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Abstract—Cloud computing has currently permeated all walks
of life. It has proven extremely useful for organizations and
individual users to save costs by leasing compute resources
that they need. This has led to an exponential growth in
cloud computing based research and development. A substantial
number of frameworks, approaches and techniques are being
proposed to enhance various aspects of clouds, and add new
features. One of the constant concerns in this scenario is creating
a testbed that successfully reflects a real-world cloud datacenter.
It is vital to simulate realistic, repeatable, standardized CPU
and memory workloads to compare and evaluate the impact
of the different approaches in a cloud environment. This paper
introduces Cloudy, which is an open-source workload generator
that can be used within cloud instances, Virtual Machines (VM),
containers, or local hosts. Cloudy utilizes resource usage traces
of machines from Google and Alibaba clusters to simulate up
to 16000 different, real-world CPU and memory load patterns.
The tool also provides a variety of machine metrics for each
run, that can be used to evaluate and compare the performance
of the VM, container or host. Additionally, it includes a web-
based visualization component that offers a number of real-
time statistics, as well as overall statistics of the workload such
as seasonal trends, and autocorrelation. These statistics can be
used to further analyze the real-world traces, and enhance the
understanding of workloads in the cloud.

Keywords—Cloud computing; workload generator; cluster com-
puting

I. INTRODUCTION

Cloud computing has become an important part of most
organizations these days. By leasing compute resources from
cloud providers, organizations can save on hardware and setup
costs. Because of its popularity cloud computing has garnered
substantial attention within the research community. Research
is being consistently performed on a large scale on the cloud
to make it faster, more efficient, and add more features.

Researchers have explored different aspects of cloud com-
puting such as live migration [1] [2], vertical elasticity [3],
horizontal elasticity, remote memory [4], workload prediction,
container placement, virtual machine consolidation, and load
balancing [5]. In order to evaluate proposed approaches similar
to these, it is important to have a standard tool that can
be used to benchmark them. This entails an environment
that simulates the resource usage patterns seen in the real
world. For example, it is important to test live migration
approaches with virtual machines using up realistic amounts
of memory over time. The environment should also offer a
number of features to be useful as an evaluation benchmark in
cloud computing based research. First, the workload generation

should be non-intrusive, i.e. it should run separate from the
approach being tested. Second, the tool should preferably also
log a variety of performance and system statistics. These
statistics are extremely important to observe the positive or
negative effects of the approach under test. Third, the testbed
should allow setup within a Virtual Machine (VM), container,
cloud instance, or physical host. Fourth, the testbed required
could involve a cluster of machines, and the tool should be
able to simulate workloads on multiple computers. Finally, the
tool should ideally be open source.

This paper introduces an open-source tool called Cloudy
that models and runs workloads within cloud instances, VMs,
containers, or physical hosts. It is easy to use, and can be
downloaded, installed and run without the need for additional
configurations in the system and without affecting any other
components on the system. The tool uses data traces from
more than 16000 machines from Google and Alibaba clusters
to provide real-world patterns of memory and CPU usage in
real time over multiple days. This ensures a large number
of unique workloads that can be run on different machines
in a cluster. Additionally, Cloudy features an online visu-
alization dashboard that can be used to observe the CPU
and memory usage of a machine, as well as obtain other
important performance statistics such as operations per second,
number of page faults, etc. over time. Finally, the workload
generated can be scaled in terms of both usage and time,
giving a finer level of control to the user. It is envisioned
that this tool could benefit experimental evaluations of cloud-
based research, and provide an easy-to-use standard to compare
different approaches. Earlier versions of this tool have been
previously used by the authors in [4], [6].

Fig. 1 shows one possible use-case for Cloudy. In order
to evaluate a cloud-based framework or approach, a base-
line set of performance statistics are obtained by running
Cloudy within Infrastructure-as-a-Service (IaaS) instances.
Since Cloudy offers more than 16000 unique trace patterns,
each instance in this set can run a different real-world workload
pattern. Next, Cloudy is restarted with the same workloads as
before, this time, along with the approach to be evaluated.
The performance statistics are collected again. A comparison
of these statistics against the baseline statistics can help
researchers evaluate the efficacy of the approach being tested.

