
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Generic Framework Architecture for Verifying
Embedded Components

Lamia ELJADIRI1
LIMSAD Laboratory in Mathematics and Computer Science

Department, Faculty of Sciences FSAC
University Hassan II, Casablanca, Morocco

Ismail ASSAYAD2
LIMSAD Laboratory in Mathematics and Computer Science

Department, ENSEM
University Hassan II, Casablanca, Morocco

Abstract—This dissertation presents a framework for the
formal verification of standard embedded components such us
bus protocol, microprocessor, memory blocks, various IP blocks,
and a software component. It includes a model checking of
embedded systems components. The algorithms are modeled on
SystemC and transformed on Promela language (PROcess or
PROtocol MEta LAnguage) with the integration of LTL (Linear
Temporal Logic) properties extracting from state machines in
order to reduce verification complexity. Thus, SysVerPml is not
only dedicated to verifying generated properties but also for the
automation integration of other properties in models if needed.
In the following, we will provide the answer to the problems of
component representation on the design system, what properties
are appropriate for each component, and how to verify
properties.

Keywords—Algorithms; automation; embedded components;
embedded systems; formal verification; framework; LTL
properties; Promela; SystemC; SysVerPml; system design

I. INTRODUCTION
Verification can be applied to discover errors early in the

SOC (System On Chip) design against properties expressed as
part of the requirements. Worth to mention that the cost to find
errors and to make correction in the product line increases ten
times like what industry study demonstrates [1]; it is revealed
that verification accounts for 55% in totality project time
between 2012 and 2016.

The formal verification technology is divided into three
methods: equivalence checking, model checking, and theorem
proving [2], [3].

Equivalence checking is a technique based on mathematical
approach to verify the equivalence of a reference or golden
model to the implementation of the model [4].

Model checking is an algorithmic technique for
determining whether a system satisfies a formal specification
expressed as a temporal logic formula, where properties are the
direct representation of a design’s behavior [5].

Finally, the theorem proving method has the ability to
decompose a problem especially the case of microprocessor
verification. More details on theorem proving can be found in
[6].

The three formal methods are generally used as formal
verification techniques. However, model checking is

particularly used in protocol verification. Model checking
method [7] treats all the possible behavior of the design model.

The method called Undounded Model Checking (UMC) is
based on the translation of the model checking problem into
the satisfaction problem of a propositional formula, unlike the
Bounded Model Checking (BMC) the encoding of the formulas
is different. While the two techniques shares the encoding of
the states and the transition relation of the model as explained
on the article [8].

This article gives an overview of our Model Checker
Platform named SysVerPml; the tool allows creating an
abstract model of the design instead of translating SystemC
programs to formal models, and then checking them using
verification tool SPIN (Simple Promela INterpreter).

Model checking focuses on the state-space explosion
problem. The main idea in our approach is that the number of
states of a design is exponential to the number of variables and
the width of each variable. To attain this first aim as explained
in our previous article [9] the modeling methodology of a
system must exhibit the execution semantics instead of
encompassing it inside an execution-scheduler. Moreover, in
order to allow new and old systems integration, any process
interaction which might be useful for inter-system integration
must not be cut in the final system model. The challenge of this
approach is to guarantee that the abstract model is exact to the
granularity of programs behaviors states. For that we use the
code-level way of verification, as explained in the article [10],
which has the advantage of permitting compositional
verification of programs by keeping their incomplete
interactions.

In the following, we first state the verification environment
supported by our approach describing the different plug-in
component used by the framework. Second, study case is taken
as an example for the proposed method with the complete
transformation procedure for the SRAM component. We
conclude the resume with tests of the performance verification
of our framework followed by conclusion.

II. VERIFICATION ENVIRONMENT
By the collaboration and exploitation of core integration

technology, we can focus on core competencies to invent
development technology as our platform SysVerPml will allow
us. The SysVerPml tools have been developed over the Eclipse
development environment. The open source integrated

294 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

development environment (IDE) Eclipse developed by IBM,
Object Technology International (OTI), and eight other
companies [11], [12[, [13], [14]. This IDE mainly allows
providing an extensible platform for building software. As
shown in Fig. 1 the major advantage is that it gives extensible
facilities which makes possible to implement tools of our
framework by plug–ins such us the use of SystemC plug-in,
IPXACT plug-in, and JSpin Java GUI for SPIN (graphical user
interface for the SPIN Model Checker).

Fig. 1. Adding Plug-in Project from the Plug-in Development and Accepting

Content Default Settings.

