while all vertices are not visited do
5: l = random(k);{a route randomly is chosen}
6: {ve is the last vertex in Rl}
7: Generate NL list that includes α nearest vertices to ve

in V ;
8: Select vertex v ∈ {vi|vi ∈ NL and vi /∈ Rl} randomly;
9: Rl ← {vi}

10: end while
11: if T is feasible then
12: return T ;
13: else
14: Lvel = 1;
15: end if
16: while ((T is infeasible) and (Lvel ≤ l max)) do
17: T ′= Shaking(T, Lvel);
18: T ′ = VND(T ′);
19: if W (T ′) < W (T ) then
20: T ← T ′;
21: end if
22: if W (T ′) ==W (T ) then
23: Lvel← 1;
24: else
25: Lvel ++;
26: end if
27: end while
28: return T ;

Algorithm 4 Perturbation(T, Lvel)
Input: T, Lvel are the tour, and the parameter to control the

strength of the perturbation procedure, respectively.
Output: a new tour T .

1: k = 1;
2: while (k < Lvel) do
3: T

′
= double-brigde(T);

4: T
′ ← arg min N1(T

′
);

5: {T ∗ is the optimal solution}
6: if (W (T

′
) > (1− ρ)×W (T ∗)) then

7: T = T
′

8: else
9: k ++;

10: end if
11: end while
12: return T ;

C. Construction

Algorithm 2 shows the constructive procedure. The ob-
jective function used in this procedure is the sum of all
positive differences between the capacity of all vehicles and the
capacity limit Q, that is, min

∑k
l=1 max(0, D(Rl)−Q). The

algorithm works until it finds a feasible solution. In the first
step, a solution is created by Nearest Neighborhood Search
[8]. If the solution is feasible, the construction phase stops
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TABLE I. OUR RESULTS FOR THE CMTRP ON E-INSTANCES
PROPOSED BY [18]

Instances Init.Sol Best.Sol Aver.Sol Improv T

E30k3 3008.64 2419.1 2419.1 19.59 2

E30k4 2052.97 1731.43 1731.43 15.66 3

E51k5 2948.73 2769.1 2769.1 6.09 7

E76k10 3301.85 3064.68 3064.68 7.18 27

E76k14 2409.68 2261.63 2261.63 6.14 14

E76k15 2401.86 2221.59 2221.59 7.51 17

aver 10.36 11.7

TABLE II. OUR RESULTS FOR THE CMTRP ON P-INSTANCES
PROPOSED BY [18]

Instances Init.Sol Best.Sol Aver.Sol Improv T

P40k5 2095.22 1884.55 1884.55 10.05 5

P45k5 2672.9 2479.41 2479.41 7.24 8

P50k7 2262.5 1993.24 1993.24 11.90 7

P50k8 2310.09 2310.09 2310.09 0.00 4

P55k7 2325.41 2175.46 2175.46 6.45 13

P55k10 2095.43 1878.64 1878.64 10.35 6

P60k10 2511.53 2322.96 2322.96 7.51 15

P70k10 3297.38 2940.94 2940.94 10.81 17

P76k4 6509.49 6198.5 6198.5 4.78 28

P76k5 5920.72 5637.31 5637.31 4.79 29

7.39 13.2aver

TABLE III. OUR RESULTS FOR THE CMTRP ON TAI-INSTANCES
PROPOSED BY [18]

Instances Init.Sol Best.Sol Aver.Sol Improv T

tai75a 7038 6286.77 6331.913 10.67 32

tai75b 6112.16 5061.1 5156.406 17.20 30

tai75c 5517.07 5023.56 5085.652 8.95 35

tai75d 6347.94 5856.79 5974.241 7.74 37

tai100a 11391.44 10200.9 10290.74 10.45 72

tai100b 10297.75 9755.82 9801.026 5.26 73

tai100c 6025.94 5743.6 5792.192 4.69 70

tai100d 7544.23 7138.13 7203.689 5.38 68

tai150a 16435.68 15913.87 16005.03 3.17 85

tai150b 14115.32 13627.56 13687.99 3.46 81

tai150c 14797.07 13098.63 13208.41 11.48 82

tai150d 15268.64 13530.54 13530.54 11.38 83

8.32 62.3aver

and outputs it. On the other hand, a local search iterates until
finding a feasible solution or l max is reached. The solution
is shaken to escape from the current local optimal. Next, the
VNS is applied to obtain the best solution from neighboring
solutions. If it is better than the found best solution, it is set
to the current solution. Last, Lvel is increased by one if the
current solution is not improved, or set to 1, otherwise.

