
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

A Categorization of Relevant Sequence Alignment
Algorithms with Respect to Data Structures

Hasna El Haji1, Larbi Alaoui2
TIC-Lab, International University of Rabat

Rabat, Morocco

Abstract—Sequence Alignment is an active research subfield
of bioinformatics. Today, sequence databases are rapidly and
steadily increasing. Thus, to overcome this issue, many efficient
algorithms have been developed depending on various data
structures. The latter have demonstrated considerable efficacy in
terms of run-time and memory consumption. In this paper, we
briefly outline existing methods applied to the sequence
alignment problem. Then we present a qualitative categorization
of some remarkable algorithms based on their data structures.
Specifically, we focus on research works published in the last two
decades (i.e. the period from 2000 to 2020). We describe the
employed data structures and expose some important algorithms
using each. Then we show potential strengths and weaknesses
among all these structures. This will guide biologists to decide
which program is best suited for a given purpose, and it also
intends to highlight weak points that deserve attention of
bioinformaticians in future research.

Keywords—Sequence alignment; data structures;
bioinformatics

I. INTRODUCTION
"Sequence alignment" is a relevant subfield of

bioinformatics that has attracted significant interest recently. It
focuses on comparing two or more sequences to find
homologies and visualize the effect of evolution across a
family of genes [1].

Sequences can be divided mainly into two types: genomic
and protein. Genomic sequences [2] are chains of nucleotides
along a DNA/RNA macromolecule. They can be represented
using the alphabet of the four letters of nitrogen bases: A, C, G
and T. Protein sequences [2] are chains of twenty types of
amino acids along a polypeptide. They can be represented
using an alphabet of 20 letters (except B, J, O, U, X and Z)
corresponding to the 20 existing amino acids.

Sequence alignment plays a crucial role in biology and
medicine. Indeed, it is considered as the basis of many other
tasks like phylogenetic analysis, evolution modeling, and
prediction of gene expression. An assortment of algorithms has
been applied to deal with sequence alignment. We can classify
them according to two categories: exact and heuristic
algorithms. Giving exact solutions, exact algorithms [3] are
considered efficient but slow. Here we can cite Dynamic
Programming (DP) developed by R. Bellman (1955). The
principle of the DP consists of transforming a sequence S into a
sequence Q, using three operations: substitution, insertion or
deletion of a character. There is a cost to every operation and
the aim is to find the sequence edited with a minimal cost.

Considering two sequences S and Q, alignments are mapped to
a matrix with entries representing optimal costs. Each cell is
calculated based on its preceding cells. Concerning heuristic
algorithms [4], they are designed for large databases and they
give only approximate solutions to the problem. In fact,
sequences are in exponential growth, thus, aligning a sequence
against a database containing millions of sequences is not
practicable. The aim of heuristic algorithms is to come up with
fast strategies to rapidly identify relevant fractions of the cells
in the DP matrix.

According to the number of compared sequences,
"sequence alignment" is classified into two categories: pairwise
alignment and multiple alignment. And according to the
aligned regions, "sequence alignment" admits two major
categories: global alignment category that aligns the entire
given sequence and local alignment category that reveals
similarity areas in long sequences. Fig. 1 gives a
schematization of the Sequence Alignment Problem.

In the last twenty years a broad range of alignment
techniques have been proposed [5]. Citing all these won't be
conceivable inside the extent of this work. Moreover, to the
best of our knowledge, only a few tools described in the
literature have shown efficient results. Indeed, besides giving
correct biological conclusions, they have managed to reduce
the execution time from several days to a few minutes.

Through this paper, we intend to classify some recent
alignment tools according to the widely used data structures.
We typically give more interest to those having shown
considerable improvement in terms of speed and memory
consumption. We will highlight their strengths in sequence
alignment tools, and we will also cite some of their drawbacks
to reveal their limitations.

Fig. 1. A Schematization of the Sequence Alignment Problem.

This work is within the framework of the research project "Big Data
Analytics - Methods and Applications (BDA-MA)". Author Hasna El Haji is
financially supported by a PhD grant of International University of Rabat.