Nowadays, SystemC is an embedded system modeling
language that has a lot of features and can be used to develop
prototypes of embedded system. It is rich by its data types
library and compilation environments of the C ++ language. It
adds primitives to be able to write parallel processes, signals,
clocks, as well as some concepts of a component language.
SysVerPml has been designed to support SystemC plug-in.
SystemC plug-in has been utilized to create a SystemC project
based on C/C++ Development Toolkit (CDT) plug-ins in
Eclipse Platform, SystemC, Cygwin packages required for
building GCC compiler, and Managed Build System (MBS)
pre-defines many useful macros and allows tool integrators and
users to define additional macros. The CDT plug-ins supports a
C/C++ Editor, Debugger, Launcher, Parser, Search Engine,
Content Assist Provider and a Makefile generator [15]. To do
the installation we followed the steps described at the guide for
getting started with SystemC development, it contains a
chapter for setup of Eclipse together with Cygwin and
SystemC [16].

IP-XACT is another standard enabling the assembly of IP
components (Intellectual Property blocks); it describes
especially the interconnection interfaces, some communication
components and associated protocols, using an Architecture
Description Language (ADL). The ADL makes possible to
define the interfaces of certain types of bus and protocols. The
IP-XACT format respects the syntax construction rules
specified in XML’s Abstract Syntax Tree (AST). IP-XACT has
been designed to address all these issues by providing a
standardized data exchange format which has both the
flexibility to represent SystemC models and the rigor to allow
information to be automatically extracted and used in flow
automation and advanced verification by Spin using Promela
language.

In order to realize the transformation between SystemC and
IP-XACT, we use Eclipse IP-XACT plug-in [17] as a means to
import the IP component descriptions from the first model

ScModel which provides database along with methods and
structural information such as variables, functions, events,
ports, processes, constructors and module instances, and from
the second model PtrModel which include assertions with re-
usable properties and the system declaration. So we realize the
stream described in our previous article [10] and we pass the
structural model conform to the SystemC behavioral model as
a call parameter to retrieve a complete model as main file
output. In this file, we create an instance of the embedded
component with their attributes and the parameter
configurations. Component properties are established by port-
signal bindings.

IP-XACT is successful at ensuring syntactic formats
compatibility and the interpretation’s uniqueness of their
descriptions to make component interoperability if needed, but
it is not simulatable and it has neglected the behavioral aspects
and components properties verification. Further, the purpose of
this SystemC main file is to enable a simulation for the IP-
XACT model. In a previous work, we described [9] that our
translation to SystemC can also be seen as a translation into a
set of automata. Each process and each function is translated
into one produced automaton by composing produced SystemC
models without any change. The SysVerPml framework
enables to check safety properties for each SystemC program
of the product line once at design time, without the need for
additional time to redo the verification process every time
programs are involved in the creation of new system prototypes
as explained in our work [18]. After the simulation and
gathering of results, a Promela file is generated. In this file,
specifications can be given in Linear Temporal Logic (LTL)
formulas;

The plugin consists of two main components, a compiler
which compiles Promela code, and an interpreter. We used the
graphical front-end JSPIN. The JSPIN tool executes SPIN
commands in the background in response to user actions. It
provides a clear overview of the many options in SPIN that are
available for performing animations and verifications. JSPIN
was built using the Java SWING library and consists of three
adjustable panes, displaying text. The left one displays the
Promela source files, the lower one messages from SPIN and
JSPIN and the right one is used to display the output of printf
statements and of data from animations [19].

As we shall see in the article JSPIN tool will attempt to do
automatically verification limiting human intervention and
returning one of three results; whether it be a state where
properties are satisfied, or properties are not satisfied so a
counterexample will be given, or Indeterminate if the state
space is such that the tool cannot compute a result in a
reasonable amount of time [20].

In order to demonstrate the importance of the SysVerPml
framework the case studies of some embedded components
have been published in preceding articles; the verification
results of FIFO component have been published in [21] and the
verification results of Bus AMBA AHB have been published in
[10]. In this dissertation we provide an application example
related to memory SRAM (static RAM), this component have
two views following the model described in Fig. 2.

295 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Fig. 2. The Characteristics of the SRAM Model.

We report the IP-XACT description introduced in the
previous part of this article. We use the namespace ipxact,
below in Fig. 3 we show the output view of the SRAM model,
in which port is denoted with RDATA.

The component definition <ipxact:component> contains
information to Promela file and the SystemC model about the
component. This information is situated within a
<ipxact:parameter> element, identified with the <ipxact:value>
and <ipxact:name> tags.

