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Abstract—The maximum scatter traveling salesman problem 
(MSTSP), a variation of the famous travelling salesman problem 
(TSP), is considered here for our study. The aim of problem is to 
maximize the minimum edge in a salesman’s tour that visits each 
city exactly once in a network. It is proved be NP-hard problem 
and considered to be very difficult problem. To solve this kind of 
problems efficiently, one must use heuristic/metaheuristic 
algorithms, and genetic algorithm (GA) is one of them. Out of 
three operators in GAs, crossover is the most important operator. 
So, we consider eight crossover operators in GAs for solving the 
MSTSP. These operators have originally been designed for the 
TSP which can also be applied on the MSTSP after some 
modifications. The crossover operators are first illustrated 
manually through an example and then executed on some well-
known TSPLIB instances of different types and sizes. The 
obtained comparative study clearly demonstrates the usefulness 
of the sequential constructive crossover operator for the MSTSP. 
Finally, a relative ranking of the crossover operators is reported. 
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I. INTRODUCTION 
The travelling salesman problem is a famous problem 

(TSP) that aims to find shortest tour of a salesman who starts 
his journey from depot node and visit all remaining n nodes 
(cities) such that each node is to be visited only once and then 
returns to the depot. It is a NP- Hard problem [1] that is very 
easy to define but difficult to solve. Several researches have 
been done to deal with the problem and consequently 
numerous good algorithms have been reported in the literature. 
However, few circumstances require different restrictions on 
the acceptability of a tour as solution. One such restriction is to 
maximize the minimum cost edge in a tour of the salesman, 
which is named as maximum scatter TSP (MSTSP). In 
MSTSP, given a weighted graph, the aim is to find a 
Hamiltonian circuit so that the minimum cost edge is 
maximized. That is, the aim is to make each point away from 
(scattered) its previous and next points in the circuit. It is also 
called the max-min 1-neighbour TSP. In the max-min m-
neighbor TSP, the aim is to maximize the minimum cost 
between any city and all its m-neighbours in the Hamiltonian 
circuit. These problems are close to the bottleneck TSP (BTSP) 
[2]. 

The MSTSP, defined first in [3], has application in 
operations involving heating workpiece, where it is equally 
important to keep each point away from its immediate ancestor 
and successor along with its m-neighbors for allowing cooling 
period in each operation. It has application in some other 
manufacturing processes that attach metal sheets together. 
After required alignment, the topmost sheet has some pre-
specified points where riveting operations are applied to attach 
the sheets together. To avoid nonuniform deformation of the 
sheets, it is required to arrange the riveting process such that 
the distance between any rivet and its next rivet is very large; 
that means, the riveting operations must be scattered. It has 
application in some kind of medical imaging also. During 
imaging physical functions by Dynamic Spatial Reconstructor, 
radiation sources are positioned on the upper half of a circular 
ring and sensors are positioned directly opposite on the lower. 
The ‘firing sequence’ decides the sequence of radiation sources 
along with their associated sensors, generally periodically. The 
sensors gather energy intensity which goes through the patient 
positioned in the middle of the ring. It is required that if the ith 
source is activated, then its neighbour sources (for example, (i–
1)th, (i+1)th, (i + 2)th, etc.) must not be activated, and hence 
some amount of scattering occurs [1]. The problem can be 
applied to a case where someone is falsely accused of a crime 
and given is death penalty. Now, he tries to escape from the 
police by visiting different safe places across his country to 
avoid the capture. Throughout his journey, he looks for a tour 
such that the smallest distance between consecutive places is 
very big [4]. 

The MSTSP can be formally defined as follows: Let a 
network with a set of n nodes, considering node 1 as depot 
node and a travel cost (time or distance, etc.) matrix C=[cij] of 
order n connected with ordered pair (i, j) of nodes is given. Let 
(1=α0, α1, α2, ,....,αn-1 , αn=1) ≡ {1→α1→α2→.... →αn-1→1} 
be a tour. The tour cost is defined as  min {𝑐𝛼𝑖,𝛼𝑖+1: 𝑖 =
0, 1, 2, … . ,𝑛 − 1}. The aim is to find a tour that has maximum 
tour cost. The problem can be transformed to a BTSP by the 
transformation dij = L-cij where D = [dij]nxn is equivalent 
BTSP’s cost (or distance) matrix and L is very large number 
[5]. 

Since the problem is NP-hard, obtaining optimal solution 
using exact method is very hard, if not possible. The moderate 
sized TSP instances have been effectively solved by using 
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operations research methods, like branch-and-bound [6], 
lexisearch [7], branch-and-cut [8] and local search [9]. As the 
problem size increases, obtaining exact solution is very hard. 
For solving large sized instances, one must go for heuristic 
algorithms, which, of course, don’t promise to obtain optimal 
solution of a problem instance; however, they give near exact 
solution very quickly. Hence heuristic algorithms are used to 
solve some difficult problems. The most current algorithms 
that are used to solve various difficult optimization problems 
are termed as metaheuristics. There are metaheuristic 
algorithms based on simulated annealing [10], tabu search [11], 
insertion heuristic [12], ant colony algorithm [13], genetic 
algorithms [14], variable neighbourhood method [15], etc. 
However, genetic algorithms (GAs) are extensively applied 
methods amongst modern metaheuristics, and hence, we are 
applying GAs to solve the MSTSP. 

