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Abstract—Sequence Alignment is an active research subfield 
of bioinformatics. Today, sequence databases are rapidly and 
steadily increasing. Thus, to overcome this issue, many efficient 
algorithms have been developed depending on various data 
structures. The latter have demonstrated considerable efficacy in 
terms of run-time and memory consumption. In this paper, we 
briefly outline existing methods applied to the sequence 
alignment problem. Then we present a qualitative categorization 
of some remarkable algorithms based on their data structures. 
Specifically, we focus on research works published in the last two 
decades (i.e. the period from 2000 to 2020). We describe the 
employed data structures and expose some important algorithms 
using each. Then we show potential strengths and weaknesses 
among all these structures. This will guide biologists to decide 
which program is best suited for a given purpose, and it also 
intends to highlight weak points that deserve attention of 
bioinformaticians in future research. 
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I. INTRODUCTION 
"Sequence alignment" is a relevant subfield of 

bioinformatics that has attracted significant interest recently. It 
focuses on comparing two or more sequences to find 
homologies and visualize the effect of evolution across a 
family of genes [1]. 

Sequences can be divided mainly into two types: genomic 
and protein. Genomic sequences [2] are chains of nucleotides 
along a DNA/RNA macromolecule. They can be represented 
using the alphabet of the four letters of nitrogen bases: A, C, G 
and T. Protein sequences [2] are chains of twenty types of 
amino acids along a polypeptide. They can be represented 
using an alphabet of 20 letters (except B, J, O, U, X and Z) 
corresponding to the 20 existing amino acids. 

Sequence alignment plays a crucial role in biology and 
medicine. Indeed, it is considered as the basis of many other 
tasks like phylogenetic analysis, evolution modeling, and 
prediction of gene expression. An assortment of algorithms has 
been applied to deal with sequence alignment. We can classify 
them according to two categories: exact and heuristic 
algorithms. Giving exact solutions, exact algorithms [3] are 
considered efficient but slow. Here we can cite Dynamic 
Programming (DP) developed by R. Bellman (1955). The 
principle of the DP consists of transforming a sequence S into a 
sequence Q, using three operations: substitution, insertion or 
deletion of a character. There is a cost to every operation and 
the aim is to find the sequence edited with a minimal cost. 

Considering two sequences S and Q, alignments are mapped to 
a matrix with entries representing optimal costs. Each cell is 
calculated based on its preceding cells. Concerning heuristic 
algorithms [4], they are designed for large databases and they 
give only approximate solutions to the problem. In fact, 
sequences are in exponential growth, thus, aligning a sequence 
against a database containing millions of sequences is not 
practicable. The aim of heuristic algorithms is to come up with 
fast strategies to rapidly identify relevant fractions of the cells 
in the DP matrix. 

According to the number of compared sequences, 
"sequence alignment" is classified into two categories: pairwise 
alignment and multiple alignment. And according to the 
aligned regions, "sequence alignment" admits two major 
categories: global alignment category that aligns the entire 
given sequence and local alignment category that reveals 
similarity areas in long sequences. Fig. 1 gives a 
schematization of the Sequence Alignment Problem. 

In the last twenty years a broad range of alignment 
techniques have been proposed [5]. Citing all these won't be 
conceivable inside the extent of this work. Moreover, to the 
best of our knowledge, only a few tools described in the 
literature have shown efficient results. Indeed, besides giving 
correct biological conclusions, they have managed to reduce 
the execution time from several days to a few minutes. 

Through this paper, we intend to classify some recent 
alignment tools according to the widely used data structures. 
We typically give more interest to those having shown 
considerable improvement in terms of speed and memory 
consumption. We will highlight their strengths in sequence 
alignment tools, and we will also cite some of their drawbacks 
to reveal their limitations. 

 
Fig. 1. A Schematization of the Sequence Alignment Problem. 
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The paper is structured as follows. Most frequently 
employed methods for sequence alignment are briefly outlined 
in Section II. Then Section III introduces four of the commonly 
used data structures in literature and proposes a categorization 
of the most relevant algorithms based on these structures. 
Section IV discusses the utility of each structure in "Sequence 
Alignment". Finally, Section V concludes the paper and 
Section VI mentions a future work. 