The rest of the paper is divided as follows. Section II
discusses some existing cloud benchmarking tools and high-
lights the difference between those tools and Cloudy. Section
III describes the implementation, and internals of Cloudy
in detail. Section IV reports various experimental results to
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Fig. 1. Use Case of Cloudy.

demonstrate the accuracy and efficacy of Cloudy in recreating
the real-world patterns. It also illustrates its utility in further
analyzing the traces. Section V notes additional discussions
and considerations when using Cloudy. Section VI concludes
the paper.

II. RELATED WORK

A number of research endeavors and software exist in
literature for evaluating and benchmarking in cloud-based
environments. These tools generally fall into one of three
categories - benchmarking the cloud itself, testing performance
of a required application in different clouds, and general
benchmarking tools that solve resource-intensive problems to
use resources.

Cloud Bench [7] automates cloud-scale evaluation and
benchmarking through the running of controlled experiments,
where complex applications are automatically deployed ac-
cording to user-defined experiment plans. It helps assess the
stability, scalability and reliability of different cloud config-
urations. Similarly, Expertus [8], [9] is a code generation-
based approach with the main goal of automating distributed
application configuration and testing in IaaS clouds. Cloud
Crawler [10], [11] approaches the same problem by providing
users with an environment where they can describe a variety
of performance evaluation scenarios for a given application.
The tool then automatically configures, executes and collects
the results of the scenarios described. Cloud WorkBench
[12] is another cloud benchmarking service that supports the
automatic execution of systematic performance tests in the
cloud by leveraging the notion of Infrastructure-as-Code (IaC).

These approaches have a different goal compared to
Cloudy. They do not non-obtrusively run a real-world workload
in the background. Instead, the workload that will run is the
application that a developer intends to move to the cloud.
The approaches test and evaluate the given application under
different cloud scenarios and offer advice on suitable place-
ment strategies. They are useful for selecting an appropriate
configuration of cloud resources for a given application.

RUBiS [13] is a free, open-source auction site prototype
modeled after eBay.com. It can be used to evaluate application

Fig. 2. Screenshots of Cloudy Web-based Visualization Dashboard.

design patterns and application servers’ performance scalabil-
ity. The website can simulate a real-world load by performing
actions such as selling, browsing and bidding. While RUBiS
does simulate a real-world application, it is restricted to a
scenario consisting of a webserver, specifically for an auction-
like site.

Another actively maintained open-source tool that comes
with a collection of pre-configured benchmarks is Google’s
PerfKit Benchmarker [14]. It also offers an optional dash-
board for performance analysis. The main goal is to define
a canonical set of benchmarks to measure and compare cloud
offerings. However, PerfKit does not offer any features that
allow generating loads according to real-world patterns.

As opposed to all these approaches, Cloudy focuses on
generating CPU and memory load patterns that mirror real-
world loads.

III. METHOD

The methodology of Cloudy is discussed in the following
subsections from two perspectives: the end-user’s perspective
(installation, execution, interaction) and implementation (inter-
nal components).

A. User’s Perspective

From the end-user’s perspective, setting up and interacting
with Cloudy is a straightforward process. The entire framework
with all the required dependencies can be cloned from the
Gitlab repository [15] into the VM, local host, or cloud
instance of choice. Cloudy can then be installed by running the
provided install script (install.sh). Once all the dependencies
and file placements are automatically handled, the workload
can be started by running the workload.sh script, passing the
name of the trace to use (TN), maximum memory to use in
GB (MMG) and time scaling in seconds (TSS) as arguments.

./workload.sh TN [ -mMMG ] [ -tTSS ]

The argument trace name is the name of the underlying
real-world trace that Cloudy will use to generate CPU and

www.ijacsa.thesai.org 2 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

(a) Performance Stats (b) CPU Utilization

(c) Memory Utilization (d) Trace Characteristics

Fig. 3. Screenshots of Cloudy Web-based Visualization Component.

memory usage. It could be the name any one of the 16000
traces available in the repository. This argument is mandatory.
The maximum memory to use is an important parameter that
can be tweaked based on testing requirements. By default,
when generating a pattern, Cloudy will use up to all the avail-
able memory. However, specifying a maximum will restrict
Cloudy from zero to the maximum memory specified. It is
important to note, that in either case, the pattern generated will
look exactly the same and follow the underlying trace chosen,
it will simply be scaled to the maximum memory specified.
Similarly, the time scaling pattern allows the user to specify
the duration of the entire workload. By default, each data point
in the underlying trace is considered to be at 5 minutes (which
is the actual time frame). However, specifying a different time
scale (for example 120 seconds) will make Cloudy consider
each underlying data point at the new time scale (every 120
seconds in the example). Again, the overall pattern of the trace
will not be affected, instead this will simply stretch or shrink
the entire trace in time.