Genetic Algorithms (GAs) first developed by John Holland 
in 1975, based on imitating the Darwinian survival-of-the-
fittest theory among different species created by arbitrary 
changes in the chromosomes’ structure in the natural biology 
[14]. They are powerful and robust metaheuristic algorithms 
for solving large-sized problem instances. They have been 
fruitfully applied to numerous combinatorial optimization 
problems to find their solutions. Each feasible solution of a 
problem may be assumed as a chromosome whose fitness is 
measured by its objective function value [16]. 

In general, simple GAs begin using randomly created a set 
of chromosomes called initial population, also termed as pool 
of genes, and then apply, mainly three, genetic operators to 
produce new, and possibly, better populations in subsequent 
generations. The first operator is selection which 
probabilistically copies and discards some of the chromosomes 
of the present generation to the next generation. Crossover is 
the second operator that selects randomly a pairs of 
chromosomes and mates to produce new chromosomes. The 
third operator is mutation, which randomly alters some position 
values (genes) of a chromosome. Crossover is very powerful 
operator in the GA search. Mutation diverges the GA search 
space. Generally, probability of applying mutation operator is 
fixed very low comparative to probability of crossover operator 
[14]. 

The crossover operators which have been developed for the 
usual TSP are also applied on the variant TSP after some 
modification. Since the MSTSP is a variant TSP, we consider 
eight crossover operators in simple GAs for solving the 
MSTSP. The crossover operators are first illustrated manually 
through an example and then executed on some well-known 
TSPLIB instances of different types and sizes. The obtained 
comparative study clearly demonstrates the usefulness of the 
sequential constructive crossover operator [16] for the MSTSP. 
Finally, a relative ranking of the crossover operators is 
reported. 

This paper is organized as follows: A survey of the 
literature for the MSTSP is reported in Section II. Section III 
develops simple genetic algorithms using eight crossover 
operators for the problem, whereas, Section IV reports 
computational experiments for eight crossover operators. 
Finally, Section V presents conclusion and future works. 

II. RELATED WORK 
There are few literatures about MSTSP, and the relevant 

papers are as follows. Arkin et al. [1] developed the first 
method for solving the problem. The problem was shown be 
NP-hard and unless P = NP, any no constant-factor 
approximation method can be designed. They developed 
factor-2 (which is best factor) approximation method with the 
triangle inequality for the max-min 1-neighbor TSP, for the 
cycle and path versions. Further, the method expanded to 
obtain a factor-2 approximation solution for the max-min 2-
neighbor TSP, for cycle as well as some cases of path version. 
They also developed methods for the max-min 2-neighbor TSP 
with the triangle inequality, for both the path and cycle 
versions. The methods also expanded to obtain an 
approximation solution for path version of the max-min m-
neighbor TSP. 

Chiang [17] developed approximation methods for the 
max-min 2-neighbor TSP that follows the triangle inequality. 
He developed approximation methods for the path and cycle 
versions by improving methods in [1]. As mentioned, both 
algorithms are much simpler. John [4] also studied many works 
of MSTSP and its relevant models. Kabadi and Punnen [18] 
obtained an approximation method for the MSTSP that 
satisfies the triangle inequality, which is claimed to be the best 
bound for the case. Hoffmann et al. [19] extended the 
algorithm in [1] that produces optimal solutions for the nodes 
on a line to a regular mxn-grid. As reported, in some particular 
cases, the algorithm takes linear computational time to find an 
optimal tour. 

The MSTSP is close to the BTSP, where the aim is to 
minimize the maximum cost edge in a Hamiltonian circuit 
[20]. Exact algorithms based on lexisearch approach have been 
developed ([21], [22]). Also, hybrid algorithms have been 
proposed for solving the problem ([23], [24]). Another closely 
related problem of the MSTSP is the maximum TSP 
(MaxTSP), in which the aim is to maximize total length of a 
tour in a Hamiltonian circuit [25]. A hybrid GA is proposed for 
solving the problem [26]. 

Dong et al. [27] proposed the multi-salesmen version of the 
MSTSP, multiple MSTSP (MMSTSP). They developed three 
improved GAs using greedy initialization, hill-climbing and 
simulated annealing algorithms to improve GAs for solving the 
MMSTSP. As claimed the improved algorithms are efficient 
algorithms and can reveal several characteristics in finding the 
solution of the problem. 

A multi-start iterated local search approach is proposed in 
[28] for the MSTSP. Two local search algorithms based on 
insertion and modified 2-opt moves have been developed as 
part of our approach. To investigate the effectiveness of the 
method, it is tested on the TSPLIB instances, and found very 
good results. 

III. SIMPLE GENETIC ALGORITHMS FOR THE MSTSP 
Beginning with an initial population, a simple GA 

recurrently applies three genetic operators, selection, crossover 
and mutation, until the stopping criterion is satisfied. Though 
GA is among the best metaheuristic algorithms, but its 
performance verily depends on initial chromosome population, 
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three operators and some parameters [14] that are discussed in 
this section. 

A. Chromosome Representation and Initial Population 
There are numerous ways to represent solutions as 

chromosomes for the TSP and its variants. Path representation 
is considered for the MSTSP that lists labels of nodes so that 
no any node is repeated in a chromosome. Suppose, {1, 2, 3, 4, 
5, 6, 7, 8} represents the node labels in an 8-node instance, 
then the tour {1→7→2→3→8 → 4→6→ 5 →1} can be 
denoted by (1, 7, 2, 3, 8, 4, 6, 5). The objective function is 
defined as the sum of the costs of edges in the tour. Since the 
problem is a maximization problem, fitness and objective 
functions are same. Usually a simple GA begins with a pool of 
chromosomes called initial population. Here randomly created 
initial population is considered. 