268 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

The paper is structured as follows. Most frequently
employed methods for sequence alignment are briefly outlined
in Section II. Then Section III introduces four of the commonly
used data structures in literature and proposes a categorization
of the most relevant algorithms based on these structures.
Section IV discusses the utility of each structure in "Sequence
Alignment". Finally, Section V concludes the paper and
Section VI mentions a future work.

II. RELATED WORK

A. Global Alignment
Regarding global alignment, the "Needleman-Wunsch

algorithm" [6] is referred as a global alignment method based
on dynamic programming. It was implemented in 1970. It
gives a score to every possible alignment and tries to find all
eventual alignments having the optimal score. It is executed in
4 stages:

1) Fixing the "similarity matrix" and the gap penalty,
2) Initializing the optimality matrix F,
3) Filling in the matrix F,
4) Giving a Traceback.

Let A be a sequence of length l, B be a sequence of length
k, d be the gap penalty and Δi,j be the score of
Match/Mismatch. Table I gives a pseudo-code of the
Needleman-Wunsch Algorithm.

TABLE I. A PSEUDO-CODE OF NEEDLEMAN-WUNSCH ALGORITHM

1: Input: two sequences to align

2: Initialization:

3: for i=0..l do:

4: Fi,0= d × i

5: for j=0..k do:

6: F0,j= d × j

7: Recurrence relation:

8: For i=1..l do:

9: For j=1..k do:

10: 𝐹𝑖,𝑗 = 𝑚𝑎𝑥 �
𝐹𝑖−1,𝑗−1 + 𝛥𝑖,𝑗
𝐹𝑖−1,𝑗 + 𝑑
𝐶𝑖,𝑗−1 + 𝑑

11: Output: Optimal alignment

B. Local Alignment
 For local alignment, The "Smith-Waterman algorithm" [7]

is a basic tool also based on "dynamic programming" but with
extra choices to begin and end at wherever. Published in 1981,
it maximizes the similarity measure by matching characters or
inserting/deleting gaps in 4 steps:

1) Fixing the "similarity matrix" and the gap penalty,
2) Initializing the scoring matrix C,
3) Scoring,
4) Giving a Traceback.

Let A be a sequence of length l, B be a sequence of length
k, 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙 be the gap penalty and 𝛥𝑖,𝑗 be the score of
Match/Mismatch. Table II gives a pseudo-code of the Smith-
Waterman Algorithm.

TABLE II. A PSEUDO-CODE OF SMITH-WATERMAN ALGORITHM

1: Input: two sequences to align

2: Initialization:

3: Ci,0= 0

4: C0,j= 0

5: Recurrence relation:

6: For i=1..l do:

7: For j=1..k do:

8: 𝐶𝑖,𝑗 = 𝑚𝑎𝑥�

𝐶𝑖−1,𝑗−1 + 𝛥𝑖,𝑗
𝐶𝑖−1,𝑗 + 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙
𝐶𝑖,𝑗−1 + 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙

0

9: Output: Optimal alignment

C. Pairwise Sequence Alignment
"Pairwise sequence alignment" [8] is applied to examine

the similarities of two sequences by finding the best matching
alignment of them (the highest score). In other words, for a
given sequence and a reference genome, the goal is to find
positions in the reference where the sequence matches the best
[9]. Three approaches generate the pairwise alignment: dot-plot
analysis, "dynamic programming", and k-tulpe methods.

1) Dot-plot analysis (or Dot-matrix method): It is a
qualitative and simple tool that compares two sequences to
give the possible alignment [10]. Indeed, here are the steps of
the method:

a) Two sequences A and B are listed in a matrix,
b) We start from the first character in B, we move over

the matrix maintaining the first row and putting a dot in each
column where there is a similarity between A and B,

c) The process continues until all possible comparisons
between A and B are done. Such main diagonal dots refer to
regions of similarity and isolated dots refer to random matches.

