
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

ER Model Partitioning: Towards Trustworthy
Automated Systems Development

Dhammika Pieris1

Department of Human Resource
Management

Faculty of Commerce and
Management Studies

University of Kelaniya
Sri Lanka

M. C Wijegunesekera2
Department of Software Engineering

Faculty of Computing and
Technology

University of Kelaniya
Sri Lanka

N. G. J Dias3
Department of Computer Systems

Engineering
Faculty of Computing and

Technology
University of Kelaniya

Sri Lanka

Abstract—In database development, a conceptual model is
created, in the form of an Entity-relationship (ER) model, and
transformed to a relational database schema (RDS) to create the
database. However, some important information represented on
the ER model may not be transformed and represented on the
RDS. This situation causes a loss of information during the
transformation process. With a view to preserving information,
in our previous study, we standardized the transformation
process as a one-to-one and onto mapping from the ER model to
the RDS. For this purpose, we modified the ER model and the
transformation algorithm resolving some deficiencies existed in
them. Since the mapping was established using a few real-world
cases as a basis and for verification purposes, a formal-proof is
necessary to validate the work. Thus, the ongoing research
aiming to create a proof will show how a given ER model can be
partitioned into a unique set of segments and use it to represent
the ER model itself. How the findings can be used to complete the
proof in the future will also be explained. Significance of the
research on automating database development, teaching
conceptual modeling, and using formal methods will also be
discussed.

Keywords—Conceptual model; Entity Relationship (ER) model;
relational database schema; information preservation;
transformation

I. INTRODUCTION
The Entity-Relationship (ER) model[1, 2] is widely used to

create conceptual schemas (conceptual models) to represent
application domains in the field of Information Systems
development. However, when an ER model is transformed to a
Relational Database Schema (RDS) of the relational model,
some critical information modeled on the ER model may not
be represented meaningfully on the RDS [3-5]. This situation
causes a loss of information during the transformation process
[5, 6].

Min-max constraints, role names, composite attributes,
subtype/supertype hierarchies, and certain relationship types
are frequently lost in the transformation process [5][13].

Previous studies undertaken by other researchers on
information loss [6-11] were of varying opinion. Some
researches proposed ignoring the information that is lost during
the transformation process and accepting only the information,
that is, actually transformed. This proposal is called

information reducing transformation (e.g., [8, 9].) Researches
in [7] and [10] suggested that the min-max constraints that
cannot be transformed and represented on the RDS to be
directly implemented in the database system via triggers and
stored procedures. This is a way of bypassing the RDS.
According to [11], min-max constraints can be represented as a
set of functions in a separate schema, external to the RDS. The
functions are then implemented in the database as a program
written in extended SQL (e.g., PL/SQL or T/SQL). The
method is also a way of bypassing the RDS. The research in [6]
indicated that supertype/subtype hierarchies that could be lost
during a transformation could be directly implemented in the
database system. It is also a way of bypassing the RDS. As
indicated in [10] and [11], min-max constraints can be directly
implemented in user application programs. It is a way of
bypassing the logical level RDS as well as the physical level
database.

In summary, some previous research suggests bypassing
the logical level ̶ that is, the RDS ̶ and implementing the lost
information directly on the physical level. Some others suggest
bypassing both the logical level and the physical level and
implementing the lost information directly in user application
programs. Some other researchers proposed ignoring the
information that is lost during the transformation process,
suggesting that the information that is actually preserved is
adequate.

However, in contrast to bypassing the RDS and ignoring
the lost information, in our study, we focus on preserving
information and representing them on the logical level RDS as
much as possible.

According to [12], if the information is preserved when a
conceptual schema (e.g., ER model) is transformed to a logical
schema (e.g., RDS) (forward transformation), the logical
schema should be able to reverse back to the conceptual
schema (reverse transformation) by means of reverse applying
the steps of the algorithm used for the forward transformation
process. We based our research on this theory proposed by
[12].

We argue that if the forward transformation can create a
one-to-one and onto mapping from the ER model to the RDS,
the RDS could be reversed back to the ER model. The RDS

286 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

could be reversed back to the ER model means, according to
[12], the information is preserved in the transformation process
from the ER model to the RDS.

However, during our previous studies, we found that the
deficiencies that exist in the ER model and the transformation
algorithm hinder such a one-to-one and onto mapping is being
established in the forward transformation process. [5, 13] [14-
16]. We then modified the ER model and the transformation
algorithm [5, 14, 15], eliminated the deficiencies and avoid that
hindrance. Accordingly we established a one-to-one and onto
mapping in the forward transformation process. We wish to
generalize the work and prove it formally.

It is necessary to show that the concept can be applied to
any ER model representing any application domain. On the
other hand, a formal proof that can justify the accuracy of the
system is an essential goal in Computer Science [17].

The current work aims to show that a one-to-one and onto
mapping, as defined in mathematics, exists from an ER model
diagram (also called an “ER model”) to its RDS. The ER
model diagram is created using the modified ER model and
transformed to RDS using the modified transformation
algorithm. For this purpose, we need to show that a given ER
model and its RDS can be expressed as sets.