B. Selection Operator 
In selection process, strings/chromosomes are replicated to 

the mating pool of next generation based on probabilities 
associated with their fitness function values. By transferring a 
higher portion of fitter chromosomes to the next generation, 
selection imitates the Darwinian survival-of-the-fittest in 
natural biology. Here, no any new chromosome is formed. 
Generally, the proportionate selection is applied in which any 
chromosome is chosen based on a probability that is calculated 
as proportional to its fitness function value. For example, 
roulette wheel selection, tournament selection, stochastic 
remainder, etc. are some of them. We consider stochastic 
remainder selection method [29] for our GAs. 

C. Crossover Operators 
Crossover operators selects two parent chromosomes and a 

point throughout the length of the chromosomes and exchanges 
their information after the crossover point. It performs a very 
significant role in GAs. Several good crossover methods are 
suggested for the TSP in the literature which are supposed to 
be good for the MSTSP. For example, partially mapped 
crossover [30], ordered crossover [31], alternating edges 
crossover [32], cycle crossover [33], edge recombination 
crossover [34], generalized N crossover [35], greedy crossover 
[32], sequential constructive crossover [16] are some of them. 
We are going to investigate these eight crossover methods. 

1) Partially mapped crossover operator. The partially 
mapped crossover (PMX) uses two crossover points and 
produces two offspring chromosomes [30]. It defines exchange 
mappings in the segment between the crossover points. It is the 
first crossover operator designed for the TSP in GAs. We 
illustrate the PMX through the 8-node example instance along 
with its cost matrix given in Table I and the parent 
chromosome pair P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5, 
6, 2, 7) with costs 3 and 1 respectively. We start journey 
(computation) from the first gene (headquarters), node 1. 

Let the arbitrarily assumed cut points are after 3rd and 6th 
genes that are marked with “|”, as follows: 

P1: (1, 5, 4 | 7, 8, 2 | 3, 6) and  

P2: (1, 8, 3 | 4, 5, 6 | 2, 7) 

TABLE I. THE COST MATRIX 

Node 1 2 3 4 5 6 7 8 

1 0 10 15 95 66 55 29 2 

2 61 0 55 22 50 72 1 58 

3 45 50 0 69 7 89 22 78 

4 91 67 75 0 35 27 34 89 

5 60 36 90 31 0 50 61 77 

6 3 82 20 70 39 0 77 28 

7 16 57 26 86 53 19 0 69 

8 13 14 54 8 84 37 87 0 

The mapping segments are between these cut points. So, 
the exchange mappings are 7↔4, 8↔5 and 2↔6. These 
mapping segments are copied to the offspring chromosomes as 
follows: 

O1: (1, *, * | 7, 8, 2 | *, *),  

O2: (1, *, * | 4, 5, 6 | *, *) 

We now add some more genes from the alternative parent 
chromosomes that do not form invalid chromosome as follows: 

O1: (1, *, 3 | 7, 8, 2 | *, *),  

O2: (1, *, * | 4, 5, 6 | 3, *) 

The node 8 should be in the place of first * in O1 which 
comes from P2, but, since it is available in O1, so after 
checking the mapping 8↔ 5, node 5 is placed there. The 
second * in O1 should be 2 which comes from P2, but, since it 
is available in O1, so after checking the mapping 2↔6, node 6 
is place there. Finally, 4 is added at third *. So, the first 
complete offspring becomes. 

O1: (1, 5, 3 | 7, 8, 2 | 6, 4) with cost 14. 

Similarly, one can create the second complete offspring as: 

O2: (1, 8, 7 | 4, 5, 6 | 3, 2) with cost 2. 

2) Ordered crossover operator. To create offspring 
chromosomes, the ordered crossover (OX) selects a 
subsegment of a route from one parent chromosome and then 
preserves the relative order of genes from the other one [31]. 
We choose the same parent chromosomes and cut points 
marked with “|” as: 

P1: (1, 5, 4 | 7, 8, 2 | 3, 6) and  

P2: (1, 8, 3 | 4, 5, 6 | 2, 7) 

We always fix first gene as ‘node 1’. At first, the offspring 
are created by simply copying the segments between these cuts 
into the offspring as: 

O1: (1, *, * | 7, 8, 2 | *, *),  

O2: (1, *, * | 4, 5, 6 | *, *) 

Now, starting from 2nd cut of one parent chromosome, the 
genes (un-available) from the other chromosome are copied in 
the same sequence. The order of genes in P2 from the 2nd cut is 
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{2 → 7→ 8→ 3→ 4→ 5 → 6}. After ignoring the already 
available genes 7, 8 and 2 in O1, the order becomes {3→4→5 
→6}, which is added in O1 starting from the 2nd cut point: 

O1: (1, 5, 6 | 7, 8, 2 | 3, 4) with cost 14. 

Similarly, second offspring is created as: 

O2: (1, 8, 2 | 4, 5, 6 | 3, 7) with cost 2. 

3) Alternating edges crossover operator. The alternating 
edges crossover (AEX) operator considers a chromosome as a 
cycle of arcs [32] that creates only one offspring by choosing 
alternative arcs from the parents. In case of invalid offspring, 
random arc is chosen to create valid offspring. We choose the 
same example chromosomes P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2: 
(1, 8, 3, 4, 5, 6, 2, 7). 

At the beginning the arc (1, 5) is chosen from P1 and the 
arc (5, 6) from P2 are added to the offspring. Next, the arc (6, 
1) is chosen P1, as 6 is the last node, but this arc creates a 
cycle. So, an arc leaving node 6 to an unvisited node is chosen 
randomly. Suppose the arc (6, 2) is chosen. Next, the arc (2, 7) 
from P2, (7, 8) from P1 and then (8, 3) from P2 are added to the 
current offspring. Finally, the following offspring may be 
created: 

O: (1, 5, 6, 2, 7, 8, 3, 4) with cost 1. 