2) Dynamic programming: It can achieve global and local
alignments. The global is most useful when the query
sequences are similar and have the same length. The alignment
calculation is generally done with the Needleman-Wunsch
algorithm. The algorithm does not calculate the difference
between two sequences but rather the similarity. Considering
two sequences 𝐴𝐴 and 𝐵𝐵, a two-dimensional array is filled row
after row (starting from the last) and for each row, column after
column (starting also from the last) respecting the recurrence
relation (1):

𝐹𝑖,𝑗 = 𝑚𝑎𝑥 �
𝐹𝑖−1,𝑗−1 + 𝛥𝑖,𝑗
𝐹𝑖−1,𝑗 + 𝑑
𝐶𝑖,𝑗−1 + 𝑑

 (1)

269 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

The local alignment is suitable to deal with dissimilar
sequences with eventual similarities in their broader sequence
context. An overall alignment would be insignificant.
Calculation is generally done with the Smith-Waterman
algorithm. The essential difference between Smith-Waterman
and Needleman-Wunsch algorithms is that any cell of the
initial comparison matrix in Smith-Waterman can be
considered as a starting point for the calculation of scores and
that any score that becomes less than zero stops the progression
of the algorithm, then the score will be reset with the value 0.
The calculation is based on the recurrence (2):

𝐶𝑖,𝑗 = 𝑚𝑎𝑥 �

𝐶𝑖−1,𝑗−1 + 𝛥𝑖,𝑗
𝐶𝑖−1,𝑗 + 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙
𝐶𝑖,𝑗−1 + 𝛥𝑖𝑛𝑠/𝑑𝑒𝑙

0

 (2)

3) K-tulpe methods (or word methods): They are heuristic
methods faster than the original dynamic programming
algorithms. They actually give only approximate solutions to
the problem. K-tuple methods are implemented in the database
search tools "FASTA" and "BLAST".

a) FASTA algorithm: An Algorithm for sequence
comparison [11] based on the linked list structure: a query
sequence is compared to all the strings in the database (DB). It
is executed in six stages:

• Search for hot-spots (the largest common sub-
sequences),

• Select the 10 best diagonal matches,

• Calculate the best scores for diagonal matches,

• Combine between good diagonal matches and indels,

• Calculate an alternative local alignment,

• Ordering of the results on the sequences of the DB

b) BLAST algorithm [12]: It is a tool based on a heuristic
method that uses Smith-Waterman program. It looks for
regions with strong similarity in alignments without spaces. It
improves the speed of FASTA by looking for a smaller number
of optimal hot spots. The substitution matrix is integrated from
the first stage of hot spot selection.

D. Multiple Sequence Alignment
Multiple sequence alignment (MSA) [13] is a

generalization of the "pairwise alignment"; it consists of
comparing multiple related sequences. The aim is to deduce the
presence of common ancestors between sequences.

Manually aligning more than three sequences can be
difficult and time-consuming. Hence a variety of
computational algorithms has been developed to accomplish
this task. Most MSA algorithms use dynamic programming
and heuristic methods (Progressive and Iterative).

1) Dynamic programming: DP is rarely used for more than
three sequences because of its high running time and memory
consumption. The same principle of DP in pairwise alignment
can be applied here to multiple sequences. Unfortunately, the

execution time grows considerably in an exponential way in
comparison with the size of sequences, which is impractical.
Nevertheless, a number of heuristic algorithms are used to
accelerate computation. The most widely used heuristic
methods today are the progressive and iterative techniques.

2) Progressive methods (tree methods): Invented in 1984,
progressive alignment needs initial assumptions about the links
between sequences to align, and uses those assumptions to
build a guide tree to represent the links. The principle is as
follows:

• Two most related sequences are aligned using dynamic
programming methods,

• A third one is aligned to the first result,

• The process continues until a unique alignment of all
the sequences persists.

The role of the "guide tree" is to choose a sequence to add
to the alignment at each step.

The most popular progressive methods used at present are
Clustal and T-coffee families.

a) Clustal family: Clustal (cluster analysis of the
pairwise alignments) [14] are series of a widely used
progressive programs; the original program was developed by
Des Higgins in 1988 and was designed specifically to generate
MSA on personal computers. The last standard version is
ClustalΩ, it was updated in 2018 [32].

All versions of the Clustal family align sequences building
progressively a multiple sequence alignment from successive
pairwise alignments. This approach is executed in three steps:

• Provide a pairwise alignment,

• Construct a guide tree by a Neighbor ‐Joining m
(developed in 1987 by Saitou and Nei),

• Use the tree to perform a multiple alignment.

b) T-coffee family: T-coffee [15] is a collection of
multiple sequence alignment tools. It was originally published
in 1998. T-coffee uses a new score function to evaluate the
results. The method works through three steps:

• Create a library of all pairwise alignments and build a
guide tree,

• Weight alignments by percentage of identical residues,

• Progressively build MSA using tree and weights.