D. Improvement

After the construction, the heuristic tries to improve the
feasible solution created by the previous phase. In this phase,
the objective function is to minimize W (T ).

Local search procedure that is developed by combining
the seven neighborhoods generates various neighborhoods.
The final solution should be a local minimum with respect
to all neighborhoods. The order of neighborhoods is fixed.

In a preliminary experiment, the other of the neighborhoods
are therefore explored in the following one, from “small” to
“large” as it is common, i.e., swap-adjacent, move-up, move-
down, remove-insert, swap, 2-opt, 3-opt, 4-opt, swap-2-routes,
and insert-2-routes.

The Perturbation mechanism is very important to achieve
success. When the mechanism has too small perturbation
moves, the search can return to the previously visited solution
space. Therefore, the search can get stuck into local optimal.
On the other hand, large perturbation moves drive the search
to undesirable space. In order to overcome these issues, we
propose a new shaking technique based on the original double-
bridge technique [13]. The detail is described in Algorithm 3.

The algorithm stops after tmax seconds or the best-solution
is found (tmax is the parameter of the algorithm, and its value
is determined from preliminary experiments).

III. EVALUATIONS

The proposed algorithm is run on a Pentium 4 core i7
2.40 GHz processor with 8 GB of RAM. On all experiments,
parameters α, l max, ρ, nloop are respectively set to 10, 5,
0.3, and 50. These parameters are chosen through empirical
tests and, with them, the algorithm seems to produce good
solutions at a reasonable amount of time in comparison with
the other parameter values.

We also implement the performance of the whole imple-
mentation against the state-of-the-art algorithms. We compare
both of the numerical results and computational time on the
same instances.

A. Instances

The experiments are performed on a set of benchmark
for Capacitated VRP in [12], [18]. As testing the proposed
algorithm on overall instances can be computationally too
expensive, some selected instances as follows: 1) to eliminate
the effects of size, instances with approximately from 50 up to
200 customers are chosen; 2) in order not to bias the results by
taking “easy” or “hard” instances, we randomly select them.
These are: 1) Christofides et al.: This dataset includes seven
instances (CMT6, CMT7, ..., CMT14); 2) Taillard et al.: Ten
instances are picked randomly such as tai75a, tai75b, tai75c,
tai75d, tai100a, tai100b, tai100c, tai100d, tai150a, tai150b,
tai150c, and tai150d; 3) Augerat et al.: Fifteen instances of
dataset P and E are selected; 4) S. Nucamendi-Guillén et
al.: 150 instances from 60 to 80 vertices are used in the
experiments. The optimal solutions for the instances can be
extracted from [16].

B. Results

We define the improvement of our algorithm with respect to
Best.Sol (Best.Sol is the best solution found by the proposed
algorithm) in comparison with the initial solution from the
construction phase as followings:

Improv[%] =
Best.Sol − Init.Sol

Init.Sol
× 100% (1)

In the tables, OPT, Init.Sol, Best.Sol, Aver.Sol and T correspond
to the optimal solution, initial solution, best solution, average
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TABLE IV. THE EVOLUTION OF AVERAGE IMPROVEMENT DURING THE ITERATIONS

instances 1 iteration 10 iterations 20 iterations 30 iterations 40 iterations 50 iterations 100 iterations