All arcs present in the offspring (O) are inherited from 
either of the parents. 

4) Cycle crossover operator. The cycle crossover (CX) 
creates offspring in which every node and its corresponding 
location are originated from either of the parent chromosomes 
[33]. We choose the same example chromosomes P1: (1, 5, 4, 
7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5, 6, 2, 7). 

The first gene is 1 and for the 2nd position, we choose 
randomly either 5 or 8. Suppose we choose node 5, then the 
offspring chromosome becomes: 

O1: (1, 5, *, *, *, *, *, *) 

All genes in the offspring is chosen from either of the 
parents in the same location, so the next gene to should be 8, 
which is located in P2 just below the present node 5. In P1, this 
node 8 is located at 5th position; so, the offspring chromosome 
becomes: 

O1: (1, 5, *, *, 8, *, *, *) 

Since, next node to be selected is 5 that is already available 
in O1; thus, a cycle is completed and so, the remaining blank 
locations will be filled up by the genes of those locations that 
are present in P2. This way the offspring is built as follows: 

O1: (1, 5, 3, 4, 8, 6, 2, 7) with cost 1. 

Similarly, the 2nd offspring is created: 

O2: (1, 8, 4, 7, 5, 2, 3, 6) with cost 2. 

5) Edge recombination crossover operator. The edge 
recombination crossover (ERX) is proposed in [34]. Most 
operators consider the position and the order of the node. This 

operator considers the links between these nodes. To apply this 
operator, we first construct the edge list of the parents P1: (1, 5, 
4, 7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5, 6, 2, 7). 

Table II shows the edge list of all the nodes for the given 
example. Since the 1st gene of the offspring is 1, the nodes 6, 5, 
7 and 8 are the candidates for the next gene. The nodes 6, 7 and 
8 have three edges: initially four node minus the present node 
1. Similarly, the node 5 has two edges. Among them, node 5 
has minimum edges, thus it is chosen, and the offspring 
becomes (1, 5). 

Node 5 has edges to nodes 4 and 6, so node 4 is chosen 
randomly as both have equal two edges, and the offspring 
becomes (1, 5, 4). 

Node 4 has edges to nodes 7 and 3. Nodes 7 and 3 have 2 
and 3 edges. So, node 7 is chosen next and the offspring 
becomes (1, 5, 4, 7). 

Node 7 has edges to nodes 8 and 2. Nodes 8 and 2 have 2 
and 3 edges. So, node 8 is chosen next and the offspring 
becomes (1, 5, 4, 7, 8). 

Node 8 has edges to nodes 2 and 3. Both nodes have 2 
edges. So, node 2 is chosen randomly and the offspring 
becomes (1, 5, 4, 7, 8, 2). 

Node 2 has edges to nodes 3 and 6. Both nodes have 1 
edge. So, node 3 is chosen randomly and the offspring 
becomes (1, 5, 4, 7, 8, 2, 3). This way the final offspring is 
created as: (1, 5, 4, 7, 8, 2, 3, 6) with cost 3. Here all edges are 
chosen from either of the parents. 

6) Generalized n-point crossover operator. Radcliffe and 
Surry [35] developed generalized N crossover (GNX). Suppose 
N=2, and P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5, 6, 2, 7). 
Now, if crossover points are 4 and 6, then the bold face nodes 
would usually be selected by G2X. Suppose the segments are 
tested in the order (3, 2, 1). Then the 3rd segment of random 
parent, suppose of P2, will be added to give the proto child (*, 
*, *, *, *, *, 2, 7). Next, the nodes in 2nd segment from P1 will 
be tested in random order. The node 8 is accepted to give the 
proto child (*, *, *, *, 8, *, 2, 7). Then nodes in 1st segment 
from P2 is tested, and nodes 1, 3 and 4 are accepted to give the 
final proto child after the 1st phase: (1, *, 3, 4, 8, *, 2, 7). 

Now, the untested segments of both parents are the tested in 
arbitrary order. Only the 2nd segment for P2 is relevant here and 
node 6 is accepted. So, the proto child after the 2nd phase is (1, 
*, 3, 4, 8, 6, 2, 7). 

Since this offspring is yet incomplete, we fill it up 
randomly. So, the final offspring may be (1, 5, 3, 4, 8, 6, 2, 7) 
with cost 1. Only four edges are chosen from either of the 
parents. 

TABLE II. THE EDGE LIST OF THE NODES FOR THE PARENTS P1 AND P2 

Node Edge list Node Edge list 
1 6, 5, 7, 8 5 1, 4, 6 
2 8, 3, 6, 7 6 3, 1, 5, 2 
3 2, 6, 8, 4 7 4, 8, 2, 1 
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4 5, 7, 3 8 7, 2, 1, 3 

7) Greedy crossover operator. The greedy crossover (GX) 
selects the first node randomly [32]. Since the MSTSP is a 
maximization problem, hence some steps of the GX must be 
modified. So, our modified GX for the problem is as follows. 
In each step, total four neighbor nodes of the present node are 
considered from the parents, and the (unvisited) node having 
the largest cost is selected, because it is best at present. If either 
this best node or all neighbour nodes are available in the 
offspring, then any other unvisited node is chosen randomly. 
GX produces one offspring only from the parents. We consider 
the same chromosomes P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2: (1, 8, 
3, 4, 5, 6, 2, 7). 