3) Iterative methods: The major issue with progressive
alignment is that errors in the initial alignments are transmitted
to the whole MSA. Iterative methods [16] attempt to correct
this problem by iteratively realigning subgroups of sequences;
they start by making an initial global alignment of these
subgroups and then revising the alignment to achieve a more
efficient result. They can start from an initial MSA done with
progressive alignment and then apply some modifications
trying to improve it. Iteration is gainful in terms of coding,

270 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

time complexity and memory requirements. The most widely
used iterative methods are: MAFFT and MUSCLE.

a) MUSCLE: A method based on the guide tree
construction technique. It produces a pairwise alignment for
progressive alignment and for refinement. The progressive
alignment employs a profile function called log-expectation.
The refinement applies a tree-dependent restricted partition
technique to reduce the execution time of the algorithm [17].
The method consists of three steps:

• Draft progressive: step of multiple alignment. It
produces a first guide tree and a progressive alignment
using k-mer distance (k-mer is a string part of size k)
and log-expectation score.

• Improved progressive: step of building a second guide
tree using the Kimura distance. It re-estimates the first
tree and produces a new multiple alignment.

• Refinement: step of improving alignment. It refines
multiple alignment using the tree-dependent restricted
partitioning (deletes edges of guide tree, and re-form
the alignment of separated trees).

b) MAFFT: Developed in 2002, the first version of
MAFFT [18] was based on progressive alignment and
clustering with the Fast Fourier Transform. It had been later
provided to deal with large number of sequences and obtain
more efficient results in accuracy. It is mainly executed in three
stages:

• Detection of regions of similarity with Fast Fourier
Transform,

• Application of the basic dynamic programming
algorithm to select important strings,

• Build alignment.

III. A CATEGORIZATION OF THE MOST EFFICIENT
ALGORITHMS BASED ON THEIR DATA STRUCTURES

All the cited methods are the basis of the existing sequence
alignment algorithms. To obtain fast and efficient solutions in
memory, fundamental methodology in many of them is to build
a data structure that occupies a reasonable space of memory.
Data structures are one of the most important concepts in
programming. They are a way of storing and managing data.
Most of the sequence alignment algorithms are built upon such
basic data structures like: suffix arrays, suffix trees, hash
tables, graphs and others. In this section, we discuss four
relevant data structures and we propose a structure-based
categorization of the most important algorithms that have
marked the last two decades.

A. Suffix Arrays and Suffix Trees
Given a sequence S, a suffix array is an ordered array of all

suffixes of S, and a suffix tree is a representation of all suffixes
in S in the form of a tree. The latter contains a leaf for each
suffix, and each edge is labeled with a string of characters so
that the path from the origin to each leaf gives the
corresponding suffix.

In "Sequence Alignment", a suffix tree is an index data
structure for analogous sequences. It stores all suffixes of an
alignment of similar strings. In this category, we will cite 3
important algorithms:

In 2017, paper [19] proposed a multiple sequence
alignment algorithm that combines between a suffix tree and a
center-star strategy (MASC). The latter transforms an MSA
problem into a pairwise alignment, and the suffix tree matches
identical regions between two pairwise sequences. The
algorithm can be executed in a linear time complexity O(mn),
where m is the amount of sequences and n is their average
length. The method is also characterized with no loss in
accuracy for highly similar sequences.

Earlier, in 2013, article [20] proposed a memory gainful
edition of the suffix tree method: "Suffix Array of Alignment
(SAA)". It deals with pattern research appropriately like the
"Generalized Suffix Array (GSA)". The paper also presents a
practical approach for building the SAA. Experiments have
shown that the SAA is a relevant data structure for relatively
identical strings. It only takes around one seventh of the
memory provided by the GSA to process 11 strings.

Suffix trees aim to reduce memory space, they provide a
linear space complexity and they allow a linear-time searching
[21]. However they could require more than 20 bytes per
character, rather, suffix arrays are more useful generally. And
here we should cite reference [22] that shows in depth the
weakness of suffix trees and their negative effect on the
algorithm efficiency. The paper also proved that algorithms
based on suffix tree could be replaced with equivalent
algorithms based on suffix array, which is memory gainful.