II. RELATED WORK 

A. Global Alignment 
Regarding global alignment, the "Needleman-Wunsch 

algorithm" [6] is referred as a global alignment method based 
on dynamic programming. It was implemented in 1970. It 
gives a score to every possible alignment and tries to find all 
eventual alignments having the optimal score. It is executed in 
4 stages: 

1) Fixing the "similarity matrix" and the gap penalty, 
2) Initializing the optimality matrix F, 
3) Filling in the matrix F, 
4) Giving a Traceback. 

Let A be a sequence of length l, B be a sequence of length 
k, d be the gap penalty and Δi,j  be the score of 
Match/Mismatch. Table I gives a pseudo-code of the 
Needleman-Wunsch Algorithm. 

TABLE I. A PSEUDO-CODE OF NEEDLEMAN-WUNSCH ALGORITHM 

1: Input: two sequences to align 

2: Initialization: 

3: for i=0..l do: 

4: Fi,0= d × i 

5: for j=0..k do: 

6: F0,j= d × j 

7: Recurrence relation: 

8: For i=1..l do: 

9: For j=1..k do: 

10: 𝐹𝑖,𝑗  = 𝑚𝑎𝑥 �
𝐹𝑖−1,𝑗−1 + 𝛥𝑖,𝑗  
𝐹𝑖−1,𝑗 + 𝑑 
𝐶𝑖,𝑗−1 + 𝑑 

 

11: Output: Optimal alignment 

B. Local Alignment 
 For local alignment, The "Smith-Waterman algorithm" [7] 

is a basic tool also based on "dynamic programming" but with 
extra choices to begin and end at wherever. Published in 1981, 
it maximizes the similarity measure by matching characters or 
inserting/deleting gaps in 4 steps: 

1) Fixing the "similarity matrix" and the gap penalty, 
2) Initializing the scoring matrix C, 
3) Scoring, 
4) Giving a Traceback. 

Let A be a sequence of length l, B be a sequence of length 
k, 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙 be the gap penalty and 𝛥𝑖,𝑗 be the score of 
Match/Mismatch. Table II gives a pseudo-code of the Smith-
Waterman Algorithm. 

TABLE II. A PSEUDO-CODE OF SMITH-WATERMAN ALGORITHM 

1: Input: two sequences to align 

2: Initialization: 

3: Ci,0= 0 

4: C0,j= 0 

5: Recurrence relation: 

6: For i=1..l do: 

7: For j=1..k do: 

8: 𝐶𝑖,𝑗  = 𝑚𝑎𝑥�

𝐶𝑖−1,𝑗−1 + 𝛥𝑖,𝑗  
𝐶𝑖−1,𝑗 + 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙  
𝐶𝑖,𝑗−1 + 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙  

0

 

9: Output: Optimal alignment 

C. Pairwise Sequence Alignment 
"Pairwise sequence alignment" [8] is applied to examine 

the similarities of two sequences by finding the best matching 
alignment of them (the highest score). In other words, for a 
given sequence and a reference genome, the goal is to find 
positions in the reference where the sequence matches the best 
[9]. Three approaches generate the pairwise alignment: dot-plot 
analysis, "dynamic programming", and k-tulpe methods. 

1) Dot-plot analysis (or Dot-matrix method): It is a 
qualitative and simple tool that compares two sequences to 
give the possible alignment [10]. Indeed, here are the steps of 
the method: 

a) Two sequences A and B are listed in a matrix, 
b) We start from the first character in B, we move over 

the matrix maintaining the first row and putting a dot in each 
column where there is a similarity between A and B, 

c) The process continues until all possible comparisons 
between A and B are done. Such main diagonal dots refer to 
regions of similarity and isolated dots refer to random matches. 