Each component interface that uses SysVerPml mapping is
defined in the generated file as: Inputs, outputs, the
combination of inputs and outputs and the parameters.

We can combine inputs and outputs in a single component
interface definition, but we havent’t possibility to combine
parameters and inputs/Outputs because these elements are
defined in the pair name-value of <ipxact:parameter> which
indicates to the SysVerPml generator that there is a SystemC
mapping.

Fig. 3. The IPXACT Document Tree.

Fig. 4. The SystemC Interface Capture.

We have the possibility to import the generated IP-XACT
file for use and update if needed by the use of the SysVerPml
generator; the header file describes the design of Memory and
it is entirely integrated into the SystemC model illustrating how
information contained in IPXACT file can be used for a
behavioral implementation as we observe in Fig. 4.

Furthermore, we can use easily the interface of JSPIN tool;
downloaded from the Github link [22]; a tool that track bugs
into the encoding programs and it can verify whether a
specification is satisfied or make a counterexample of symbolic
formulas. By the way, it makes possible to edit as well as to
update the LTL formulas written inside of Promela model in
respect of semantic transformation from SystemC model.
JSPIN tool is an elementary part of our SysVerPml platform
and it makes possible to run simulation and formal verification
directly. We note well that JSPIN’s main focus is the
SpinSpider component. SpinSpider allows us to demonstrate
the properties in case of concurrent processes.

The generated file in the PtrModel module is represented
by the structured classes. These classes gave us the advantage
to efficiently represent the semantic results and allow us to
represent both the ports and the properties of the component.

III. CASE STUDY
This section discusses the use of our approach to verify

some properties of the SRAM design used in interaction with a
CPU model which contains working microengines - a set of
threads in each microengine – and all of them want access to
SRAM component.

We have developed the translator, which takes the SystemC
design as an input and generates the Promela encoding with the
integration of properties as explained in the previous section.
The translator uses IPXACT to extract from the SystemC
design description that is useful for performing the
transformation to Promela language.

Remember that the verification of the resulting Promela
models from the SystemC models provided by JSPIN tool to
completely verifying SRAM component.

To make length of this paper brief we express with LTL the
most functional properties, such as non-starvation, safety and
deadlock.

296 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

The non-starvation property for the events that are related
to SRAM controller of a CPU means that if an SRAM access
request comes from a thread 0 of a microengine 0 for example
is enqueued, it is eventually committed in the next 400 SRAM
occurrences. This property can be formulized with the LTL
formula as shown in (1) in this way:

AG (microengine0_thread0_sram_enqueued ⇒XF [1:400]
(microengine 0_thread 0_sram_done)) (1)

The safety property of the memory access is stored in a
scheduling FIFO to handle the occurred order of the events
sram_enqueued (the SRAM access request is enqueued),
sram_dequeued (the SRAM access request is dequeued) and
sram_done (the SRAM access request is committed), which
makes necessary that always after an SRAM request by a
thread 1 of a microengine 1 for example, it cannot be done
before it is dequeued. As shown in (2) this property can be
expressed with the LTL formula like this:

AG (microengine1_thread1_sram_enqueued ⇒¬
microengine1_thread1_sram_done U
microengine1_thread1_sram_ dequeued) (2)

The deadlock property to prevent problems with shared
resource, for each SRAM access on CPU, the data readout and
the memory address referenced must be similar, and always all
the SRAM references represented by addr are made in
execution with the same order. As shown in (3) the LTL
formula can be expressed with the following:

AG (addr(sram_enqueued[i]) = addr(sram_enqueued_CPU[i])
^ data(sram_done[i]) = data(sram_done_CPU[i])) (3)

We assume that the SRAM access request is put into a
scheduling FIFO by a thread 1 of a microengine 1 for example
and then eventually committed; always the memory address
should be the same as shown in (4).

AG (addr(microengine1_thread1_sram_enqueued[i]) =
addr(microengine 1_thread1_sram_done[i])) (4)

Table I lists the average values of performance metrics
using by SPIN verification process. The average values were
computed over the set of pre-defined specification properties to
check without errors the functional properties of SRAM
component.

TABLE I. VERIFICATION DATA

LTL
formulas

SPIN Metrics

States
generated

Transitions
number

Memory
used

Verification
time

1 6700 3.0*105 1KB 100s

2 5739 7.0*106 50Bytes 24s

3 10267 3*105 40KB 6s

4 5710 7.0*106 12Bytes 60s
The units used in this table are; B= Bytes, s = second.