In the current work, we show that an ER model can be
expressed as a set, and the set can be used as a representation
of the ER model itself. For this purpose, we use a generic ER
model .̶one that represents phenomena in symbolic notation. A
generic ER model can be used as a general representative for
exemplifying any ER model from any application domain[13].
We show that the generic ER model can be partitioned into
unique segments that each one can represent a meaning in the
real world. We call them ER-construct-units and show that
such a unit cannot be divided further into smaller units while
retaining its meaning. We then show that the set of ER-
construct-units of the ER model can be used to represent the
ER model itself.

A. Significance of the Research
The traditional ER model uses conventional graphical

constructs to create ER model diagrams. Accordingly, a
rectangle is used to represent an entity type, an oval is used to
represent an attribute, and a diamond is used to represent a
relationship type. The traditional ER model is regarded to be
providing a true natural representation of the real world. The
model is still popular and widely used for conceptual
modelling of databases as well as teaching and learning the
database design process (some recent examples for its use, in
practice and research, are: [18-20]).

What we have modified is the traditional ER model. As a
result, of the modifications introduced to the traditional ER
model and the transformation algorithm, a one-to-one
correspondence is established from any ER model diagram
created by the modified ER model to the RDS created by the
modified transformation algorithm. We argue that, if this
modified approach is used, the database designing process will
become a much more natural, straightforward, momentary, and
trustworthy task for its learners, teachers, and practitioners.

Many automated tools are available for creating ER models
for the traditional ER model and its variants. However, no such
tool exists to provide a real automatic transformation from the
traditional ER model to the RDS. Some tools claiming to be
providing an automated transformation can only help the user
visualize what he/she is doing with the computer. The user has
to transform the ER model diagram to the RDS manually using
pointing and clicking devices. The user can monitor and, if
necessary, rectify what he/she is doing in the computer. In
contrast, we argue that our modified database design approach
can provide a high level of and a true nature of automation to
the transformation process. Once the ER model diagram is
produced, to transform it to the RDS is just a one-click away
action. Thus, we believe a Computer-Aided Software
Engineering tool (also called CASE tool) could be produced
based on our modified approach to automate the transformation
process. Tools that are limited to creating ER model diagrams
only could also be extended to provide a true automated
transformation. We also believe such a CASE tool that we
expect will equally enhance the teaching and learning process
of database design.

The current research seeks to develop a formal method and
use it to validate a systems development method proposed.
Thus, we hope the research will contribute significantly to the
area of formal methods in software engineering.

B. Related Research
Kamišalić et al. [21] examine the effectiveness of learning

conceptual database design. They found that the manual
transformation from a conceptual model to a logical data model
can increase students' understanding of the concept. Khaire and
Mali [22] presented a web application that can assist in
generating an ER diagram automatically. The application needs
the user to fill a form it provides to get entities, attributes, and
relationships in the application domain as inputs. It then gives
the ER diagram as output, automatically[22]. Kuk et al. [23]
also present a semi-automated method for generating an ER
model from requirements stated in a natural langue. Javed and
Lin [24] also undertook a similar study. The method they
investigated could generate ER models automatically from
requirements stated in a natural language [24]. Yang and Cao,
[25] investigated how MySQL Workbench ̶ a visual tool for
data modelling ̶ can be used for helping students improve their
performance in the ER model to RDS transformation. They
also investigated the effects of using MySQL Workbench, in
teaching ER to relational transformation. The authors found
that visualization of the transformation process could increase
the students’ interest in it and their engagement with it, as well
as their ability to transform the ER model’s concepts to the
RDS [25]. Wu et al. [26] investigated several versions of the
ER model to understand the right ER diagram convention used
to teach ER modelling to undergraduate students. Accordingly,
they investigated the traditional ER model, the Bachman ER
model ̶ the ER model in Bachman notation, and the UML
class diagram. The authors found that the traditional ER model
is much better than any other model they investigated to
introduce ER modeling concepts to students [26].

We will show how our standardized ER to relational
transformation process can enhance the above findings.
However, the main objective of this paper is to validate

287 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

formally the standardization that we had undertaken. Thus,
with that view in mind, we organize the rest of this paper as
follows. In Section II, we explore how a real-world small ER
model can be partitioned and its ER-construct-units identified.
In Section III, we deal with a generic ER model and define the
ER-construct-units discussed in Section II. Section IV extends
the work done in Section II with a larger ER model. ER-
construct-units found in Section IV are defined in Section V.
Section VI presents the conclusion, while Section VII details
future research.

II. PARTITIONING A REAL-WORLD ER MODEL INTO
SEGMENTS

An ER model is a conceptual schema represented as a
diagram drawn using ER constructs such as entity types,
attributes, and relationship types. It is intended to represent a
user application domain in the real world.

On an ER model, the ER constructs do not exist in isolation
separated from each other. Still, they exist connected logically
as an arrangement that portrays a real-world meaning relevant
and vital to the application domain concerned.

For instance, a regular (strong) entity type, including its
attributes, is an ER construct arrangement. Fig. 1 shows a
regular entity type, which is made up of three ER constructs in
such a way that (i) - a primary key(PK) attribute ER construct
(Emp_No”), and (ii) - a simple attribute ER construct
(“Name”) are connected to (iii) - a regular entity type ER
construct (“Employee”). The ER model that contains the
regular entity type is drawn for representing a portion of a
“Company” user application domain.