2) Dynamic programming: It can achieve global and local 
alignments. The global is most useful when the query 
sequences are similar and have the same length. The alignment 
calculation is generally done with the Needleman-Wunsch 
algorithm. The algorithm does not calculate the difference 
between two sequences but rather the similarity. Considering 
two sequences 𝐴𝐴 and 𝐵𝐵, a two-dimensional array is filled row 
after row (starting from the last) and for each row, column after 
column (starting also from the last) respecting the recurrence 
relation (1): 

𝐹𝑖,𝑗  = 𝑚𝑎𝑥 �
𝐹𝑖−1,𝑗−1 +  𝛥𝑖,𝑗  
𝐹𝑖−1,𝑗 + 𝑑 
𝐶𝑖,𝑗−1 + 𝑑 

            (1) 
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The local alignment is suitable to deal with dissimilar 
sequences with eventual similarities in their broader sequence 
context. An overall alignment would be insignificant. 
Calculation is generally done with the Smith-Waterman 
algorithm. The essential difference between Smith-Waterman 
and Needleman-Wunsch algorithms is that any cell of the 
initial comparison matrix in Smith-Waterman can be 
considered as a starting point for the calculation of scores and 
that any score that becomes less than zero stops the progression 
of the algorithm, then the score will be reset with the value 0. 
The calculation is based on the recurrence (2): 

𝐶𝑖,𝑗  = 𝑚𝑎𝑥 �

𝐶𝑖−1,𝑗−1 + 𝛥𝑖,𝑗  
𝐶𝑖−1,𝑗 + 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙  
𝐶𝑖,𝑗−1 + 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙  

0

            (2) 

3) K-tulpe methods (or word methods): They are heuristic 
methods faster than the original dynamic programming 
algorithms. They actually give only approximate solutions to 
the problem. K-tuple methods are implemented in the database 
search tools "FASTA" and "BLAST". 

a) FASTA algorithm: An Algorithm for sequence 
comparison [11] based on the linked list structure: a query 
sequence is compared to all the strings in the database (DB). It 
is executed in six stages: 

• Search for hot-spots (the largest common sub-
sequences), 

• Select the 10 best diagonal matches, 

• Calculate the best scores for diagonal matches, 

• Combine between good diagonal matches and indels, 

• Calculate an alternative local alignment, 

• Ordering of the results on the sequences of the DB 

b) BLAST algorithm [12]: It is a tool based on a heuristic 
method that uses Smith-Waterman program. It looks for 
regions with strong similarity in alignments without spaces. It 
improves the speed of FASTA by looking for a smaller number 
of optimal hot spots. The substitution matrix is integrated from 
the first stage of hot spot selection. 

D. Multiple Sequence Alignment 
Multiple sequence alignment (MSA) [13] is a 

generalization of the "pairwise alignment"; it consists of 
comparing multiple related sequences. The aim is to deduce the 
presence of common ancestors between sequences. 

Manually aligning more than three sequences can be 
difficult and time-consuming. Hence a variety of 
computational algorithms has been developed to accomplish 
this task. Most MSA algorithms use dynamic programming 
and heuristic methods (Progressive and Iterative). 

1) Dynamic programming: DP is rarely used for more than 
three sequences because of its high running time and memory 
consumption. The same principle of DP in pairwise alignment 
can be applied here to multiple sequences. Unfortunately, the 

execution time grows considerably in an exponential way in 
comparison with the size of sequences, which is impractical. 
Nevertheless, a number of heuristic algorithms are used to 
accelerate computation. The most widely used heuristic 
methods today are the progressive and iterative techniques. 

2) Progressive methods (tree methods): Invented in 1984, 
progressive alignment needs initial assumptions about the links 
between sequences to align, and uses those assumptions to 
build a guide tree to represent the links. The principle is as 
follows: 

• Two most related sequences are aligned using dynamic 
programming methods, 

• A third one is aligned to the first result, 

• The process continues until a unique alignment of all 
the sequences persists. 

The role of the "guide tree" is to choose a sequence to add 
to the alignment at each step. 

The most popular progressive methods used at present are 
Clustal and T-coffee families. 

a) Clustal family: Clustal (cluster analysis of the 
pairwise alignments) [14] are series of a widely used 
progressive programs; the original program was developed by 
Des Higgins in 1988 and was designed specifically to generate 
MSA on personal computers. The last standard version is 
ClustalΩ, it was updated in 2018 [32]. 