E-instance 6.85 0.2 7.65 1.48 8.45 4.32 9.78 6 10.1 8.17 10.4 11.7 10.4 17.33

P-instance 5.5 0.2 5.8 1.7 6 4.9 6.4 6.8 6.8 9.2 7.4 13.2 7.4 25.9

Tai-instances 6.7 1.1 7.1 7.9 7.4 23.0 7.8 31.9 8 43.5 8.3 62.3 8.3 187.9

aver 6.35 0.50 6.85 3.68 7.28 10.73 7.99 14.91 8.30 20.30 8.70 29.07 8.70 77.04

TABLE V. THE DIFFERENCE BETWEEN THE CMTRP AND MTRP’S
OBJECTIVE FUNCTION ON SOME INSTANCES

Instances mTRP CmTRP %diff

E30k3 1871.08 2419.1 29.29

E30k4 1643.30 1731.43 5.36

E51k5 2209.64 2769.1 25.32

E76k10 2310.09 3064.68 32.66

E76k14 2005.40 2261.63 12.78

E76k15 1962.47 2221.59 13.20

P40k5 1537.79 1884.55 22.55

P45k5 1912.31 2479.41 29.66

P50k7 1547.89 1993.24 28.77

aver 22.18

solution, and the average time in seconds of ten executions
obtained by our algorithm, respectively. In this work, we
choose several state-of-the-art metaheuristic algorithms for
some variants of the CmTRP [1], [6], [10], [12], [15], [16]
as a baseline in our research.

Tables I to III show the average gap of the improvement
phase in comparison with the construction is 8.70%. The
average gap value is not too large. This indicates that the
construction phase gives good feasible solutions fast. The
proposed algorithm consumes much time for the instances
with up to 200 vertices. Therefore, the fist way to decrease
the running time is only to run the construction phase. In
this case, the proposed algorithm suffers from a slightly loss
of 8.70% solution quality on average. Although we cannot
compare the results directly to other algorithms in the literature
(note that in the algorithms for some variants of the mTRP,
the capacity constraint is removed), we succeed in producing
feasible solutions for instances with 200 customers. It is an
important contribution when finding feasible solutions is also
NP-hard.

Table IV shows the evolution of average gap during the
iterations. The average gaps are 6.35%, 6.85%, 7.28%, 7.99%,
8.30%, 8.70%, and 8.70% in comparison with the initial
solution, obtained by one, five, ten, twenty, thirty, forty, fifty,
and one-hundred iterations, respectively. No improvement ob-
tains from fifty to one-hundred iterations. Therefore, additional
iterations give a minor improvement while it consumes much
time. Hence, the second way to reduce the running time is to
use no more than fifty iterations, and the improvement reaches
about 8.70%. The fastest option is to run the construction phase
and then improve it by using a single iteration, which obtains
an average gap of 6.35% and average time of 0.5 seconds.

Table V shows the difference between the objective func-
tion of two problems on the same instances. The average