We have the initial offspring (1). The nodes 5 and 8 are 
neighbour nodes of node 1 with their costs 66 and 2 
respectively. Having higher cos, the node 5 is better, so, it is 
added to the offspring: (1, 5). 

The nodes 4, 1, 6 and 4 are neighbour nodes of node 5 with 
their costs 31, 60, 50 and 31 respectively. Though the node 1 is 
the best, since it is available in the offspring, node 2 is chosen 
randomly and added to the offspring: (1, 5, 2). 

The nodes 3, 8, 7 and 6 are neighbour nodes of node 2 with 
their costs 55, 58, 1 and 72 respectively. Node 6 is added to the 
offspring, as it the best node: (1, 5, 2, 6). 

The nodes 3, 2 and 5 are neighbour nodes of node 6 with 
their costs 20, 82 and 39 respectively. Though node 2 is the 
best, since it is available in the offspring, node 3 is chosen 
randomly and added to the offspring: (1, 5, 2, 6, 3). Finally, the 
complete offspring may be: (1, 5, 2, 6, 3, 4, 7, 8) with cost 13. 

8) Sequential constructive crossover operator. The 
sequential constructive crossover (SCX) operator creates only 
one offspring by using better arcs available in the parents' 
structure ([16], [36]). Additionally, sometimes it uses better 
arcs those are not available in either of the parents' structure. It 
sequentially searches both parent chromosomes and selects 
first legitimate (unvisited) node that appears after the present 
node. If no any legitimate node is available in either of the 
parents, it sequentially searches from the beginning of the 
chromosome and then compares their associated cost to decide 
the next node of the offspring chromosome. This operator is 
found to be very effective for the TSP and some other 
problems ([37]-[40]). The SCX is slightly modified for the 
MSTSP as below: 

Step 1: Start from 'node 1’ (i.e., current node p =1). 

Step 2: Sequentially search both parent chromosomes and 
consider the first ‘legitimate node' (the node that is not yet 
visited) appeared after 'node p’ in each parent. If no 'legitimate 
node' after 'node p’ is present in any of the parents, search 
sequentially from the starting of the parent and consider the 
first 'legitimate node', and go to Step 3. 

Step 3: Suppose the 'node α' and the 'node β' are found in 
1st and 2nd parent respectively, then for selecting the next 
node go to Step 4. 

Step 4: If cpα > cpβ, then select 'node α', otherwise, 'node β' 
as the next node and concatenate it to the partially constructed 
offspring chromosome. If the offspring is a complete 
chromosome, then stop, otherwise, rename the present node as 
'node p' and go to Step 2. 

We consider the same example P1: (1, 5, 4, 7, 8, 2, 3, 6) 
and P2: (1, 8, 3, 4, 5, 6, 2, 7). Node 1 is the 1st gene. After node 
1, nodes 5 in P1 and 8 in P2 are legitimate nodes with costs 
c15=66 and c18=2. Since c15>c18, node 5 is accepted and the 
offspring becomes (1, 5). = 

After node 5, nodes 4 in P1 and 8 in P2 are legitimate nodes 
with costs c54=31 and c56=50. Since c56>c54, node 6 is 
accepted and the offspring becomes (1, 5, 6). 

After node 6, nodes 4 in P1 and 2 in P2 are legitimate nodes 
with costs c64=70 and c62=82. Since c62>c64, node 2 is 
accepted and the offspring becomes (1, 5, 6, 2). 

After node 2, nodes 3 in P1 and 7 in P2 are legitimate nodes 
with costs c23=55 and c27=1. Since c23>c27, node 3 is accepted 
and the offspring becomes (1, 5, 6, 2, 3). 

After node 3, there is no legitimate node in P1 and node 4 is 
legitimate in P2. So, for P1, search continues from its starting 
and finds same legitimate node 4 with c34=69. So, node 4 is 
accepted and the offspring becomes (1, 5, 6, 2, 3, 4). Finally, 
offspring (1, 5, 6, 2, 3, 4, 7, 8) with cost 13 is obtained. 

D. Mutation Operator 
Mutation operator increases variety in the population by 

applying random changes in the population. For example, swap 
mutation, inversion mutation, insertion mutation, adaptive 
mutation [14], etc. are some of them. We have implemented 
swap mutation for our simple GAs. 

E. Control Parameters 
Control parameters rule the genetic process at some extent. 

They are - population size that decides number of 
chromosomes available during the process, crossover 
probability that fixes the probability of performing crossover 
between parents, mutation probability that fixes the probability 
of performing gene-wise mutation and stopping criterion that 
fixes when to stop the genetic process [16]. A simple GA may 
be summarized as follows: 

SimpleGA( ) 
{ Initialize population randomly; 
Evaluate the population; 
Generation = 0; 
While stopping criterion is not satisfied 
{ Generation = Generation + 1; 
Select better chromosomes by selection operator; 
Perform crossover using crossover probability (Pc); 
Perform mutation using mutation probability (Pm); 
Evaluate the population; 
 } 
} 
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IV. C COMPUTATIONAL EXPERIENCES AND DISCUSSIONS 
To perform compare study among eight different crossover 

operators, simple GAs using these crossover operators have 
been encoded in Visual C++ on a Laptop with i7-1065G7 
CPU@1.30 GHz and 8 GB RAM under MS Windows 10, and 
then run for twenty TSPLIB instances [41]. Out of the twenty, 
the nine instances ftv33, ftv38, ftv44, ft53, ftv64, ft70, ftv70, 
kro124p and ftv170 are asymmetric, and the remaining eleven 
instances dantzig42, eil51, st70, lin105, ch130, kroA150, 
si175, d198, pr226, a280 and lin318 are symmetric. We run 
GAs for different setting of parameters, and selected 
parameters are listed in Table III. 