All versions of the Clustal family align sequences building 
progressively a multiple sequence alignment from successive 
pairwise alignments. This approach is executed in three steps: 

• Provide a pairwise alignment, 

• Construct a guide tree by a Neighbor ‐Joining m  
(developed in 1987 by Saitou and Nei), 

• Use the tree to perform a multiple alignment. 

b) T-coffee family: T-coffee [15] is a collection of 
multiple sequence alignment tools. It was originally published 
in 1998. T-coffee uses a new score function to evaluate the 
results. The method works through three steps: 

• Create a library of all pairwise alignments and build a 
guide tree, 

• Weight alignments by percentage of identical residues, 

• Progressively build MSA using tree and weights. 

3) Iterative methods: The major issue with progressive 
alignment is that errors in the initial alignments are transmitted 
to the whole MSA. Iterative methods [16] attempt to correct 
this problem by iteratively realigning subgroups of sequences; 
they start by making an initial global alignment of these 
subgroups and then revising the alignment to achieve a more 
efficient result. They can start from an initial MSA done with 
progressive alignment and then apply some modifications 
trying to improve it. Iteration is gainful in terms of coding, 
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time complexity and memory requirements. The most widely 
used iterative methods are: MAFFT and MUSCLE. 

a) MUSCLE: A method based on the guide tree 
construction technique. It produces a pairwise alignment for 
progressive alignment and for refinement. The progressive 
alignment employs a profile function called log-expectation. 
The refinement applies a tree-dependent restricted partition 
technique to reduce the execution time of the algorithm [17]. 
The method consists of three steps: 

• Draft progressive: step of multiple alignment. It 
produces a first guide tree and a progressive alignment 
using k-mer distance (k-mer is a string part of size k) 
and log-expectation score. 

• Improved progressive: step of building a second guide 
tree using the Kimura distance. It re-estimates the first 
tree and produces a new multiple alignment. 

• Refinement: step of improving alignment. It refines 
multiple alignment using the tree-dependent restricted 
partitioning (deletes edges of guide tree, and re-form 
the alignment of separated trees). 

b) MAFFT: Developed in 2002, the first version of 
MAFFT [18] was based on progressive alignment and 
clustering with the Fast Fourier Transform. It had been later 
provided to deal with large number of sequences and obtain 
more efficient results in accuracy. It is mainly executed in three 
stages: 

• Detection of regions of similarity with Fast Fourier 
Transform, 

• Application of the basic dynamic programming 
algorithm to select important strings, 

• Build alignment. 

III. A CATEGORIZATION OF THE MOST EFFICIENT 
ALGORITHMS BASED ON THEIR DATA STRUCTURES 

All the cited methods are the basis of the existing sequence 
alignment algorithms. To obtain fast and efficient solutions in 
memory, fundamental methodology in many of them is to build 
a data structure that occupies a reasonable space of memory. 
Data structures are one of the most important concepts in 
programming. They are a way of storing and managing data. 
Most of the sequence alignment algorithms are built upon such 
basic data structures like: suffix arrays, suffix trees, hash 
tables, graphs and others. In this section, we discuss four 
relevant data structures and we propose a structure-based 
categorization of the most important algorithms that have 
marked the last two decades. 

A. Suffix Arrays and Suffix Trees 
Given a sequence S, a suffix array is an ordered array of all 

suffixes of S, and a suffix tree is a representation of all suffixes 
in S in the form of a tree. The latter contains a leaf for each 
suffix, and each edge is labeled with a string of characters so 
that the path from the origin to each leaf gives the 
corresponding suffix. 

In "Sequence Alignment", a suffix tree is an index data 
structure for analogous sequences. It stores all suffixes of an 
alignment of similar strings. In this category, we will cite 3 
important algorithms: 

In 2017, paper [19] proposed a multiple sequence 
alignment algorithm that combines between a suffix tree and a 
center-star strategy (MASC). The latter transforms an MSA 
problem into a pairwise alignment, and the suffix tree matches 
identical regions between two pairwise sequences. The 
algorithm can be executed in a linear time complexity O(mn), 
where m is the amount of sequences and n is their average 
length. The method is also characterized with no loss in 
accuracy for highly similar sequences. 