TABLE VI. OUR RESULTS FOR THE MTRP-INSTANCES WITH 60
VERTICES PROPOSED BY LUO

Instances OPT Init.Sol Best.Sol Aver.Sol T

pr1002_60_0 530946.01 660211.35 530946.01 530946.01 2.98

pr1002_60_1 356469.79 455893.41 356469.79 356469.79 2.84

pr1002_60_2 344118.14 467498.53 344118.14 344118.14 2.98

pr1002_60_3 429604.2 579392.35 429604.2 429604.2 2.92

pr1002_60_4 435655.25 540342.11 435655.25 435655.25 2.82

pr1002_60_5 668129.73 779776.11 668129.73 668129.73 2.86

pr1002_60_6 406678.77 495022.53 406678.77 406678.77 2.9

pr1002_60_7 311254.73 414296.52 311254.73 311254.73 2.98

pr1002_60_8 469816.84 591638.26 469816.84 469816.84 3

pr1002_60_9 277336.06 377249.41 277336.06 277336.06 2.84

brd14051_60_0 213420.42 267899.2375 213420.42 213420.42 3

brd14051_60_1 218315.68 312468.7714 218315.68 218315.68 2.98

brd14051_60_2 151666.85 207799.2353 151666.85 151666.85 2.9

brd14051_60_3 172199.83 232433.3597 172199.83 172199.83 2.96

brd14051_60_4 133952.5 167792.608 133952.5 133952.5 2.84

brd14051_60_5 203145.14 290606.4286 203145.14 203145.14 2.88

brd14051_60_6 136233.51 171636.975 136233.51 136233.51 2.98

brd14051_60_7 171879.58 248180.3 171879.58 171879.58 2.96

brd14051_60_8 191580.79 241067.3882 191580.79 191580.79 2.98

brd14051_60_9 128178.58 174326.1925 128178.58 128178.58 2.94

fnl4461_60_0 156260.54 194032.1583 156260.54 156260.54 2.8

fnl4461_60_1 103190.13 131569.4961 103190.13 103190.13 2.96

fnl4461_60_2 109739.93 149525.6149 109739.93 109739.93 2.98

fnl4461_60_3 100792.2 136198.0575 100792.2 100792.2 2.94

fnl4461_60_4 149638.18 185947.0777 149638.18 149638.18 2.96

fnl4461_60_5 158679.44 185251.4379 158679.44 158679.44 2.96

fnl4461_60_6 122266.92 149102.6283 122266.92 122266.92 2.88

fnl4461_60_7 107469.11 142108.8532 107469.11 107469.11 2.94

fnl4461_60_8 100531.72 127280.3749 100531.72 100531.72 2.84

fnl4461_60_9 135829.76 183343.8156 135829.76 135829.76 2.94

d15112_60_0 684939.42 851498.8482 684939.42 684939.42 2.8

d15112_60_1 644759.99 819500.5493 644759.99 644759.99 2.86

d15112_60_2 425069.33 583381.5404 425069.33 425069.33 2.82

d15112_60_3 528177.95 662371.45 528177.95 528177.95 2.82

d15112_60_4 586915.82 736112.95 586915.82 586915.82 2.96

d15112_60_5 422195.61 494729.4263 422195.61 422195.61 2.94

d15112_60_6 518793.6 633637.8578 518793.6 518793.6 2.86

d15112_60_7 616918.44 776732.675 616918.44 616918.44 2.98

d15112_60_8 397619.37 500495.3875 397619.37 397619.37 2.8

d15112_60_9 673840.81 910298.6184 673840.81 673840.81 2.9

nrw1379_60_0 64359.77 80086.56654 64359.77 64359.77 2.88

nrw1379_60_1 83410.67 104646.3375 83410.67 83410.67 2.96

nrw1379_60_2 52858.87 70986.81333 52858.87 52858.87 2.96

nrw1379_60_3 62341.36 84434.20476 62341.36 62341.36 2.84

nrw1379_60_4 56012.13 69680.90881 56012.13 56012.13 2.9

nrw1379_60_5 58083.8 72973.325 58083.8 58083.8 2.9

nrw1379_60_6 52224.66 65749.025 52224.66 52224.66 2.92

nrw1379_60_7 58402.97 73290.6375 58402.97 58402.97 2.94

nrw1379_60_8 52145.08 66101.85821 52145.08 52145.08 2.96

nrw1379_60_9 49026.52 66572.84307 49026.52 49026.52 2.86

difference of 22.18% indicates the capacity constraint also
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TABLE VII. OUR RESULTS FOR THE MTRP-INSTANCES WITH 70
VERTICES PROPOSED BY LUO