We argue that the three constructs are the minimum
requirement for a regular entity type to be constructed for any
application domain, not only for a “Company” application
domain. Thus, what is presented in Fig. 1 is the smallest
possible regular entity type arrangement. Therefore, it cannot
be split or any of its three constructs removed. For instance, if
its simple attribute or the PK attribute is removed, the
remainder would become meaningless. Hence, each of the
three constructs, the PK attribute, the simple attribute, and the
regular entity type are mandatory and should exist connected as
a single coherent arrangement regardless of the application
domain concerned. Therefore, we consider the arrangement to
be a single unit of ER constructs.

Even though Fig. 1 regular entity type, which we consider a
single unit of ER constructs, cannot be split, it can be expanded
by adding one or more simple attributes. For instance, the
regular entity type in Fig. 2 expands the regular entity type in
Fig. 1 by adding two more simple attributes: “Address” and
“Gender.” Thus, the regular entity type in Fig. 1 acts as a base
and allows other attributes to be added to it. In this context, we
consider this single unit of ER constructs to be a base unit of
ER constructs. Since it is of a regular entity type, we consider it
and call it Regular-entity-base-ER-construct-unit.

Further, we call the simple attributes that are added to this
Regular-entity-base-ER-construct-unit the secondary simple
attributes. We call the secondary simple attributes the Regular-
entity-secondary-simple-attribute-ER-construct-unit attached to
a Regular-entity-base-ER-construct-unit.

Employee

Emp_No Name

Fig. 1. A Regular Entity Type with Two Simple Attributes.

Employee

Emp_No Name

GenderAddress

(A)

(B)

Fig. 2. (A) -The base Regular Entity Type unit, and (B) -the Secondary
Simple Attribute unit that are Separated.

Both the Regular-entity-base-ER-construct-unit and the
Regular-entity-secondary-simple-attribute-ER-construct-unit
are shown partitioned and labelled as (A) and (B), respectively,
in Fig. 2. Further, Fig. 2-(B) shows how this Regular-entity-
secondary-simple-attribute-ER-construct-unit exists attached to
the Regular-entity-base-ER-construct-unit (Fig. 2-(A)).

Next, in section III, we will generalize the concept using a
generic ER model proposed by [13].

III. PARTITIONING A SMALL GENERIC ER MODEL AND
DEFINING ITS ER-CONSTRUCT-UNITS

In the generic ER model [13], the letter "𝑒" represents a
regular entity type. Consequently, 𝑒𝑖 represents the 𝑖𝑡ℎ regular
entity type, where 𝑖 ∈ ℕ = {1, 2, 3 … } . Further, 𝑘(𝑒𝑖)
represents the primary key (PK) attribute. The symbol 𝑠𝑗(𝑒𝑖)
represents the 𝑗𝑡ℎ simple attribute where, 𝑗 ∈ ℕ. Accordingly,
the symbols 𝑠1(𝑒𝑖), 𝑠2(𝑒𝑖), and 𝑠3(𝑒𝑖),…, 𝑠𝑛(𝑒𝑖), represent the
1𝑠𝑡 , 2𝑛𝑑, and 𝑛𝑡ℎ simple attributes of the entity type 𝑒𝑖 . The
Fig. 3, represents a generic ER-model of this nature. Notice
that we reserve the notation, 𝑠1(𝑒𝑖), to represent the mandatory
simple attribute (section II).

In the generic ER model (Fig. 3), the partition named 𝑏(𝑒𝑖)
shows the generic equivalent of the Regular-entity-base-ER-
construct-unit, the one we showed in the partition (A) in the
real-world ER model (Fig. 2)(section II). Accordingly, we
formally define the first ER-construct-unit as follows.

A. Definition 1
In a generic ER model, a regular entity type, 𝑒𝑖 , its key

attribute, 𝑘(𝑒𝑖) , and its mandatory simple attribute, 𝑠1(𝑒𝑖) ,
taken together, is defined as an ER-construct-unit and named
as the “Regular-entity-base-ER-construct-unit” and denoted as
𝑏(𝑒𝑖). The unit is shown partitioned and named as 𝑏(𝑒𝑖) in the
generic ER model in Fig. 3. Here, the letter “𝑏” indicates
“base.”

288 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

ei

k(ei)

sn(ei)

s3(ei)

s1(ei)

s2(ei)

b(ei)

c(ei)

Fig. 3. A Generic ER Model that Represents a Regular Entity Type.

The unit is independent and can exist itself meaningfully. It
has a semantic meaning itself. The unit acts as a base and lets
other constructs to be attached to it.

In the generic ER model (Fig. 3), recall that we reserved the
symbol, 𝑠1

 (𝑒𝑖) to denote the mandatory simple attribute of the
entity type 𝑒𝑖 . Therefore, we denote a secondary simple
attribute by 𝑠𝑡(𝑒𝑖), where 𝑡 ≥ 2. For instance, a set of 𝑛 −
1, where 𝑛 > 1 number of secondary simple attributes of a
regular entity type, 𝑒𝑖 can be denoted as 𝑠2

 (𝑒𝑖), 𝑠3
 (𝑒𝑖), …,

𝑠𝑛
 (𝑒𝑖).