Suffix trees are used for Read Alignment and Whole
Genome Alignment while suffix arrays are more adequate to
Prefix-suffix Overlaps Computation and Sequence Clustering.

B. Hash-Tables
A hash table is a kind of associative array storing pairs of

keys and values. It represents a genome sequence as multiple
lists of genomic positions. The concept of hash tables belongs
to the heuristic method "BLAST". Indeed, all hash table tools
adopt typically one principle.

Author in [23] has developed the first BLAST
implementation algorithm such that the stage of "word
mapping" is promoted by a hash table. The algorithm was later
improved by other researchers involving the notion of
parallelization and different other techniques to accelerate
alignments. Author in [24] proposed in 2012 an accelerated
short read aligner to approximate the original dynamic
programming algorithm. It uses a hash table and applies the
Needleman-Wunsch algorithm as an extension. The advantage
of the hash table here is to reduce the amount of work by
avoiding the generation of too many candidate regions.

Author in [25] proposed BFAST, a two-level indexing
method. It applies the hash in indexing to decrease the research
time. It was introduced to handle the alignment of short human
genomic sequences; this makes it an efficient aligning method
that is recommended to deal with each number of sequences
and every reference genome.

271 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

The methods based on hash tables usually provide high
sensitivity, but as a limitation, they occupy a lot of memory
because the size of the array grows exponentially.

C. Tries
Tries are a kind of trees storing the entire suffixes of a

sequence and enabling a quick matching of sequences. They
derive from the middle letters of "retrieval". They are efficient
in the storage of multiple sequences, and useful in accelerating
the process of sequence searching [26].

We have to cite here the reference [27] that proposed in
2018 a fast trie based method for multiple alignment. It
bypassed the classic enumeration of successive comparisons
with all strings. It also provides an original algorithm
combining a trie and an exact algorithm to find the edit
distance between strings.

Author in [28] marked 2015 by developing two multiple
sequence alignment tools. The first one employed tries to
accelerate the alignment of highly similar sequences. The
second worked in parallel with Hadoop to deal with big data.
Tries worked as a dictionary that stores substrings and indexes.
To collect each substring in a long sequence, tries reduce the
running time by avoiding the individual substring research.

We also cite [12] that presented BLAT, a tool applying tries
to find the regions matching with the query sequence. It
demonstrated a considerable progress in accuracy and running
time compared to the popular existing tools in the early 2000s.

The practical benefit of tries remains in time reduction. In
fact, aligning a sequence to the same duplicates of a string is
done only once. This is mainly due to the fact that duplicates
fall on the same line in the tree. Though, a hash table should
perform an alignment for each duplicate. Thus, tries stay
considerably faster than hash tables in time execution.

However, given a reference sequence of length m, a trie can
take O(m²) memory space, which makes it impractical to build
a trie for long sequences.

D. Graphs
Recent researches have shown superior accuracy and speed

in aligning sequences by using a "Variation Graph" instead of a
reference genome. A "Variation Graph" is a directed graph
where each edge spells a sequence. In fact, aligning sequences
to graph is trying to determine the optimal corresponding path
in the graph for every sequence.

In addition to variation graphs, a variety of graph data
structures have been studied in the last decades, such as "De
Bruijn" graphs, "ABruijn" graphs, String graphs, Partial Order
graphs, "Wheeler graphs", etc.

Each of these structures had demonstrated a considerable
progress in solving the sequence alignment problem (more
details are given in [29]). However, they had registered some
weaknesses: high execution time, overlook of arbitrary graphs,
imprecise results. In what follows, we will expose three recent
methods, based on variation graph, that have influenced more
considerably the alignment accuracy.

Authr in [30] suggests PaSGAL, an algorithm to solve
sequence-to-graph alignment using parallelism. It is considered
as the first parallel algorithm provided for this propose. It
generates improved results compared to previous tools on
execution time term. Indeed, it allows a decrease from long
durations to few hours.

The main idea of the algorithm is to accelerate the
"Dynamic Programming" approach on 3 phases: the 1st and the
2nd phases compute the starting and ending cells of the
alignment matrix, and the final phase performs a traceback.
The latter aims to calculate the "base-to-base" alignment scores
required for downstream biological analysis. The algorithm is
highly recommended for pan-genomics and antibiotic
resistance profiling.