Instances OPT Init.Sol Best.Sol Aver.Sol T

pr1002_70_0 429557.7 429557.7 429557.7 530946.01 3.12

pr1002_70_1 430048.06 430048.06 430048.06 356469.79 3.08

pr1002_70_2 377233.86 377233.86 377233.86 344118.14 2.68

pr1002_70_3 429562.01 429562.01 429562.01 429604.2 2.64

pr1002_70_4 435659.17 435659.17 435659.17 435655.25 2.96

pr1002_70_5 429584.16 429584.16 429584.16 668129.73 3.34

pr1002_70_6 344534.44 344534.44 344534.44 406678.77 2.82

pr1002_70_7 393558.46 393558.46 393558.46 311254.73 3.02

pr1002_70_8 397072.39 397072.39 397072.39 469816.84 2.74

pr1002_70_0 429557.7 429557.7 429557.7 277336.06 3.12

brd14051_70_0 191843.35 191843.35 191843.35 213420.42 2.76

brd14051_70_1 169340.01 169340.01 169340.01 218315.68 2.98

brd14051_70_2 216195.95 216195.95 216195.95 151666.85 3.12

brd14051_70_3 229328.9 229328.9 229328.9 172199.83 3.28

brd14051_70_4 302498.42 302498.42 302498.42 133952.5 3.34

brd14051_70_5 179470.31 179470.31 179470.31 203145.14 3

brd14051_70_6 231693.74 231693.74 231693.74 136233.51 2.66

brd14051_70_7 284960.31 284960.31 284960.31 171879.58 2.66

brd14051_70_8 167533.17 167533.17 167533.17 191580.79 2.76

brd14051_70_9 253499.74 253499.74 253499.74 128178.58 3.26

fnl4461_70_0 154805.67 154805.67 154805.67 156260.54 2.76

fnl4461_70_1 104585.82 104585.82 104585.82 103190.13 3.24

fnl4461_70_2 161892.44 161892.44 161892.44 109739.93 2.74

fnl4461_70_3 99122.23 99122.23 99122.23 100792.2 3.32

fnl4461_70_4 157106.13 157106.13 157106.13 149638.18 2.84

fnl4461_70_5 112094.64 112094.64 112094.64 158679.44 2.72

fnl4461_70_6 121521 121521 121521 122266.92 2.74

fnl4461_70_7 175859.51 175859.51 175859.51 107469.11 3.06

fnl4461_70_8 122141.15 122141.15 122141.15 100531.72 2.94

fnl4461_70_0 154805.67 154805.67 154805.67 135829.76 2.76

d15112_70_0 517426.18 517426.18 517426.18 684939.42 3.24

d15112_70_1 715678.26 715678.26 715678.26 644759.99 3.02

d15112_70_2 688605.9 688605.9 688605.9 425069.33 3

d15112_70_3 625623.9 625623.9 625623.9 528177.95 3.32

d15112_70_4 532088.98 532088.98 532088.98 586915.82 2.78

d15112_70_5 500455.25 500455.25 500455.25 422195.61 3.18

d15112_70_6 497229.6 497229.6 497229.6 518793.6 3.18

d15112_70_7 599776.85 599776.85 599776.85 616918.44 2.86

d15112_70_8 576957.51 576957.51 576957.51 397619.37 3.02

d15112_70_9 775176.3 775176.3 775176.3 673840.81 2.6

nrw1379_70_0 66839.83 66839.83 66839.83 64359.77 2.58

nrw1379_70_1 65103.43 65103.43 65103.43 83410.67 2.98

nrw1379_70_2 63480.7 63480.7 63480.7 52858.87 3.2

nrw1379_70_3 59273.92 59273.92 59273.92 62341.36 3.32

nrw1379_70_4 70594.56 70594.56 70594.56 56012.13 2.66

nrw1379_70_5 73884.17 73884.17 73884.17 58083.8 3.02

nrw1379_70_6 64306.14 64306.14 64306.14 52224.66 2.94

nrw1379_70_7 90554.87 90554.87 90554.87 58402.97 2.54

nrw1379_70_8 91738.43 91738.43 91738.43 52145.08 2.82

nrw1379_70_9 68024.3 68024.3 68024.3 49026.52 2.68

affects the quality of solutions. However, the best solutions for
the mTRP are not feasible solutions for the CmTRP. Therefore,
the methods designed for the mTRP instances may not be
adapted easily to solve the CmTRP.

From Tables VI to VIII show that the efficiency of the
proposed algorithm is very good for the mTRP-instances since
it can reach the optimal solutions for the instances with up
to 80 vertices at a reasonable amount of time. In Table IX,
in comparison with Ban et al.’s [1], Ezzine et al.’s [6], and
Nucamendi-Guillén’s [16] algorithm, our solutions are better
than those of Ban et al.’s, and Ezzine et al. in all cases while