In the generic ER model (Fig. 3), the partition named 𝑐(𝑒𝑖)
shows the generic equivalent of the Regular-entity-secondary-
simple-attribute-ER-construct-unit. It is the one we have shown
in the partition (B) in the real-world ER model (Fig. 2)
(Section II). Accordingly, we define the ER-construct-unit, as
follows.

B. Definition 2
 In a generic ER model, the collection of the secondary

simple attribute constructs, {𝑠𝑡(𝑒𝑖)/ 𝑡 ≥ 2, 𝑡 ∈ ℕ}, connected
to a Regular-entity-base-ER- construct-unit, 𝑏(𝑒𝑖) is defined as
an ER-construct-unit and named as the “Regular-entity-
secondary-simple-attribute-ER-construct-unit” and denoted as
𝑐(𝑒𝑖) (Fig. 3). The unit is shown partitioned and named as
𝑐(𝑒𝑖) in the generic ER model in Fig. 3. The letter “𝑐" in 𝑐(𝑒𝑖)
indicates the meaning “secondary.” The unit, 𝑐(𝑒𝑖), itself does
not provide any semantic meaning when it is taken alone. It
provides a meaning only when it is attached to a relevant

Regular-entity-base-ER-construct-unit, 𝑏(𝑒𝑖. It always depends
on its base unit, 𝑏(𝑒𝑖), for existence.

Fig. 3 shows how a regular entity type, 𝑒𝑖, in a generic ER
model can be partitioned into two ER-construct-units, named,
𝑏(𝑒𝑖), and 𝑐(𝑒𝑖). It also shows how the two units:𝑏(𝑒𝑖) and
𝑐(𝑒𝑖) , can exist associated with each other and form the
segment that consists of the regular entity type, 𝑒𝑖 and the
attributes connected to it, in a generic ER model. The two units
forms a set: { 𝑏(𝑒𝑖), 𝑐(𝑒𝑖) }. We assume the set can be used to
represent the generic ER model in Fig. 3 that contains the
regular entity type, 𝑒𝑖.

IV. PARTITIONING AN ER MODEL INCLUDING A
RELATIONSHIP TYPE AND IDENTIFYING ITS

ER-CONSTRUCT-UNITS
In this section, we consider an ER model with a

relationship type and then identify and partition its ER-
construct-units.

Consider the real-world ER model given in Fig. 4 that
represents two regular entity types, “Vehicle” and “Project,”
and a relationship type “AssignedTo” existing in between
them. A relationship type like AssignedTo where only two
entity types participate in is called a relationship type of degree
two. A degree two relationship type like AssignedTo is called a
binary relationship type [2]. Notice that in the current work, we
only deal with binary relationship types existing in between
two different regular entity types. We do not consider recursive
relationship types, in the current work.

The ER model in Fig. 4 shows min-max structural
constraints on the association of the two entity types with each
other via the relationship type. They are shown as two
bracketed pairs of values (𝑚𝑖𝑛 , 𝑚𝑎𝑥), as (𝑚1 , 𝑥1) and
(𝑚2, 𝑥2). The pair (𝑚1, 𝑥1) is placed in between the entity type
Vehicle and the relationship type AssignedTo, while (𝑚2, 𝑥2)
is placed in between the entity type Project and the relationship
type. We will define and discuss the functionality of the two
bracketed (min, max) pairs following how min-max structural
constraints have been presented in the literature (e.g., [2]).

Vehicle

Pro_No

Address

Project

Veh_No

Make

AssignedTo (m2, x2)(m1, x1)

Name

Type

Role

AssignedDate

(A)

(B)

(C)

(D)

(E)

(F)

Period

Fig. 4. An ER Model that Contains a Binary One-to-many Relationship Type and Some Attributes Attached to it.

289 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Accordingly, the pair of variables: 𝑚1 and 𝑥1 lie in the
range: 0 ≤ 𝑚1 ≤ 𝑥1 and 𝑥1 ≥ 1, while the pair 𝑚2 and 𝑥2 lie
in the range: 0 ≤ 𝑚2 ≤ 𝑥2 and 𝑥2 ≥ 1. Variables: 𝑚1 and 𝑚2
represent minimum (𝑚𝑖𝑛) values, while 𝑥1 and 𝑥2 represent
maximum (𝑚𝑎𝑥) values, in their respective ranges. The
number 𝑚1 , in (𝑚1 , 𝑥1) means an entity in the entity type
Vehicle should participate (via the relationship type
AssignedTo) in a minimum 𝑚1 number of entities of the entity
type Project. The constraint is called the participation
constraint. Notice that the number 𝑚2 in (𝑚2, 𝑥2) also bears a
similar meaning.

On the other hand, the numbers 𝑥1 in (𝑚1 , 𝑥1) and 𝑥2 in
(𝑚2 , 𝑥2) represent another constraint called cardinality ratio
constraint. The constraint is expressed categorizing into three
types as one-to-one, one-to-many, and many-to-many, and
from one direction of the relationship type to the other.