Once suitable arguments are chosen (or left to default),
Cloudy starts utilizing CPU and memory over time, according
to the trace chosen.

The installer also sets up a webserver and front-end
dashboard on the same machine, which can be accessed by
browsing to the ip address of the machine, as long as port 80
is accessible. Fig. 2 is a screenshot of Cloudy’s dashboard.
This is the landing page of the ip address of a machine
running Cloudy. The dashboard reports summarized statistics
on the current state of the machine, and the underlying trace
being used. This information includes the amount of memory
available, as well as the name of the trace being run, and the
maximum, minimum, median, mean, and standard deviation of
both, memory and CPU usage of the trace.

The web-based interface also provides other detailed analy-
sis of the system and trace being used. Fig. 3 shows screenshots

of the remaining four sections of the visualization. Fig. 3a
shows a report of the performance metrics collected through
the entire run of the workload. These include the CPU cycles,
page fault count, context switches, cache-related statistics, etc.
and are also recorded in a logfile. Fig. 3b, 3c show the real
time graphs for CPU and memory usage respectively. These
sections also report the graphs for the entire trace for both CPU
and memory usage. Finally, Fig. 3d calculates and generates
statistics to evaluate the overall trace. These statistics include
decomposition of the trace into trend, seasonal, and residual
components, as well as autocorrelation plots. The statistics are
generated for both the CPU and memory traces. These features
are discussed in more detail in the section on Results.

Currently, the install script provided supports Ubuntu-based
AWS ec2 instances. However, Cloudy can still be run without
any modification on most Linux-based machines within differ-
ent commercial cloud providers (such as Google’s Compute
Engine).

B. Implementation

Fig. 4 shows an overview of Cloudy. There are three main
components of Cloudy, which include the workload trace, the
load generator, and the web-based visualization component. As
depicted in the figure, the workload traces are individual files,
with the percent memory and CPU usage of 16000 machines,
stored on a remote file hosting server. One of these traces is
selected for each run of the model. When Cloudy is run, the
initialization step downloads the trace file specified by the trace
name (TN) argument onto the VM or container being tested.
This trace file is picked up by the load generator, which follows
the trace to generate matching memory and CPU loads over
time. Finally, the visualization component, which also exists in
the VM or container, can be accessed by any browser over the
internet through the ip address of the VM or container to view
details and statistics about the workload. The next subsections
discuss the details of each of these components.
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Fig. 4. Overview of Cloudy.

1) Data Traces: The data traces, which are stored on a
remote server, hold the CPU and memory usage over time of
one machine each. The files are structured so that each line has
comma separated CPU and memory usage (in percentage of
total) within a 5 minute period. There are a total of 16000
traces, 12000 of which belong to the Google cluster [16],
and 4000 belong to the AliBaba cluster [17]. Cloudy uses
these trace files as a guide to generating workloads. Next, the
two cluster traces, and the mechanism used for extracting the
relevant traces from the two datasets are described.

Google Data Traces: The Google cluster data trace con-
sists of 29 days’ worth of logs for about 12000 machines,
from a Google cluster in a datacenter in the US, starting at
19:00 EDT on Sunday, May 1, 2011. In this context, a Google
cluster is a set of machines, packed into racks, and connected
by a high-bandwidth cluster network. A set of these machines
(cell) is allocated work by a cluster-management system. Work
arrives at a cell in the form of jobs which are comprised of
one or more tasks, and these tasks run on machines. Each task
is a Linux program made up of multiple processes and runs on
a single machine. The usage data for the tasks were collected
from the management system and the individual machines. The
data is represented as percent CPU and memory usage of each
task at 5 minute intervals.

The trace contains a number of tables describing different
information. These tables include:

• Machine events - describes addition, removal, updates
of machines

• Machine attributes - describes machine properties such
as kernel version, clock speed, etc.

• Job events - describes when each job was submitted,
scheduled, run, etc.

• Task events - describes which machines tasks are
located in, resources requested, etc.