Fig. 1 presents results for ftv170 (by considering only 100 
generations) by all GAs. Each curve is for one crossover, and it 
shows improvement of current solution in the successive 
generations. The figure shows some variations of SCX and 
shows that SCX is the best. ERX also has some variations and 
is place in second position. But GX and AEX have no 
variations and get trapped in local maximum very quickly and 
shown to be the worst. 

The comparative study among the eight simple GAs are 
summarized in two tables: Tables IV and VIII. These tables are 
prepared similarly: each row is for an instance and each 
column is for one GA using a particular crossover operator. 
The result is defined best solution cost, average solution cost, 
standard deviation (S.D.) of solution costs, and average 
convergence time (in second). The best result for a particular 
instance among all GAs is marked by bold face. 

TABLE III. PARAMETERS FOR THE GAS 

Parameters Values 

Population size 50 

Crossover probability 100% 

Mutation probability 10% 

Termination criterion 1,000 generations 

No. of runs for each instance 50 times 

 
Fig. 1. Result by GAs using different Crossover Operators for ftv170. 

From the Table IV, it is seen that the crossovers OX, AEX, 
CX, ERX and GX could not obtain either best solution or best 
average cost for any asymmetric instance. The crossover PMX 
obtains best average costs with lowest S.D. for the instances 
ftv33, ftv38 and ftv44, whereas SCX obtains best lowest 
average costs with lowest S.D. for the remaining six instances. 
So, SCX is shown to be the best. These results are shown in 
Fig. 2 that also shows the usefulness of crossover SCX. The 
crossovers ERX and GNX are competing, and GX is the worst. 

 
Fig. 2. Average Solution Cost by different GAs for Asymmetric Instances. 

To confirm whether SCX-based GA average is statistically 
and significantly different from the averages found by other 
crossover-based GAs, Student’s t-test is performed. It is to be 
mentioned that 50 runs have been performed for each instance. 
Following t-test formula is used here [42]: 

𝑡 =
𝑋�1 − 𝑋�2

� 𝑆𝐷12
𝑛1 − 1 + 𝑆𝐷22

𝑛2 − 1

 

𝑤ℎ𝑒𝑟𝑒, 

𝑋�1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑆𝐷1 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑋�2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑆𝐷2 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑛1 − 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 

𝑛2 − 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 

The values of 𝑋�2 and 𝑆𝐷2 are found by the SCX-based GA, 
and 𝑋�1 and 𝑆𝐷1 values are found by other GAs. The t-statistic 
are reported in Table V. The t-values may be positive or 
negative. Since the problem is maximization problem, the 
negative value shows that SCX found better solution than the 
competitive crossover. In the positive case, the competitive 
crossover found better solution. The confidence interval at the 
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95% confidence level (t0.05 = 1.96) is used. When t-value is 
greater than 1.96, the difference between them is significant. In 
this condition, if t-vale is negative then SCX-based GA 
solution is better, otherwise the competitive crossover-based 
GA solution is better. If t-value is less than 1.96, then there is 
no significant difference between the obtained values. The 
table also shows the information about the crossovers that 
found significantly better solutions. 

On four instances there is no statistically significant 
difference between SCX and PMX. On three instances SCX is 

found better than PMX, whereas, PMX is found better than 
SCX on two instance. There is no significant difference 
between SCX and CX on two instances. On five instances SCX 
performed better than CX, whereas, on two instances CX is 
better than SCX. Next, there is no significant difference 
between SCX and GNX on three instances. SCX is better than 
GNX on five instances, whereas, GNX is better than SCX on 
only one instance. On all nine instances, SCX is found better 
than OX, AEX and ERX. From this study we can say that SCX 
is the best for asymmetric instances. 