To understand the participative constraint and the
cardinality ratio constraint let us consider the following
example (Example 1) ̶a pair of min-max structural constraints:

[(𝑚1, 𝑥1) , (𝑚2, 𝑥2)] ≡ [(0,3) , (1,1)]

Where, 𝑚1 = 0, 𝑥1 = 3, 𝑚2 = 1, 𝑥2 = 1

For instance, 𝑚1 represents participation constraint, and
𝑚1 = 0 means some entities in the entity type Vehicle may not
participate in the relationship type AssignedTo and hence not
associate with any entity in the entity type Project. In this case,
the participation of the entity type Vehicle in the relationship
type AssignedTo is called “partial” or “optional.” Similarly,
𝑚2 = 1 means every entity in the entity type Project can exist
only if it participates in at least one AssignedTo relationship
type instance with an entity in the Vehicle entity type. In this
case, the participation of the entity type Project in the
relationship type AssignedTo is called “total” or “mandatory.”

On the other hand, 𝑥1 = 3 and 𝑥2 = 1 indicate a one-to-
many cardinality ratio constraint, which exists in the direction
from the entity type Vehicle to the entity type Project. It means
an entity in the entity type Vehicle can relate with minimum 0
and maximum 3 entities in the entity type Project, but an entity
in the entity type Project can relate with only one entity
(maximum) in the entity type Vehicle.

Table I summarizes two more examples (Example 2 and
Example 3) of min-max structural constraints. Example 2
presents a one-to-one cardinality ratio constraint, while
Example 3 presents a many-to-many constraint. Notice that
Example 1, mentioned above, has already presented a one-to-
many constraint.The binary relationship type consists of the ER
constructs: (i)- the relationship type construct “AssignedTo”
attached to two regular entity types, “Vehicle” and “Project”
and (ii)-a pair of min-max structural constraint constructs
denoted by two bracketed pairs of values: (𝑚1, 𝑥1) and (𝑚2,
𝑥2). Each pair is placed on either side of the relationship type.

Assume any of the constructs: (i) or (ii), mentioned above,
does not exist in the structure. Then the relationship type may
not exist, and the remainder may become meaningless.
Therefore, for a meaningful relationship type to exist, both
constructs must exist with binding together and acting as a
single unit.

TABLE I. SUMMARY OF TWO MORE STRUCTURAL CONSTRAINT
EXAMPLES

Participative constraint Cardinality ratio constraint
Example 2

𝑚1 𝑚2 𝑥1 𝑥2
1 0 1 1
mandatory /total partial/optional one-to-one

Example 3

𝑚1 𝑚2 𝑥1 𝑥2
1 2 3 5
mandatory /total mandatory /total many-to-many

Two simple attributes: “AssignedDate” and “Period” are
attached to the relationship type AssignedTo in Fig. 4. They
are optional attributes. That is, they may or may not exist.

Thus, we consider the relationship type consisting of the
relationship type construct and the min-max structural
constraint construct to be a separate ER-construct-unit.

Since the attributes can sometimes exist attached to the
relationship type, the relationship type acts as a base and
allows other constructs (attributes) to be attached to it. In this
context, we deem the relationship type to be a base ER-
construct-unit.

The relationship type exists attached to two Regular-entity-
base-ER-construct-units. If the two Regular-entity-base-ER-
construct-units do not exist, the relationship type does not
exist. Thus, the relationship type is a dependent unit that
depends on the two Regular-entity-base-ER-construct-units.
Accordingly, the relationship type ER-construct-unit depends
on the Regular-entity-base-ER-construct-units for its existence.
In the meantime, it acts as a base and allows other constructs
(attributes) to be attached to it.

We name the relationship type to be a Binary-relationship-
type-ER-construct-unit. Notice that the unit is separated and
highlighted by a dashed line and labelled as (D) in Fig. 4.

The attributes attached to the relationship are optional. That
is, they may or may not exist attached to the relationship type.
Even if they exist, the number of them varies. Thus, the simple
attributes attached to the relationship type seems to have a
particular behavior inherent to them. Therefore, we consider
the simple attributes attached to a Binary-relationship-type-ER-
construct-unit to be a separate ER-construct-unit. We call the
unit a Simple-optional-attribute-ER-construct-unit attached to a
Binary-relationship-type-ER-construct-unit. Notice that this
unit is separated by a dashed line and labelled as (C), on the ER
schema, in Fig. 4.

The generic equivalents of the ER-construct-units: (C) and
(D) in Fig. 4 will be defined in the next section.

V. PARTITIONING A MODERATE LEVEL GENERIC ER
MODEL AND DEFINING ITS ER CONSTRUCT UNITS

For this purpose, we again use the generic ER model
proposed by [13]. The generic ER model uses the symbol,
𝑟𝑣�𝑒𝑖 , 𝑒𝑗�, where 𝑣 ∈ ℕ, for denoting a binary relationship type

290 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

existing between two regular entity types 𝑒𝑗 and 𝑒𝑗 Attributes
attached to the relationship type are denoted as
𝑠1(𝑟𝑣�𝑒𝑖, 𝑒𝑗�) , 𝑠2 �𝑟𝑣�𝑒𝑖 , 𝑒𝑗��,…, 𝑠𝑡(𝑟𝑣�𝑒𝑖 , 𝑒𝑗�) , where 𝑡 ∈ ℕ.
The min-max values are denoted as variables: 𝑚1, 𝑥1,𝑚2,.and
𝑥2 Fig. 5 shows a binary relationship type existing in a generic
ER model.