• Task constraints - describes constraints on placement
of tasks, if any

• Task resource usage - describes mean CPU usage,
memory usage, disk I/O time, etc. for each task at
each time instance

Of these tables, the task resource usage is of particular
interest. Since the Google cluster data does not directly provide
the CPU and memory usage on a particular machine, it has
to be calculated. For a given instance in time, this is done by
adding up the usages of all the tasks residing on the machine at
that time. A python script was written to collate all the tasks on
the same machine, and then calculate the sum of their usages
at each time interval (5 minutes). The final traces are stored in
separate files for each machine. The files are named GHost0 to
GHost11999. The end result is a set of 12000 files with 8352
data points each (29 days at 5 minute intervals) specifying the
percent of CPU and memory usage. Fig. 5a shows the CPU
usage of a sample host from the Google cluster dataset for the
29 days of the trace.

Alibaba Cluster Data Traces: The Alibaba cluster data
trace includes about 4000 machines for the Alibaba website,
during a period of 8 days, and consists of six tables (each is
a file). These tables include:

• machine meta.csv: the meta info and event informa-
tion of machines

• machine usage.csv: the resource usage of each ma-
chine

• container meta.csv: the meta info and event informa-
tion of containers

• container usage.csv: the resource usage of each con-
tainer

• batch instance.csv: information about instances in the
batch workloads

• batch task.csv: information about instances in the
batch workloads

As opposed to the Google cluster data, the Alibaba data
traces directly specify the percent CPU and memory usage
of each machine at a given time. This can be obtained from
the machine usage.csv file. Using a python script, the usages
of the machines were separated, and arranged in 5 minute
intervals. The final traces are stored as separate files for each
machine. The files are named AHost0 to AHost3999. The end
result is a set of 4000 files with 2304 data points each (8
days at 5 minute intervals) specifying the percent of CPU and
memory usage. Fig. 5b shows both the CPU and memory usage
of a sample host from the Alibaba traces for the 8 days of the
trace.

2) Load Generation: The load generator runs in a loop,
reading a pair of CPU and memory values from the given
trace file periodically. The period is dictated by the timescaling
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(a) Google Host (b) Alibaba Host

Fig. 5. Sample Hosts CPU and Memory Usage.

(TSS) argument given when running Cloudy. As mentioned,
by default, the load generator reads a new pair of values
every 5 minutes. Each period, the generator aims to generate
a physical workload that matches both the CPU and memory
usage specified by the pair of values. In order to generate
this workload, a utility must be chosen that solves a generic
problem, thus utilizing CPU and memory. For example, al-
locating and modifying large arrays can be used to simulate
memory usage, while linear algebra solvers can simulate CPU
usage. While it is fairly trivial to run a utility that simulates a
certain amount of memory usage or CPU usage, it is extremely
difficult to choose a single tool that utilizes an exact, arbitrary
amount of both memory and CPU usages as required.

Cloudy approaches load generation in two steps. At any
point in time, first the memory load required for the current
period is generated by running a suitable utility. However, any
such utility, will end up working at full available CPU capacity.
Therefore, in the next step, a limit on the amount of CPU that
can be used is applied to the running utility to match the CPU
usage required for the current period.

To achieve the first step of memory load generation, the
benchmarking utility stress-ng is used. This utility allows
stress-testing a system in a number of selectable ways. Stress-
ng has a variety of stressors including floating point, integer,
or bit manipulation for CPU, i/o devices, network, schedulers,
etc. Cloudy utilizes stress-ng’s memory stressor to generate
controlled, memory intensive loads. The memory stressor can
be given a size of memory to use, and the stressor continuously
calls mmap for the specified size and writes to the allocated
memory. Since the trace files provide memory usage as a per-
centage, the load generator calculates the size of the memory
to use based on the maximum memory (MMG) argument (if
given) or the total memory available (default).

Once the required amount of memory is being used, the
second step begins. The program cpulimit can be given a CPU
usage percentage, and the PID of a process to limit the real
CPU usage of the process to the desired percentage. Using
this, the load generator limits the CPU usage of the running
stress-ng process to the usage required for the current period.

At this point, both the CPU and memory usage of the
machine match the values specified by the trace for the current

period. These usages continue until the next period, when the
current stress-ng process terminates, and the previous two steps
are repeated for the next pair of values from the trace file.

3) Visualization: The Visualization component of Cloudy
consists of some backend scripts for data collection and
calculation and a frontend. The statistics that are recorded
for visualization, are all returned from the stress-ng utility,
and are collected at the end of each period. These include the
operations per second, page fault count, etc. and are recorded
in a logfile while stress-ng runs.