TABLE VIII. OUR RESULTS FOR MTRP-INSTANCES WITH 80
VERTICES PROPOSED BY LUO

Instances OPT Init.Sol Best.Sol Aver.Sol T

pr1002_80_0 491764.64 656239.68 491764.64 491764.64 9.48

pr1002_80_1 442164.21 613287.46 442164.21 442164.21 9.18

pr1002_80_2 505524.17 609954.56 505524.17 505524.17 9.32

pr1002_80_3 436752.96 614611.29 436752.96 436752.96 9.1

pr1002_80_4 453609.46 587470.83 453609.46 453609.46 9.36

pr1002_80_5 599492.4 771733.95 599492.4 599492.4 9.16

pr1002_80_6 619003.36 805206.35 619003.36 619003.36 9.4

pr1002_80_7 508186.51 658640.85 508186.51 508186.51 9.42

pr1002_80_8 409733.88 518052.51 409733.88 409733.88 9.44

pr1002_80_9 557220.48 670387.49 557220.48 557220.48 9.28

brd14051_80_0 336983.07 403178.34 336983.07 336983.07 9.04

brd14051_80_1 277861.02 348787.38 277861.02 277861.02 9.14

brd14051_80_2 265370.92 321922.47 265370.92 265370.92 9.56

brd14051_80_3 189815.69 240361.74 189815.69 189815.69 9.1

brd14051_80_4 206068.45 275228.43 206068.45 206068.45 9.5

brd14051_80_5 303621.75 348578.27 303621.75 303621.75 9.32

brd14051_80_6 213405.23 266958.37 213405.23 213405.23 9.6

brd14051_80_7 263737.93 308039.16 263737.93 263737.93 9.04

brd14051_80_8 232967.83 298574.84 232967.83 232967.83 9.26

brd14051_80_9 317790.55 368183.51 317790.55 317790.55 9.06

fnl4461_80_0 153124.51 194685.8 153124.51 153124.51 9.58

fnl4461_80_1 174975.64 224516.74 174975.64 174975.64 9

fnl4461_80_2 162755.5 197782.39 162755.5 162755.5 9.46

fnl4461_80_3 160819.04 192927.87 160819.04 160819.04 9.5

fnl4461_80_4 151790.69 187440.09 151790.69 151790.69 9.52

fnl4461_80_5 131045.47 172293.83 131045.47 131045.47 9.04

fnl4461_80_6 125405.93 166418.99 125405.93 125405.93 9.24

fnl4461_80_7 125228.91 164627.71 125228.91 125228.91 9.16

fnl4461_80_8 185280.87 228208.31 185280.87 185280.87 9.48

fnl4461_80_9 130304.95 165022.1 130304.95 130304.95 9.26

d15112_80_0 551900.43 753989.49 551900.43 551900.43 9.56

d15112_80_1 815029.39 979921.76 815029.39 815029.39 9.1

d15112_80_2 828114.32 1080571.45 828114.32 828114.32 9.16

d15112_80_3 689450.94 964458.54 689450.94 689450.94 9.1

d15112_80_4 560385.47 737417.48 560385.47 560385.47 9.08

d15112_80_5 821959.4 1030515.79 821959.4 821959.4 9.52

d15112_80_6 715206.03 882086.8 715206.03 715206.03 9.36

d15112_80_7 958278.86 1155190.13 958278.86 958278.86 9.32

d15112_80_8 990277.77 1174384.17 990277.77 990277.77 9.1

d15112_80_9 672457.47 931587.71 672457.47 672457.47 9.5

nrw1379_80_0 64831.76 96656.39 64831.76 64831.76 9.36

nrw1379_80_1 64967.83 88394.72 64967.83 64967.83 9.22

nrw1379_80_2 73858.13 96499.97 73858.13 73858.13 9.3

nrw1379_80_3 100592.83 131733.34 100592.83 100592.83 9.24

nrw1379_80_4 98228.29 126451.61 98228.29 98228.29 9.04

nrw1379_80_5 75984.21 99492.47 75984.21 75984.21 9.14

nrw1379_80_6 79165.6 105024.23 79165.6 79165.6 9.08

nrw1379_80_7 73194.55 105328.52 73194.55 73194.55 9.1

nrw1379_80_8 83492.62 115793.31 83492.62 83492.62 9.14

nrw1379_80_9 67034.31 92380.75 67034.31 67034.31 9.24

they are comparable with Nucamendi-Guillén’s solutions in the
most of instances. In many cases, our algorithm obtains the
optimal solution for the instance with 76 vertices. Moreover,
for the CCVRP in Table X, our algorithm reaches the known
best solutions for the instances with 100 vertices (note that:
the best solutions are extracted from [10], [15]).

The running time of the proposed algorithm grows quite
moderate compared to the Nucamendi-Guillén’s algorithm [16]
while it is comparable with those of Ban et al.’s [1], and Ezzine
et al.’s algorithm [6].
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TABLE IX. COMPARISONS WITH THE PREVIOUS ALGORITHMS FOR
MTRP-INSTANCES PROPOSED IN [18]

Instances
Ban

et al.

Ezzine

et al.

Nucamendi-

Guillén

et al.