TABLE IV. COMPARATIVE STUDY OF 8 CROSSOVER-BASED GAS FOR ASYMMETRIC TSPLIB INSTANCES 

Instance n Result PMX OX AEX CX ERX GNX GX SCX 

ftv33 34 

Best Sol 134 122 107 133 122 133 99 125 

Avg. Sol 123.25 106.25 96.8 121 111.4 124.4 85.5 118.3 

S.D. 6.72 8.1 11.25 6.16 5.57 5.64 11.15 5.04 

Avg. Time 0.02 0.04 0.07 0.06 0.85 0.04 0.08 0.07 

ftv38 39 

Best Sol 137 121 114 135 125 136 103 133 

Avg. Sol 126.70 110.70 94.35 123.35 115.35 122.30 85.45 121.10 

S.D. 6.07 5.28 8.79 4.64 7.12 8.49 11.17 5.80 

Avg. Time 0.03 0.05 0.07 0.08 1.14 0.04 0.11 0.11 

ftv44 45 

Best Sol 140 125 94 142 130 143 99 137 

Avg. Sol 130.6 104.7 82.45 125.40 118.80 129.00 81.20 129.85 

S.D. 6.56 8.68 8.87 8.00 5.48 7.85 10.07 5.34 

Avg. Time 0.03 0.05 0.08 0.10 1.44 0.05 0.14 0.14 

  Best Sol 329 275 223 321 286 327 323 360 

ft53 53 Avg. Sol 299.35 237.50 192.95 300.30 265.30 297.90 279.00 327.80 

  S.D. 15.07 12.66 12.51 15.46 11.59 16.16 31.84 10.98 

  Avg. Time 0.04 0.05 0.10 0.13 1.99 0.06 0.22 0.22 

ftv64 65 

Best Sol 123 106 85 122 110 118 88 120 

Avg. Sol 110.7 90.25 72.60 109.30 99.70 105.90 73.90 110.90 

S.D. 7.88 7.37 5.99 7.31 5.10 7.74 7.44 5.76 

Avg. Time 0.05 0.10 0.15 0.19 2.87 0.06 0.28 0.31 

ft70 70 

Best Sol 816 707 673 823 768 822 816 884 

Avg. Sol 778.95 685.95 656.60 785.3 735.35 791.05 770.85 845.85 

S.D. 25.70 7.67 11.01 17.57 24.53 23.2 26.78 17.90 

Avg. Time 0.06 0.07 0.17 0.22 3.45 0.07 0.30 0.32 

ftv70 71 

Best Sol 121 111 85 118 108 125 81 125 

Avg. Sol 109.95 87 63.75 106.95 99.95 108.1 63.1 110.70 

S.D. 6.57 6.57 8.22 5.42 5.17 5.31 6.39 6.23 

Avg. Time 0.06 0.09 0.15 0.19 3.49 0.07 0.25 0.29 

kro124p 100 

Best Sol 1562 1083 1097 1486 1498 1666 1069 1553 

Avg. Sol 1406.50 984.35 976.30 1392.30 1302.80 1383.70 966.90 1416.50 

S.D. 82.81 43.62 50.12 51.6 83.35 95.47 52.42 81.07 

Avg. Time 0.09 0.14 0.29 0.42 6.98 0.11 0.54 0.68 

ftv170 171 

Best Sol 71 70 78 71 63 73 37 112 

Avg. Sol 63.90 62.40 59.95 67.95 59.35 65.60 31.20 104.15 

S.D. 2.74 3.43 16.02 1.83 1.80 2.62 2.68 4.09 

Avg. Time 0.16 0.31 0.28 0.66 13.81 0.11 0.06 1.36 
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TABLE V. THE T-VALUES AGAINST SCX AND THE INFORMATION ABOUT CROSSOVERS THAT FOUND SIGNIFICANTLY BETTER SOLUTIONS 

Instance PMX OX AEX CX ERX GNX GX 

ftv33 4.13 -8.84 -12.21 2.37 -6.43 5.65 -18.76 

Better PMX SCX SCX CX SCX GNX SCX 

ftv38 4.67 -9.28 -17.78 2.12 -4.38 0.82 -19.83 

Better PMX SCX SCX CX SCX --- SCX 

ftv44 0.62 -17.27 -32.05 -3.24 -10.11 -0.63 -29.88 

Better --- SCX SCX SCX SCX --- SCX 

ft53 -10.68 -37.72 -56.71 -10.15 -27.40 -10.71 -10.14 

Better SCX SCX SCX SCX SCX SCX SCX 

ftv64 -0.14 -15.45 -32.26 -1.20 -10.19 -3.63 -27.53 

Better --- SCX SCX --- SCX SCX SCX 

ft70 -14.95 -57.48 -63.04 -16.90 -25.47 -13.09 -16.30 

Better SCX SCX SCX SCX SCX SCX SCX 

ftv70 -0.58 -18.32 -31.86 -3.18 -9.29 -2.22 -37.34 

Better --- SCX SCX SCX SCX SCX SCX 

kro124p -0.60 -32.86 -32.33 -1.76 -6.85 -1.83 -32.60 

Better --- SCX SCX --- SCX --- SCX 

ftv170 -57.23 -54.75 -18.71 -56.55 -70.18 -55.56 -104.43 

Better SCX SCX SCX SCX SCX SCX SCX 

To rank the other crossover operators, the t-values against 
PMX is calculated and reported in Table VI. There is no 
significant difference found between PMX and GNX on five 
instances. Each of them performed better than the other one on 
two instances. There is no significant difference found between 
PMX and CX on five instances. On three instances PMX is 
found better than CX, whereas, CX is found better than PMX 
on one instance. It shows that PMX and GNX are sharing 2nd 
rank. We further carried out an adequate statistical analysis. 
The results of our hypotheses testing are summarized in 
Table VII. In the table, each row contains two columns, where 
the first lists a crossover operator and the second column lists 
its inferior crossover operators. Each crossover is ranked 
according to its number of inferior crossover operators. No 
significant difference is found between AEX and GX, and 
hence, they share the worst rank. 

From the Table VIII, it is seen that the crossovers OX, 
AEX, CX and GX could not obtain either best solution or best 
average cost for any asymmetric instance. The crossover PMX 
and ERX obtain best average costs with lowest S.D. for the 
instances eil51 and dantzig42 respectively, whereas SCX 
obtains best lowest average costs with lowest S.D. for the 
remaining nine instances. So, the crossover SCX is found to be 
the best. 

The results are shown in Fig. 3 that also shows the 
usefulness of SCX. The crossovers ERX, OX, CX and GNX 
are competing, and GX is the worst. Based on this study also 
one can say that SCX is the best and GX is the worst, and 
others are competing. 

 
Fig. 3. Average Solution Cost by different GAs for Symmetric Instances. 

For these symmetric instances also, to confirm whether 
SCX-based GA average solution is significantly different from 
the average solution found by other GAs, Student’s t-test is 
performed, and the calculated t-values are reported in the Table 
IX. 