Additionally, to view the actual CPU and memory usage
of the VM or container in real time, the program atopsar is
used. Atopsar can report statistics on a system level and return
periodic information about the usage.

In order to retrieve the information in a suitable fashion,
the logging features of both stress-ng and atopsar have been
modified. The modifications only include changes to the output
formats so that the outputs can be redirected to the logfiles,
without the need for additional scripts to clean the data.

Finally, a backend Python script is used to calculate and
plot the decompositions and autocorrelation values for both
CPU and memory from the current trace file.

The front end of the visualization component is built using
PHP. When installing Cloudy from the git repository, the
entire Visualization component is included, and the front-end
as well as the modified versions of stress-ng and atopsar are
automatically installed.

IV. EXPERIMENTAL EVALUATIONS AND RESULTS

In order to evaluate Cloudy, multiple runs with different
traces were performed on Amazon Web Services’ ec2 instances
(t2.xlarge: Ubuntu 18.04, 4 cores, 16 GB RAM, 40 GB EBS).
For the experiments in this paper, the maximum memory to
use was set to 16 GB, and the scaling was at the default
of 5 minutes. Currently, 2000 traces are available in the
gitlab repository. These include 1000 traces each from Google
and Alibaba workloads (GHost0 to GHost999 and AHost0 to
AHost999). The experiments that follow use samples from
these 2000 traces. All the 16000 traces are currently being
placed on a suitable ftp server, and are available on request.
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(a) CPU (b) Memory

Fig. 6. Absolute Actual vs. Trace Load Error.

(a) CPU (b) Memory

Fig. 7. Actual vs. Trace Usage.

The following subsections evaluate two aspects: the ac-
curacy of Cloudy when recreating patterns from underlying
traces, and characteristics of the traces that can be gleaned
using Cloudy.

A. Cloudy Evaluation

One of the important aspects of evaluating the efficacy
of Cloudy is to analyze how closely the generated CPU and
memory usages follow the usages in the underlying data traces.
For these experiments, 12 traces (AHost0-5 and GHost0-5)
were separately run for their entire duration, and evaluated on
the ec2 instances. This implies that Cloudy was run for 29
days for each of the GHost traces, and 8 days for each of the
AHost traces. The logged actual CPU and memory usage over
these 12 runs was then compared to the usages according to the
underlying traces. The absolute error at each period for each
host was calculated as abs(usageactual − usagetrace) Fig. 6
plots boxplots of the absolute errors for each of the 12 hosts.

The plots show that for the 12 hosts, the median CPU error
is mostly at about 2-3%. At worst, the generated CPU usage
deviates by about 17% for AHost2. The few extremely high
error moments can be attributed to external factors, such as
the underlying OS performing system tasks, etc. Even then,
for AHost2, 75% of the errors are at or below 7% and 50%
of the errors are at or below about 2%. Similarly, the median

memory error stays in the range of 5-7% for all 12 hosts. This
demonstrates that generally, with an error of less than 7%,
Cloudy accurately recreates the CPU and memory usage of
the underlying trace.

The average CPU and memory errors for 12 hosts are given
in Table I.

TABLE I. ACTUAL VS. TRACE LOAD ABSOLUTE ERRORS

Trace Name CPU (%) Memory (%)
AHost0 7.96 6.07
AHost1 6.83 17.53
AHost2 8.48 5.51
AHost3 9.23 4.79
AHost4 4.89 4.97
AHost5 7.72 4.91
GHost0 3.95 8.07
GHost1 3.88 5.97
GHost2 5.71 9.05
GHost3 3.34 6.31
GHost4 3.44 6.52
GHost5 2.19 6.43

The figure and table indicate that the percent memory usage
generally has a median error of about 6%. To put this in
absolute memory terms, since 16 GB instances were used,
6% equates to about 0.96 GB. This additional memory usage
corresponds to the memory requirements of the underlying

www.ijacsa.thesai.org 6 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

(a) Google CPU (b) Google Memory

(c) AliBaba CPU (d) AliBaba Memory

Fig. 8. CDFs of Min, Max, Mean, Median, and Std. Dev. for CPU and Memory of all Workloads.

(a) Google (b) AliBaba

Fig. 9. Average CPU and Memory usage of 1000 machines over time.

operating system (OS) and its processes. If greater accuracy
in memory usage is required, the maximum memory to use
argument can be tweaked while starting Cloudy, to accommo-
date for the memory requirements for the underlying OS. For
reference, Fig. 7 shows the actual load generated vs trace load
for a sample workload (AHost4). It can be observed that the
generated load closely matches the pattern of the load indicated
by the underlying trace.