Earlier, in 2013, article [20] proposed a memory gainful 
edition of the suffix tree method: "Suffix Array of Alignment 
(SAA)". It deals with pattern research appropriately like the 
"Generalized Suffix Array (GSA)". The paper also presents a 
practical approach for building the SAA. Experiments have 
shown that the SAA is a relevant data structure for relatively 
identical strings. It only takes around one seventh of the 
memory provided by the GSA to process 11 strings. 

Suffix trees aim to reduce memory space, they provide a 
linear space complexity and they allow a linear-time searching 
[21]. However they could require more than 20 bytes per 
character, rather, suffix arrays are more useful generally. And 
here we should cite reference [22] that shows in depth the 
weakness of suffix trees and their negative effect on the 
algorithm efficiency. The paper also proved that algorithms 
based on suffix tree could be replaced with equivalent 
algorithms based on suffix array, which is memory gainful. 

Suffix trees are used for Read Alignment and Whole 
Genome Alignment while suffix arrays are more adequate to 
Prefix-suffix Overlaps Computation and Sequence Clustering. 

B. Hash-Tables 
A hash table is a kind of associative array storing pairs of 

keys and values. It represents a genome sequence as multiple 
lists of genomic positions. The concept of hash tables belongs 
to the heuristic method "BLAST". Indeed, all hash table tools 
adopt typically one principle. 

Author in [23] has developed the first BLAST 
implementation algorithm such that the stage of "word 
mapping" is promoted by a hash table. The algorithm was later 
improved by other researchers involving the notion of 
parallelization and different other techniques to accelerate 
alignments. Author in [24] proposed in 2012 an accelerated 
short read aligner to approximate the original dynamic 
programming algorithm. It uses a hash table and applies the 
Needleman-Wunsch algorithm as an extension. The advantage 
of the hash table here is to reduce the amount of work by 
avoiding the generation of too many candidate regions. 

Author in [25] proposed BFAST, a two-level indexing 
method. It applies the hash in indexing to decrease the research 
time. It was introduced to handle the alignment of short human 
genomic sequences; this makes it an efficient aligning method 
that is recommended to deal with each number of sequences 
and every reference genome. 
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The methods based on hash tables usually provide high 
sensitivity, but as a limitation, they occupy a lot of memory 
because the size of the array grows exponentially. 

C. Tries 
Tries are a kind of trees storing the entire suffixes of a 

sequence and enabling a quick matching of sequences. They 
derive from the middle letters of "retrieval". They are efficient 
in the storage of multiple sequences, and useful in accelerating 
the process of sequence searching [26]. 

We have to cite here the reference [27] that proposed in 
2018 a fast trie based method for multiple alignment. It 
bypassed the classic enumeration of successive comparisons 
with all strings. It also provides an original algorithm 
combining a trie and an exact algorithm to find the edit 
distance between strings. 

Author in [28] marked 2015 by developing two multiple 
sequence alignment tools. The first one employed tries to 
accelerate the alignment of highly similar sequences. The 
second worked in parallel with Hadoop to deal with big data. 
Tries worked as a dictionary that stores substrings and indexes. 
To collect each substring in a long sequence, tries reduce the 
running time by avoiding the individual substring research. 

We also cite [12] that presented BLAT, a tool applying tries 
to find the regions matching with the query sequence. It 
demonstrated a considerable progress in accuracy and running 
time compared to the popular existing tools in the early 2000s. 

The practical benefit of tries remains in time reduction. In 
fact, aligning a sequence to the same duplicates of a string is 
done only once. This is mainly due to the fact that duplicates 
fall on the same line in the tree. Though, a hash table should 
perform an alignment for each duplicate. Thus, tries stay 
considerably faster than hash tables in time execution. 

However, given a reference sequence of length m, a trie can 
take O(m²) memory space, which makes it impractical to build 
a trie for long sequences. 

D. Graphs 
Recent researches have shown superior accuracy and speed 

in aligning sequences by using a "Variation Graph" instead of a 
reference genome. A "Variation Graph" is a directed graph 
where each edge spells a sequence. In fact, aligning sequences 
to graph is trying to determine the optimal corresponding path 
in the graph for every sequence. 