In the generic ER model (Fig. 5), the partition named
𝑏(𝑟𝑣(𝑒𝑖 , 𝑒𝑗))

 shows the generic equivalent of the Binary-
relationship-type-ER-construct-unit, which we have shown in
the partition (D) in the real-world ER model (Fig. 4).
Accordingly, we formally define the ER-construct-unit as
follows.

A. Definition 3
In a generic ER model, the arrangement that consists of the

two ER constructs: (i) ̶ a relationship type construct, 𝑟𝑣(𝑒𝑖 , 𝑒𝑗),
which is attached to two regular entity base ER construct units,
𝑏(𝑒𝑖) and 𝑏(𝑒𝑗) , and (ii) ̶ a min-max structural constraint
construct denoted by two bracketed pairs of values: (𝑚1, 𝑥1)
and (𝑚2, 𝑥2) where each bracketed pair is placed on either side
of the relationship type, is defined to be an ER-construct-unit.
The unit is named as the Binary-relationship-type-ER-
construct-unit and denoted as 𝑏(𝑟𝑣(𝑒𝑖 , 𝑒𝑗))

 . The unit is shown
partitioned and named as 𝑏(𝑟𝑣(𝑒𝑖 , 𝑒𝑗))

 in the ER model in
Fig. 5. The letter “𝑏” indicates the meaning “base”.

Notice that depending on the actual numerical values of the
min-max variables, the relationship type may get either of the
forms: one-to-one, one-to-many, or many-to-many. However,

the constitution and the shape of the ER-construct-unit are not
to be changed for any form of the relationship type: one-to-one,
one-to-many, or many–to-many.

In the generic ER model (Fig. 5), the partition named -
𝑝(𝑟𝑣(𝑒𝑖, 𝑒𝑗))

 shows the generic equivalent of the Simple-
optional-attribute-ER-construct-unit, the one we have shown in
the partition (C) in the real-world ER model (Fig. 4).
Accordingly, we formally define the ER-construct-unit as
follows.

B. Definition 4
In a generic ER model, the collection of the simple

attributes attached to a Binary-relationship-type-ER-construct-
unit, 𝑏(𝑟𝑣(𝑒𝑖 , 𝑒𝑗))

 , is defined to be an ER construct unit. The
unit is named as the Simple-optional-attribute-ER-construct-
unit attached to Binary-relationship-type-ER-construct-unit,
𝑏(𝑟𝑣(𝑒𝑖 , 𝑒𝑗))

 . The unit is partitioned and denoted as
𝑝(𝑟𝑣(𝑒𝑖, 𝑒𝑗))

 in the ER model in Fig. 5. The letter “ 𝑝 ”
represents the meaning “optional”. The unit is an optional unit,
that is, it may or may not exist attached to a unit, 𝑏(𝑟𝑣(𝑒𝑖, 𝑒𝑗))

 .
If it exists, its number of attributes may vary.

Accordingly, Fig. 5 shows how a Binary- relationship
type, 𝑟𝑣(𝑒𝑖 , 𝑒𝑗))

 , in a generic ER model can be partitioned into
two ER-construct-units, named, 𝑏(𝑟𝑣(𝑒𝑖 , 𝑒𝑗)),

 and
𝑝(𝑟𝑣(𝑒𝑖, 𝑒𝑗))

 . It also shows how the two units: 𝑏(𝑟𝑣(𝑒𝑖 , 𝑒𝑗))

and 𝑝(𝑟𝑣(𝑒𝑖, 𝑒𝑗))
 can exist associated with each other and form

the relationship type, 𝑟𝑣(𝑒𝑖, 𝑒𝑗))
 in a generic ER model.

ei

k(ei)

sn(ei)

s3(ei)

s1(ei)

s2(ei)

ej

k(ej)

sn(ej)

s3(ej)

s1(ej)

s2(ej)

rv(ei,ej) (m2, x2)(m1, x1)

s1(rv(ei,ej))

b(ei)

c(ei)

b(rv(ei,ej))

p(rv(ei,ej))

c(ej)

b(ej)

s2(rv(ei,ej))

st(rv(ei,ej))

Fig. 5. A Generic ER Model Containing a Binary One-to-Many Relationship Type Attached to Two Regular Entity Types.

291 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

VI. CONCLUSION
We have shown (Section III) that the regular entity type, 𝑒𝑖,

in the ER model (Fig. 3) can be partitioned into two distinct
ER construct units, 𝑏(𝑒𝑖) and 𝑐(𝑒𝑖). The same partitions and
the ER construct units: 𝑏(𝑒𝑖) and 𝑐(𝑒𝑖) exist in the generic ER
model in Fig. 5. Similarly, the regular entity type, 𝑒𝑗 , in the
generic ER model (Fig. 5) can also be partitioned into two ER-
construct-units, 𝑏(𝑒𝑗) and 𝑐(𝑒𝑗) . We also showed that the
binary-relationship type, 𝑟𝑣(𝑒𝑖 , 𝑒𝑗))

 , in the generic ER model
(Fig. 5) can be partitioned into two ER-construct-units,
𝑏(𝑟𝑣(𝑒𝑖 , 𝑒𝑗)),

 and 𝑝(𝑟𝑣(𝑒𝑖 , 𝑒𝑗))
 .