Our results

Best.Sol T

E30k3 2108.26 - - 2097.3 0.25

E30k4 2623.65 - - 2595.11 0.22

E51k5 2623.65 3320 2209.64* 2209.64 0.41

E76k10 2786.07 4094 2310.09* 2419.89 0.78

E76k14 2201.13 3762 2005.4* 2005.4 0.71

E76k15 2400.17 - 2377.5 0.81

E101k8 - 6383 - 4051.47 2.52

E101k14 - 5048 - 3288.53 2.50

P40k5 1793.14 - 1537.79* 1580.21 0.27

P45k5 2336.43 - 1912.31* 1912.31 0.32

P50k7 1878.81 - 1547.89* 1590.41 0.58

Note that: symbol ‘*’is the optimal value

TABLE X. COMPARISONS WITH THE PREVIOUS ALGORITHMS FOR
CCVRP-INSTANCES PROPOSED BY [18]

Instances BKS Best.Sol T

CMT1 2230.35 2230.35 1.70

CMT2 2391.63 2429.18 6.19

CMT3 4045.42 4073.12 17.93

CMT4 4987.52 4987.52 85.94

CMT5 5809.59 5838.32 295.67

CMT11 7314.55 7314.55 31.09

CMT12 3558.92 3559.43 15.84

IV. DISCUSSIONS

Due to NP-hard problem, metaheuristic approach is suitable
approach to solve the problem with large sizes in a short time.
Currently, several algorithms for the close variants of CmTRP
have been proposed. However, these algorithms cannot apply
to the CmTRP because the capacity constraint does not include
in them. The results in Table V indicate that the algorithms
for the mTRP produce infeasible solutions for the CmTRP.
Therefore, developing efficient algorithm for the CmTRP is our
contribution. The VNS, and GVNS [14] are a general schemes
that are used widely to solve many optimization problems.
However, to apply them for a specific problem, they require
many efforts. Specifically, how to use and combine neighbor-
hoods to explore and exploit good solution space, how many
neighborhoods are used to balance between solution quality
and running time, and how to balance between diversity and
intensification. Therefore, in the literature, many algorithms
are developed on the VNS scheme for a specific problem, but
the solution quality of them is different. Applying the VNS
scheme to solve the problem effectively is our contribution in
this work.

For a metaheusitic approach, a classical and successful
recipe is to combine 1) efficient “intensification” procedures
via local searches with 2) “diversification” methods. Diversifi-
cation means to generate diverse solutions to explore the search
space on a global scale, while intensification means to focus
on the search in a local region by exploiting the information
that a current good solution is found in this region. Our
algorithm uses the VNS, GVNS to implement intensification
while shaking maintains diversification. Though the initial
solution is generated far from the global minima, the explored

solution region is extended. Therefore, the chance for finding
good solutions is high. The CmTRP is harder than the mTRP
because it is the general case of the mTRP. For constrained
NP-hard problem like the CmTRP, finding feasible solution is
also NP-hard. The new contribution in this work is applied the
VNS in both of two phases. The first phase generates feasible
solution while the post one improve solution quality.

With respect to the instances, it indicates that the proposed
algorithm can be used as follows:

• The fist way is to only run the construction phase with
a rather loss of 8.7% solution quality on average. It is
the fastest option.

• The second way is to run the construction phase
and then enhance it by using one iteration. As the
result, our algorithm obtains an average improvement
of 6.35%, and an average time of 0.5 seconds. It
balances between solution quality and running time.

• The last is to run the construction phase and improve
it no more than fifty iterations, and the average im-
provement reaches about 8.7%, and an average time of
29.07 seconds. It is the best option in terms of solution
quality.

Moreover, in comparison with some close variants of the
mTRP, the proposed algorithm obtains the optimal solutions
for the instances with up to 80 vertices in a short time. More-
over, it also reaches the better solutions than the algorithms
in [1], [6] while it is comparable with the algorithms in [10],
[12], [15], [16]. It shows that our algorithm is still effective
for various problems.

V. CONCLUSIONS

In this paper, we propose a metaheuristic algorithm which
applies the VNS in both of phases. The first phase creates a
feasible solution while the post one improve it. The optimal
solutions can be reached for the problem with up to 80 vertices
in several seconds. The solution’s quality is comparable with
the previous algorithms for the other cases. Moreover, we
give three options to use the proposed algorithm effectively.
However, the running time needs to enhance to meet practical
situations. It will be our aim in future research.
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