In 2019, the authors of [31] studied two problems and
proposed two solutions: a generalization of the "Shift-And
algorithm" (designed for exact string matching) to graphs, and
a generalization of "Myers’ bit vector alignment algorithm" to
graphs. Both solutions are based on Needleman-Wunsch
algorithm. The paper used a "bit-level parallelization" to
estimate the distance between the query sequences and the
graph. The method is supposed to fit with the mammalian
genome.

The first author of [31] has recently improved his works,
and came up with GraphAligner, an efficient sequence-to-
graph alignment tool. Compared to existing graph methods, it
is 12 times more effective in time complexity. It also takes in
consideration long reads error correction and outperforms the
current tools 3 times in error rate.

The major advantage of graphs in general is that each stage
of the alignment can store and use results from previous
alignments. More specifically, Variation graphs become today
a reference for analyzing genetic variants.

IV. DISCUSSION
We highlighted the weaknesses and strengths of the most

relevant sequence alignment tools and precise their utility in
Biology. We aim to facilitate the choice of appropriate tools for
each biologist depending on his research intention.

Suffix trees are applicable to Read Alignment and Whole
Genome Alignment. Suffix arrays might be also applicable to
Read Alignment, but they are more useful in Prefix-suffix
Overlaps Computation and Sequence Clustering. Compared to
the discussed data structures, hash tables remain more
performing in query time execution but they are memory
consumers. As application in Bioinformatics, they are more
suitable for storing sets of k-mers. Finally, Graphs are relevant
in Read Mapping and they can fully represent population-wide
variations.

V. CONCLUSION
This work is a small sample of two decades of scientific

production in the field of sequence alignment. In fact, many
studies have demonstrated considerable progress in storage and
acceleration of the aligning process. The key idea of all the
exposed methods is to create data structures to store calculated

272 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

scores in the smallest possible space during alignment. That
will provide a gain in both memory and runtime.

We started with a classification of the basic methods of
sequence alignment. Then we introduced four of the commonly
used data structures in literature (suffix arrays/trees, tries, hash-
tables and graphs) and we proposed a categorization of the
most relevant algorithms based on these. There are such other
structures like Burrows-Wheeler transform (BWT), bloom
filters, FM-index (combination between the properties of suffix
array and the BWT), etc., but we tried to give more attention to
the four cited data structures by means of their efficiency in
giving the best alignment.

VI. FUTURE WORK
From the performance point of view, none of the cited

algorithms is yet considered as ideal. A best solution should
combine accuracy, speed and small memory space.
Furthermore, sequence databases are rapidly and continuously
growing, thus the development of high performing methods is
still under research.

We believe that graphs, in full development, can be refined
further. As a future work, we will give more interest to the
sequence-to-graph alignment.

REFERENCES
[1] B. Chowdhury and G. Garai, “A review on multiple sequence alignment

from the perspective of genetic algorithm,” Genomics, pp. 419–431,
2017.

[2] J. C. WHISSTOCK and A. M. LESK, “Prediction of protein function
from protein sequence and structure,” Q. Rev. Biophys., pp. 307–340,
2003.

[3] A. PHILLIPS, D. JANIES, and W. WHEELER, “Multiple sequence
alignment in phylogenetic analysis,” Mol. Phylogenet. Evol., pp. 317–
330, 2000.

[4] İ. Ö. Bucak, V. Uslan, and S. Member, “An analysis of Sequence
Alignment : Heuristic Algorithms,” pp. 1824–1827, 2010.

[5] H. Ng, S. Liu, and W. Luk, “Reconfigurable Acceleration of Genetic
Sequence Alignment : A Survey of Two Decades of Efforts,” in 27th
International Conference on Field Programmable Logic and
Applications (FPL), 2017.

[6] “S.B. Needleman and C.D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins, ”J.
Mol. Biol., pp. 443-453, 1970.

[7] A. Khajeh-Saeed, S. Poole, and J. Blair Perot, “Acceleration of the
Smith-Waterman algorithm using single and multiple graphics
processors,” J. Comput. Phys., pp. 4247–4258, 2010.