In addition to variation graphs, a variety of graph data 
structures have been studied in the last decades, such as "De 
Bruijn" graphs, "ABruijn" graphs, String graphs, Partial Order 
graphs, "Wheeler graphs", etc. 

Each of these structures had demonstrated a considerable 
progress in solving the sequence alignment problem (more 
details are given in [29]). However, they had registered some 
weaknesses: high execution time, overlook of arbitrary graphs, 
imprecise results. In what follows, we will expose three recent 
methods, based on variation graph, that have influenced more 
considerably the alignment accuracy. 

Authr in [30] suggests PaSGAL, an algorithm to solve 
sequence-to-graph alignment using parallelism. It is considered 
as the first parallel algorithm provided for this propose. It 
generates improved results compared to previous tools on 
execution time term. Indeed, it allows a decrease from long 
durations to few hours. 

The main idea of the algorithm is to accelerate the 
"Dynamic Programming" approach on 3 phases: the 1st and the 
2nd phases compute the starting and ending cells of the 
alignment matrix, and the final phase performs a traceback. 
The latter aims to calculate the "base-to-base" alignment scores 
required for downstream biological analysis. The algorithm is 
highly recommended for pan-genomics and antibiotic 
resistance profiling. 

In 2019, the authors of [31] studied two problems and 
proposed two solutions: a generalization of the "Shift-And 
algorithm" (designed for exact string matching) to graphs, and 
a generalization of "Myers’ bit vector alignment algorithm" to 
graphs. Both solutions are based on Needleman-Wunsch 
algorithm. The paper used a "bit-level parallelization" to 
estimate the distance between the query sequences and the 
graph. The method is supposed to fit with the mammalian 
genome. 

The first author of [31] has recently improved his works, 
and came up with GraphAligner, an efficient sequence-to-
graph alignment tool. Compared to existing graph methods, it 
is 12 times more effective in time complexity. It also takes in 
consideration long reads error correction and outperforms the 
current tools 3 times in error rate. 

The major advantage of graphs in general is that each stage 
of the alignment can store and use results from previous 
alignments. More specifically, Variation graphs become today 
a reference for analyzing genetic variants. 

IV. DISCUSSION 
We highlighted the weaknesses and strengths of the most 

relevant sequence alignment tools and precise their utility in 
Biology. We aim to facilitate the choice of appropriate tools for 
each biologist depending on his research intention. 

Suffix trees are applicable to Read Alignment and Whole 
Genome Alignment. Suffix arrays might be also applicable to 
Read Alignment, but they are more useful in Prefix-suffix 
Overlaps Computation and Sequence Clustering. Compared to 
the discussed data structures, hash tables remain more 
performing in query time execution but they are memory 
consumers. As application in Bioinformatics, they are more 
suitable for storing sets of k-mers. Finally, Graphs are relevant 
in Read Mapping and they can fully represent population-wide 
variations. 

V. CONCLUSION 
This work is a small sample of two decades of scientific 

production in the field of sequence alignment. In fact, many 
studies have demonstrated considerable progress in storage and 
acceleration of the aligning process. The key idea of all the 
exposed methods is to create data structures to store calculated 
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scores in the smallest possible space during alignment. That 
will provide a gain in both memory and runtime. 

We started with a classification of the basic methods of 
sequence alignment. Then we introduced four of the commonly 
used data structures in literature (suffix arrays/trees, tries, hash-
tables and graphs) and we proposed a categorization of the 
most relevant algorithms based on these. There are such other 
structures like Burrows-Wheeler transform (BWT), bloom 
filters, FM-index (combination between the properties of suffix 
array and the BWT), etc., but we tried to give more attention to 
the four cited data structures by means of their efficiency in 
giving the best alignment. 

VI. FUTURE WORK 
From the performance point of view, none of the cited 

algorithms is yet considered as ideal. A best solution should 
combine accuracy, speed and small memory space. 
Furthermore, sequence databases are rapidly and continuously 
growing, thus the development of high performing methods is 
still under research. 

We believe that graphs, in full development, can be refined 
further. As a future work, we will give more interest to the 
sequence-to-graph alignment. 
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