B. Workload Characteristics

This subsection evaluates and discusses the behavior of
the underlying traces that Cloudy follows to generate the
workloads. There are two main purposes of these evaluations.
First, to provide the reader with an idea of the nature and type
of the underlying traces. Second, to demonstrate the various
types of analysis that can be performed on the workloads when
using Cloudy.

In order to meet these goals, the following subsections
discuss some aggregated statistics such as minimum, maxi-
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mum, mean loads, and standard deviations, as well as seasonal
decomposition of the loads, autocorrelation of the loads, and
cross-correlation of CPU loads with memory loads. All of
these characteristics for a running workload can be viewed
through the visualization component of Cloudy. For this set of
experiments, all 2000 traces were used. The CPU and memory
usages were separated, resulting in 4000 total traces.

1) Aggregated Statistics: Fig. 8 shows four CDFs that
summarize the aggregated values of the Google and Alibaba
traces. The reported parameters are the maximum, minimum,
mean, median, and standard deviation values over the entire
duration of the traces. For the Google CPU traces, the average
maximum and minimum values are 55% and 0.16%, respec-
tively, while for Google memory traces, the average maximum
and minimum values are 34.45% and 0.21%, respectively. For
the Alibaba CPU traces, the average maximum and minimum
values are 83.7% and 13.13%, respectively, while for the
Alibaba memory traces, the average maximum and minimum
values are 96.54% and 69.81%, respectively. From the figures,
the standard deviations indicate, that in both Google and
Alibaba traces, memory usage is generally less variable around
its mean, as opposed to CPU usage that varies substantially
within a single trace. Further, the Alibaba traces in general,
show higher memory and CPU usages as opposed to the
Google traces. Finally, the Alibaba traces show substantially
high memory usage for most traces.

To offer an overall view of the traces, Fig. 9 shows the
average CPU and memory usage for both Alibaba and Google
traces at each instance of time. It can be seen that over all
the observed workloads, the Alibaba CPU traces have a more
obvious pattern than the Google traces. The memory traces in
both cases, does not show an apparent pattern. However, as
suggested before, it can be deduced that the Alibaba memory
traces utilize more memory than the Google memory traces.

2) Seasonality and Trends: In order to analyze the periodic
nature of the traces, as well as any inherent patterns, all the
Google and Alibaba traces were decomposed into their trend,
seasonal, and residual components. Fig. 10 shows one sample
each of the Google CPU, Google memory, Alibaba CPU, and
Alibaba memory traces. Decompositions for all the traces can
be viewed through Cloudy. It is important to note that the
x-axis scales for Google and Alibaba are different since their
durations are different (24 days and 8 days respectively). Based
on auditing the decompositions, similar trends and patterns
exist across all Google and Alibaba traces. The Alibaba CPU
traces demonstrate a clear seasonal pattern corresponding to
one day. While the other three types of traces also demonstrate
a seasonal pattern, the residual components for them do not
seem to be simply noise (especially for the memory traces).
This suggests the need for some further investigation into the
inherent patterns within the memory traces.

3) Autocorelation and Cross-corelation: In order to further
understand whether any patterns exist in the traces, all 2000
traces were analyzed for autocorrelation. After calculating the
autocorrelation function (ACF) values for each trace up to lag
800, the maximum value not at lag 0 were logged. Fig. 11a
shows a boxplot of these maximum ACF values for all the
traces, separated by type. The figure can provide a general idea
of the amount of autocorrelation that exists on an average in
these traces. It can be observed that the traces from the Alibaba

CPU have higher median maximum ACF values as opposed to
the other types of traces. This indicates higher autocorrelation
in the Alibaba CPU traces. Similarly, on an average, lower
autocorrelations can be seen in the Alibaba memory traces. The
median maximum ACFs for Google CPU, Google memory,
Alibaba CPU, and Alibaba memory traces are about 0.35,
0.35, 0.5, and 0.25 respectively. The observation supports the
analysis from the previous section, that demonstrated high
seasonality in the Alibaba CPU traces. This can be used as
a starting point for further analysis into the patterns and pre-
dictabilty of the traces. Fig. 12 shows the autocorrelation plots
for sample traces (one Google and one Alibaba). These plots
are available from the Visualization component of Cloudy. The
Alibaba CPU trace shows obvious, high peaks at non-zero
lags, indicating a high degree of autocorrelation. While the
Alibaba memory plot in this sample also shows a high degree
of autocorrelation, that is not generally true for most other
Alibaba memory traces. The Google traces do not show any
prominent autocorrelation at any lag.