IV. CONCLUSION
In this paper, we have reported our effort to implement

SysVerPml platform and the impressive component’s modeling
and checking gain obtained by transforming SystemC models
to Promela encodings. This remarkable gain is achieved by
modules which decomposes the implementation of our tool and
make it modular. This modularity facilitates modifications
inside of IPXACT description and LTL properties. We have
provided an application example related to a sessions that
implements the SRAM component.

REFERENCES
[1] H. D. Foster, “Trends in Functional Verification: A (2016) Industry

Study”, whitepaper, Mentor Graphics.
[2] Edmund M. Clarke and Jeannette M. Wing. “Formal Methods: State of

the Art and Future”. In ACM Computing Survey, volume 28–4, pages
626–643, (December 1996).

[3] Carl-Johan Seger. “An Introduction to Formal Verification”. Technical
Report 92–1, Department of Computer Science, University of British
Columbia, Canada, (June 1992).

[4] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner. “Embedded
System Design: Modeling, Synthesis and Verification”. Springer,
(2009).

[5] E. M. Clarke and E. A. Emerson. “Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic”. In
Logic of Programs, Workshop, pages 52–71, London, UK, (1981).
Springer-Verlag.

[6] M. J. C. Gordon and T. F. Melham, “Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic”, Cambridge University
Press, (1993).

[7] Orna Lichtenstein and Amir Pnueli. “Checking that finite state
concurrent programs satisfy their linear specification”. In Proceedings of
the 12th ACM SIGACT-SIGPLAN POPL’85, pages 97–107, New York,
NY, USA, (1985). ACM.

[8] Nina Amla, Robert Kurshan, Kenneth L. McMillan, and Ricardo Medel,
“Experimental Analysis of Different Techniques for Bounded Model
Checking”, Springer-Verlag Berlin Heidelberg (2003).

[9] A. Ismail, E. J. Lamia, Z. Abdelouahed, and N. Tarik, “The behavior,
interaction and priority framework applied to systemc-based embedded
systems”, in 13th IEEE/ACS International Conference of Computer
Systems and Applications, AICCSA 2016, Agadir, Morocco,
(November 29- December 2, 2016).

[10] Ismail Assayad, Lamia Eljadiri, “A platform for systematic verification
of embedded components in IP-XACT, SystemC and Promela“, In
ICSDE 2018, Rabat, Morocco, (October 18-19, 2018).

[11] “Eclipse Platform Technical Overview”. Technical Report, Object
Technology International (OTI) Inc… (2001). http://www.eclipse.org
/whitepapers/eclipseoverview.pdf

[12] Holzner Steve, “Eclipse”, O’Reilly, (April 2004).
[13] Holzner Steve, “Eclipse Cookbook”, O’Reilly , (June 2004).
[14] Shavor Sherry, D’Anjou Jim, Fairbrother Scott, Kehn Dan, Kellerman

John, McCarthy Pat, “The Java Developer’s Guide to Eclipse”,Addison-
Wesley, (2003).

[15] “Managed Build Extensibility Reference Document (for CDT2.1)”,
http://www.eclipse.org/cdt/

[16] “Guide for getting started with SystemC development”, by senior
consultant Kim Bjerge, Danish technological institute (2007).

[17] http://www.eclipse.org/dsdp/dd/ipxact/gettingstarted/QuickStart.html
[18] Lamia Eljadiri, Ismail Assayad, and Abdelouahed Zakari, “Generic

Verification of Safety Properties For SystemC Programs Using
Incomplete Interactions”, In ICSDE 2018, Rabat, Morocco, (October 18-
19, 2018).

[19] BEN-ARI, Mordechai, “Principles of the Spin Model Checker”.
Springer, (2008). – ISBN 978–1–84628–769–5

297 | P a g e
www.ijacsa.thesai.org

http://www.eclipse.org/cdt/
http://www.eclipse.org/dsdp/dd/ipxact/gettingstarted/QuickStart.html

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

[20] Robert C. Armstrong, Ratish J. Punnoose, Matthew H. Wong, Jackson
R. Mayo, “Survey of Existing Tools for Formal Verification”, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550, (December 2014).

[21] Ismail Assayad, Lamia Eljadiri, Abdelouahed Zakari, “Systematic
Verification of Embedded Components with Reusable Properties”. In
WINCOM 2017, Rabat, Morocco, (November 01-04, 2017).

[22] https://github.com/motib.

298 | P a g e
www.ijacsa.thesai.org

https://github.com/motib

	I. Introduction
	II. Verification Environment
	III. Case Study
	IV. Conclusion