Accordingly, the entire generic ER model in Fig. 5 can be
partitioned into six ER-construct-units, namely, 𝑏(𝑒𝑖), 𝑐(𝑒𝑖),
𝑏(𝑟𝑣�𝑒𝑖 , 𝑒𝑗�), 𝑝(𝑟𝑣�𝑒𝑖 , 𝑒𝑗�), 𝑏(𝑒𝑗), and 𝑐(𝑒𝑗). The six partitions
are distinct: that is, any one of them does not overlap or
penetrate into another. They all together cover the entire
generic ER model (Fig. 5).

The six distinct ER-construct-units form a set: { 𝑏(𝑒𝑖) ,
𝑐(𝑒𝑖), 𝑏(𝑟𝑣�𝑒𝑖 , 𝑒𝑗�) , 𝑝 �𝑟𝑣�𝑒𝑖 , 𝑒𝑗�� , 𝑏(𝑒𝑗) , 𝑐(𝑒𝑗)}. We assume
that the set can be used to represent the generic ER model (Fig.
5).

On the other hand, a generic ER model can represent any
real-world ER model [13]. Thus, we conclude that any real-
world ER model that contains a binary relationship type that
exists between two regular entity types can be viewed as a set
of six elements and the set can be used as a representation of
the ER model.

VII. FUTURE RESEARCH IMERGING FROM THE CURRENT
RESEARCH

The current paper presents a part of an ongoing reach. Its
results will be used in the future for further research expected.
Accordingly, in future research, we will transform the
moderate level generic ER model (Fig. 5) to a relational
database schema (RDS). We will use the modified
transformation algorithm for this purpose. We will then
partition the RDS into segments, which we call Relation-
schema-units. Next, we show that a mapping that is one-to-one
and onto exists from the set representing the generic ER model
to the set representing its RDS. We will then show that the
information represented on the ER model is preserved on the
RDS.

VIII. IMPLICATIONS OF THE RESEARCH SERIES
We argued that a one-to-one and onto correspondence from

the ER model to the RDS not only preserve information from
the ER model to the RDS. It also should be a basis for
automating the transformation process from the ER model to
the relational model. In section 1, we stated that a CASE tool
can be created for automating the process.

We believe the CASE tool we expect can extend the work
of Khaire and Mali [22]. The tool can be integrated with the
web application that they have proposed. The CASE tool can
then be used to automatically transform an ER model produced
by the web application to the relational model. The CASE tool
we expect should be able to be integrated with any other CASE

tool that creates ER models (e.g. ERDplus -
https://erdplus.com/) to transform them to the RDS
automatically. Further, a CASE tool we expect also can extend
the works of [23], and [24] (Section 1), in the same manner,
mentioned above.

Going beyond the visualization of a computer-aided
transformation process proposed by Yang and Cao [25], the
CASE tool we expect could undertake the entire
transformations process and perform it purely automatically
without letting a user be intervened at intermediate stages for
making adjustments. Even if the traditional ER model is
claimed to be more suitable for teaching ER modeling concepts
[26], in our view, the database designing process cannot be
limited to just ER modeling only. Once an ER model diagram
is created, it needs to be transformed to the RDS. The created
RDS should be accurate and a one that preserves the
information of its predecessor ER model. Without obtaining
the skill that how an ER model can be transformed to the RDS,
accurately and with preserving information, the database
design and learning process is deemed to be incompleted. We
argue that our modified approach comprising the ER model
and the transformation algorithm that we have modified can fill
this gap. It provides a hassle-free learning process. The reason
the ER modeling and transformation rules are now apparent,
straightforward, and ambiguous free. They provide a one-to-
one transformation from the ER model to the RDS, which will
also automate the transformation process. An automated tool
can help students to validate their manual transformations and
iteratively improve them until a correct RDS is reached as the
output. The same advantage is equally applicable to the
practitioners as they no longer need worrying about how
models can be transformed from one to the other from the ER
model to the RDS. A CASE tool will do the job for them.

Except for our ongoing researches for formal validation of
our approach, empirical researches can be undertaken with
learners, teachers, and practitioners aiming to assess our claims
about the impact of the approach on improving the efficiency
and productivity of them. If a CASE tool is produced, it can
also be used as a tool for empirical validation of the approach.

REFERENCES
[1] P. P. S. Chen, "The entity-relationship model: toward a unified view of

data," ACM Trans. Database Syst, vol. 1, pp. 9-36, 1976.
[2] R. Elmasri and S. B. Navathe, Database Systems: Models, Languages,

Design and Application Programming, 6 ed. Chennai: Pearson, 2013.
[3] E. F. Codd, "A relational model of data for large shared data banks,"

Commun. ACM, vol. 13, pp. 377-387, 1970.
[4] K. Kumar and S. K. Azad, "Relational Database Design: A Review,"

International Journal of Computer Applications, vol. 176, pp. 14-18,
2017.

[5] D. Pieris, "Reversible Database Design From the Entity-
Relationship(ER) model" unpublished manuscript, 2015.

[6] R. C. Goldstein and V. C. Storey, "Data abstractions: Why and how?,"
Data & Knowledge Engineering, vol. 29, pp. 293-311, 1999.