Another important aspect to consider for a workload on
a machine is the relationship between the CPU and memory
usage. Intuitively, since a running program is working with
both CPU and memory, it stands to reason that for a given
workload, there could be some positive or negative (in some
cases) correlation between usages of the two. This analysis
can prove extremely beneficial in a variety of load predicting
algorithms, and can potentially provide better results than
predicting on CPU or memory alone. With this in mind, cross-
correlation between CPU and memory for the 2000 traces
for up to lag 800 is reported. Similar to the analysis with
autocorrelation, for each of the 2000 traces, the maximum
value of the cross-correlation function (CCF) not at lag 0 were
logged. Fig. 11b shows a boxplot of these maximum CCF
values for all the traces. In this case, it can be seen that overall,
there does not seem to be a strong cross-correlation between
memory and CPU for either the Google or Alibaba traces. The
Google traces have a slightly higher cross-correlation between
memory and CPU usage, with a median maximum CCF of
about 0.3, and 75% of the traces showing maximum CCF
under 0.4. Compared to this, the Alibaba traces have a median
maximum CCF of about 0.23, and 75% of the traces showing
maximum CCF under 0.25.

V. DISCUSSIONS AND FUTURE WORK

The experimental results show an average memory error of
approximately 1 GB. This is an important aspect to consider.
The reason for this error is the memory that the underlying OS
requires for its own purposes, even without Cloudy running.
Typically, for the ec2 Ubuntu instances, this corresponds to
a little under 1 GB. It is therefore recommended that when
running Cloudy, the maximum memory to be used is specified
keeping the underlying OS’s requirement in mind. For exam-
ple, in the scenarios described previously, Cloudy should be
run at a maximum of 15 GB memory (instead of 16 GB). This
will ensure that the resultant memory load matches the trace
load even more closely, with negligible errors.

There are three aspects of Cloudy that are currently being
worked on to make the tool more universal. The first aspect
deals with the statistics logged and displayed. Currently, the
performance statistics provided are recorded via stress-ng, and
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(a) Google CPU (b) Google Memory

(c) AliBaba CPU (d) AliBaba Memory

Fig. 10. Sample Decompositions of Workloads.

(a) Autocorrelation (b) Cross-correlation (CPU and memory usage)

Fig. 11. Maximum Correlation Function Values.

have to be used in that context. However, with only some slight
additions and no changes to the behavior of the framework,
other desired system-wide parameters can be recorded and
displayed. Based on user input after release, the next update
of Cloudy shall include other statistics as requested.

The second aspect is the utility used to create the load
on memory, viz. stress-ng. Again, without any major changes
to the behavior and code of the framework, any utility can
be used to generate the memory load. For example, typical
programs that are used to generate memory loads include array
sorters, linear algebra solvers, matrix operators, etc. The next

iteration of Cloudy aims to offer multiple stress-ng-like utilities
that users can choose from, when running Cloudy. This will
empower the user to select a work that is more representative
of the types of load they envision in context of their testbed.

Finally, Cloudy has been tested and validated on Ubuntu
based AWS ec2 instances. However, there is no part of the
framework that prevents it from being run on any Linux-based
distribution. Automatic install scripts for other distributions
and cloud providers are currently been implemented, and shall
be added to the git repository.
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(a) Google CPU (b) Google Memory

(c) AliBaba CPU (d) AliBaba Memory

Fig. 12. Sample Autocorrelation of Workloads.

VI. CONCLUSION

This paper introduced a free, open-source, workload gen-
erator called Cloudy. The generator is aimed at researchers
in cloud computing who need a testbed to evaluate their own
research ideas. Cloudy is easy to install, non-intrusive, and
can be used to quickly simulate real-world CPU and memory
usage patterns in VMs, containers, cloud instances, or local
machines. Through extensive experimental evaluations it was
demonstrated that using Cloudy, the CPU and memory usage
on a machine can closely follow one of 16000 real-world
usage traces. Additional evaluations demonstrated the various
analysis features of Cloudy that can allow users to further
enhance their understanding of the underlying real-world loads,
rather than running a black-box generator.
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