[8] W. Haque, A. A. Aravind, and B. Reddy, “Pairwise sequence alignment
algorithms: a survey,” in ISTA ’09: Proceedings of the 2009 conference
on Information Science, Technology and Applications, pp. 96–103,
2009.

[9] K. Salikhov, “Efficient algorithms and data structures for indexing DNA
sequence data,” Bioinformatics [q-bio.QM]. Université Paris-Est;
Université Lomonossov (Moscou), 2017. English. ffNNT :
2017PESC1232ff. fftel-01762479f.

[10] N. GALTIER, M. GOUY, and C. GAUTIER, “SEAVIEW and
PHYLO_WIN: two graphic tools for sequence alignment and molecular
phylogeny,” Bioinformatics, pp. 543–548, 1996.

[11] A. L. Delcher, “Fast algorithms for large-scale genome alignment and
comparison,” Nucleic Acids Res., pp. 2478–2483, 2002.

[12] W. J. Kent, “BLAT — The BLAST -Like Alignment Tool,” Genome
Res., pp. 656–664, 2002.

[13] D. W. Mount, “Using Iterative Methods for Global Multiple Sequence
Alignment,” Cold Spring Harb Protoc, pp. 1–6, 2009.

[14] J. Daugelaite, A. O’ Driscoll, and R. D. Sleator, “An Overview of
Multiple Sequence Alignments and Cloud Computing in
Bioinformatics,” ISRN Biomath., pp. 1–14, 2013.

[15] C. Notredame, “Recent progress in multiple sequence alignment: A
survey,” Pharmacogenomics, pp. 131–144, 2002.

[16] T. Rausch, A. K. Emde, D. Weese, A. Döring, C. Notredame, and K.
Reinert, “Segment-based multiple sequence alignment,” Bioinformatics,
pp. 187–192, 2008.

[17] R. C. Edgar, “MUSCLE: Multiple sequence alignment with high
accuracy and high throughput,” Nucleic Acids Res., pp. 1792–1797,
2004.

[18] K. Katoh, K. Misawa, K. Kuma, and M. T, “MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier transform,”
Nucleic Acids Res., pp. 3059 ‐3066, 2002.

[19] W. Su, X. Liao, Y. Lu, Q. Zou, and S. Peng, “Multiple Sequence
Alignment Based on a Suffix Tree and Center-Star Strategy: A Linear
Method for Multiple Nucleotide Sequence Alignment on Spark Parallel
Framework,” J. Comput. Biol., 2017.

[20] J. C. Na et al., “Suffix array of alignment: A practical index for similar
data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), pp. 243–254, 2013.

[21] H. Li and N. Homer, “A survey of sequence alignment algorithms for
next-generation sequencing,” Briefings In Bioinformatics, pp. 473-483,
2010.

[22] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees
with enhanced suffix arrays,” J. Discret. Algorithms, pp. 53–86, 2004.

[23] P. Krishnamurthy et al., “Biosequence Similarity Search on the Mercury
System,” J. VLSI Signal Process. Syst., pp. 101–121, 2007.

[24] Y. Chen, B. Schmidt, and D. L. Maksell, “An FPGA Aligner for Short
Read Mapping,” in 22nd International Conference on Field
Programmable Logic and Applications, pp. 511–514, 2012.

[25] N. Homer, B. Merriman, and S. F. Nelson, “BFAST: an alignment tool
for large scale genome resequencing,” PLoS One, 2009.

[26] J. Wang et al., “Interactive and fuzzy search : a dynamic way to explore
MEDLINE,” Bioinformatics, pp. 2321–2327, 2010.

[27] P. A. Yakovlev, “Fast Trie-Based Method for Multiple Pairwise
Sequence Alignment,” Doklady Akademii Nauk, pp. 64–67, 2019.

[28] Q. Zou, Q. Hu, M. Guo, and G. Wang, “HAlign: Fast multiple similar
DNA/RNA sequence alignment based on the centre star strategy,”
Bioinformatics, pp. 2475–2481, 2015.

[29] B. Kehr, K. Trappe, M. Holtgrewe, and K. Reinert, “Genome alignment
with graph data structures : a comparison,” BMC Bioinformatics, 2014.