[7] A.-J. Harith, D. Cuadra, and P. Martínez, "PANDORA CASE TOOL:
Generating Triggers For Cardinality Constraints In RDBMS," 2003.

[8] C. Fahrner and G. Vossen, "A survey of database design transformations
based on the Entity-Relationship model," Data & Knowledge
Engineering, vol. 15, pp. 213-250, 1995.

[9] C. Batini, S. Ceri, and S. B. Navathe, Conceptual database design: an
Entity-relationship approach: Benjamin-Cummings Publishing Co., Inc.
Redwood City, CA, USA ©1992, 1992.

292 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

[10] A.-J. Harith, D. Cuadra, and P. Martínez, "Applying a Fuzzy approach
to relaxing cardinality constraints, Database and Expert Systems
Applications," in Database and Expert Systems Applications. vol. 3180,
ed, 2004, pp. 654-662.

[11] D. Cuadra, P. Martínez, E. Castro, and A.-J. Harith, "Guidelines for
representing complex cardinality constraints in binary and ternary
relationships," Software and Systems Modeling, pp. 1-19, 2012.

[12] J.-L. Hainaut, "The transformational approach to database engineering,"
in Generative and Transformational Techniques in Software
Engineering, ed: Springer, 2006, pp. 95-143.

[13] D. Pieris, M. C. Wijegunasekera, and N. G. J. Dias, "An Improved
Generic ER Schema for Conceptual Modeling of Information Systems,"
presented at the Asia International Conference on Multidisciplinary
Research 2019 (AIMR’19), Colombo, Sri Lanka, 2019.

[14] D. Pieris, "Modifying the entity relationship modeling notation: towards
high quality relational databases from better notated ER models," arXiv
preprint arXiv:1306.5690, 2013.

[15] D. Pieris, "A novel ER model to relational model transformation
algorithm for semantically clear high quality database design," arXiv
preprint arXiv:1306.6734, 2013.

[16] D. Pieris, M. C. Wijegunasekera, and N. G. J. Dias, "ER to Relational
Model Mapping: Information Preserved Generalized Approach,"
presented at the 20th International Postgraduate Research Conference,
University of Kelaniya, Sri Lanka, 2019.

[17] A. A. Almeida, A. C. Rocha-Oliveira, T. M. F. Ramos, F. L. de Moura,
and M. Ayala-Rincón, "The Computational Relevance of Formal Logic
Through Formal Proofs," in Formal Methods Teaching Workshop, 2019,
pp. 81-96.

[18] Muhammad Ahsan Raza, S. R. M. Rahmah, A. Noraziah, and R. A.
Hamid, "A Methodology for Engineering Domain Ontology using Entity
Relationship Model," International Journal of Advanced Computer
Science and Applications(IJACSA), vol. 10, pp. 326-332, 2019.

[19] Puja, P. Poscic, and D. Jaksic, "Overview and Comparison of Several
relational Database Modelling Metodologies and Notations," in 42nd
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 2019, pp. 1641-1646.

[20] N. Amran, H. Mohamed, and F. D. S. Bahry, "Developing Human
Resource Training Management (HRTM) Conceptual Model Using
Entity Relationship Diagram (ERD)," International Journal of Academic
Research in Business and Social Sciences, vol. 8, pp. 1444–1459, 2018.

[21] A. Kamišalić, M. Heričko, T. Welzer, and M. Turkanović,
"Experimental study on the effectiveness of a teaching approach using
barker or bachman notation for conceptual database design," Computer
Science and Information Systems, vol. 15, pp. 421-448, 2018.

[22] A. V. Khaire and P. B. Mali, "Towards Automated Generation of ER-
Diagram using a Web Based Approach," IOSR Journal of Computer
Engineering vol. Volume 18, pp. 37-43, 2016.

[23] K. Kuk, M. Angeleski, and B. Popovic, "A Semi-automated generation
of Entity-Relationship Diagram based on Morphosyntactic Tagging
from the Requirements Written in a Serbian Natural Language," in 19th
International Symposium on Computational Intelligence and
Informatics, 2019, pp. 85-92.

[24] M. A. Javed and Y. A. Lin, "Iterative Process for Generating ER
Diagram from Unrestricted Requirements," in 13th International
Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE 2018), 2018, pp. 192-204.

[25] L. Yang and L. Cao, "The Effect of MySQL Workbench in Teaching
Entity-Relationship Diagram (ERD) to Relational Schema Mapping,"
International Journal of Modern Education and Computer Science, vol.
8, 2016.

[26] P. Y. Wu, D. A. Igoche, and P. J. Drauss, "Media versus Message:
Choosing The ER Diagram To Teach ER Modeling," in Proceedings of
the EDSIG Conference ISSN, 2017, p. 3857.

293 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	A. Significance of the Research
	B. Related Research

	II. Partitioning a Real-World ER Model into Segments
	III. Partitioning a Small Generic ER Model and Defining its ER-Construct-units
	A. Definition 1
	B. Definition 2

	IV. Partitioning an ER Model Including a Relationship Type and Identifying its ER-Construct-units
	V. Partitioning a Moderate Level Generic ER Model and Defining its ER Construct units
	A. Definition 3
	B. Definition 4

	VI. Conclusion
	VII. Future Research Imerging from the Current Research
	VIII. Implications of the Research Series