[30] C. Jain, A. Dilthey, S. Misra, H. Zhang, and S. Aluru, “Accelerating
sequence alignment to graphs,” Proc. - 2019 IEEE 33rd Int. Parallel
Distrib. Process. Symp. IPDPS 2019, pp. 451–461, 2019.

[31] M. Rautiainen, V. Mäkinen, and T. Marschall, “Bit-parallel sequence-to-
graph alignment,” Bioinformatics, pp. 3599–3607, 2019.

[32] F. Sievers and D. G. Higgins, “Clustal Omega for making
accuratealignments of many protein sequences”, Protein Science, pp.
135-145, 2018.

273 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	A. Global Alignment
	1) Fixing the "similarity matrix" and the gap penalty,
	2) Initializing the optimality matrix F,
	3) Filling in the matrix F,
	4) Giving a Traceback.

	TABLE I. A Pseudo-Code of Needleman-Wunsch Algorithm
	B. Local Alignment
	1) Fixing the "similarity matrix" and the gap penalty,
	2) Initializing the scoring matrix C,
	3) Scoring,
	4) Giving a Traceback.

	TABLE II. A Pseudo-Code of Smith-Waterman Algorithm
	C. Pairwise Sequence Alignment
	1) Dot-plot analysis (or Dot-matrix method): It is a qualitative and simple tool that compares two sequences to give the possible alignment [10]. Indeed, here are the steps of the method:
	a) Two sequences A and B are listed in a matrix,
	b) We start from the first character in B, we move over the matrix maintaining the first row and putting a dot in each column where there is a similarity between A and B,
	c) The process continues until all possible comparisons between A and B are done. Such main diagonal dots refer to regions of similarity and isolated dots refer to random matches.

	2) Dynamic programming: It can achieve global and local alignments. The global is most useful when the query sequences are similar and have the same length. The alignment calculation is generally done with the Needleman-Wunsch algorithm. The algorithm does�
	3) K-tulpe methods (or word methods): They are heuristic methods faster than the original dynamic programming algorithms. They actually give only approximate solutions to the problem. K-tuple methods are implemented in the database search tools "FASTA" and�
	a) FASTA algorithm: An Algorithm for sequence comparison [11] based on the linked list structure: a query sequence is compared to all the strings in the database (DB). It is executed in six stages:
	b) BLAST algorithm [12]: It is a tool based on a heuristic method that uses Smith-Waterman program. It looks for regions with strong similarity in alignments without spaces. It improves the speed of FASTA by looking for a smaller number of optimal hot spot�

	D. Multiple Sequence Alignment
	1) Dynamic programming: DP is rarely used for more than three sequences because of its high running time and memory consumption. The same principle of DP in pairwise alignment can be applied here to multiple sequences. Unfortunately, the execution time gro�
	2) Progressive methods (tree methods): Invented in 1984, progressive alignment needs initial assumptions about the links between sequences to align, and uses those assumptions to build a guide tree to represent the links. The principle is as follows:
	a) Clustal family: Clustal (cluster analysis of the pairwise alignments) [14] are series of a widely used progressive programs; the original program was developed by Des Higgins in 1988 and was designed specifically to generate MSA on personal computers. T�
	b) T-coffee family: T-coffee [15] is a collection of multiple sequence alignment tools. It was originally published in 1998. T-coffee uses a new score function to evaluate the results. The method works through three steps:

	3) Iterative methods: The major issue with progressive alignment is that errors in the initial alignments are transmitted to the whole MSA. Iterative methods [16] attempt to correct this problem by iteratively realigning subgroups of sequences; they start �
	a) MUSCLE: A method based on the guide tree construction technique. It produces a pairwise alignment for progressive alignment and for refinement. The progressive alignment employs a profile function called log-expectation. The refinement applies a tree-de�
	b) MAFFT: Developed in 2002, the first version of MAFFT [18] was based on progressive alignment and clustering with the Fast Fourier Transform. It had been later provided to deal with large number of sequences and obtain more efficient results in accuracy.�

	III. A Categorization of the Most Efficient Algorithms based on their Data Structures
	A. Suffix Arrays and Suffix Trees
	B. Hash-Tables
	C. Tries
	D. Graphs

	IV. Discussion
	V. Conclusion
	VI. Future Work