On two instances there is no statistically significant 
difference between SCX and ERX. On eight instances SCX is 
better than ERX, whereas, ERX is better than SCX on one 
instance only. On one instance, there is no significant 
difference between SCX and (PMX, OX, CX and GNX). SCX 
performed better than PMX, CX and GNX on nine instances, 
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whereas, PMX, CX and GNX are better than SCX on only one 
instance. Next, on one instance there is no statistically 
significant difference between SCX and OX. On remaining ten 
instances SCX is better than OX. From this study we can 
conclude that SCX is the best. However, to rank the other 
crossover operators, an adequate statistical analysis is carried 

out, and the results are summarized in Table X. The crossovers 
PMX, ERX, GNX, CX, OX, AEX and GX are placed in the 
2nd, 3rd, 4th, 5th, 6th, 7th and worst rank, respectively. On both 
kind of problem instance, SCX is placed the 1st rank, PMX is 
in the 2nd rank and GX is in the worst rank. 

TABLE VI. THE T-VALUES AGAINST PMX AND THE INFORMATION ABOUT CROSSOVERS THAT FOUND SIGNIFICANTLY BETTER SOLUTIONS 

Instance OX AEX CX ERX GNX GX 

ftv33 -11.31 -14.13 -1.73 -9.50 0.92 -20.30 

Better PMX PMX ---- PMX --- PMX 

ftv38 -13.92 -21.20 -3.07 -8.49 -2.95 -22.71 

Better PMX PMX PMX PMX PMX PMX 

ftv44 -16.66 -30.55 -3.52 -9.66 -1.09 -28.77 

Better PMX PMX PMX PMX --- PMX 

ft53 -22.00 -38.03 0.31 -12.54 -0.46 -4.04 

Better PMX PMX --- PMX --- PMX 

ftv64 -13.27 -26.94 -0.91 -8.20 -3.04 -23.77 

Better PMX PMX --- PMX PMX PMX 

ft70 -24.27 -30.63 1.43 -8.59 2.45 -1.53 

Better PMX PMX --- PMX GNX --- 

ftv70 -17.29 -30.73 -2.47 -8.37 -1.53 -35.78 

Better PMX PMX PMX PMX --- PMX 

kro124p -31.57 -31.11 -1.02 -6.18 -1.26 -31.40 

Better PMX PMX --- PMX --- PMX 

ftv170 -2.39 -1.70 8.60 -9.72 3.14 -59.72 

Better PMX --- CX PMX GNX PMX 

TABLE VII. RESULTS OF STATISTICAL HYPOTHESES TESTING ON ASYMMETRIC INSTANCES 

Crossover Inferior crossovers 

SCX PMX, OX, AEX, CX, ERX, GNX, GX 

PMX OX, AEX, CX, ERX, GX 

GNX OX, AEX, CX, ERX, GX 

CX OX, AEX, ERX, GX 

ERX OX, AEX, GX 

OX AEX, GX 

AEX ---- 

GX ---- 
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TABLE VIII. COMPARATIVE STUDY OF 8 CROSSOVER-BASED GAS FOR SYMMETRIC TSPLIB INSTANCES 

Instance n Results PMX OX AEX CX ERX GNX GX SCX 

dantzig42 42 

Best Sol 65 54 50 62 69 62 41 52 

Avg. Sol 57.80 48.75 39.50 53.85 61.30 55.50 31.70 49.05 

S.D. 3.78 2.66 4.02 4.29 3.27 4.63 4.28 1.28 

Avg. Time 0.03 0.04 0.07 0.09 1.32 0.04 0.10 0.13 

eil51 51 

Best Sol 29 25 24 30 29 31 21 30 

Avg. Sol 25.75 22.10 20.90 25.25 26.00 25.60 18.40 25.60 

S.D. 2.02 1.26 2.12 1.89 1.26 2.40 1.62 1.88 

Avg. Time 0.04 0.05 0.08 0.10 1.47 0.05 0.17 0.13 

st70 70 

Best Sol 48 42 30 44 48 45 33 48 

Avg. Sol 41.00 32.70 25.55 37.20 41.90 38.55 27.00 43.15 

S.D. 3.91 2.81 2.60 2.62 3.69 3.38 2.68 2.65 

Avg. Time 0.06 0.07 0.15 0.23 3.29 0.07 0.29 0.37 

lin105 105 

Best Sol 906 736 385 850 857 832 282 914 

Avg. Sol 768.40 645.80 261.85 765.45 760.95 751.05 189.45 822.30 

S.D. 62.20 59.35 66.69 46.63 51.11 45.59 29.66 57.26 

Avg. Time 0.09 0.18 0.10 0.45 8.20 0.10 0.70 0.75 

ch130 130 

Best Sol 265 173 163 269 253 250 208 273 

Avg. Sol 236.00 160.35 140.80 228.60 234.40 227.65 180.35 251.90 

S.D. 21.79 7.09 11.45 19.10 13.23 13.20 19.18 12.94 

Avg. Time 0.11 0.20 0.44 0.69 12.10 0.13 1.22 1.19 

kroA150 150 

Best Sol 1147 791 719 1142 1053 1094 899 1238 

Avg. Sol 997.85 706.20 657.65 983.45 944.85 966.10 771.50 1113.20 

S.D. 73.05 40.69 39.32 65.35 56.88 65.94 71.82 67.41 

Avg. Time 0.13 0.29 0.51 0.94 16.64 0.15 1.42 1.45 

si175 175 

Best Sol 211 193 149 211 208 211 149 248 

Avg. Sol 196.15 186.60 136.85 189.95 197.10 195.20 136.85 231.40 

S.D. 9.93 3.44 5.46 11.74 7.39 10.49 5.46 10.73 

Avg. Time 0.13 0.31 0.14 0.81 15.24 0.13 0.09 1.81 

d198 198 

Best Sol 265 198 114 218 234 217 92 309 

Avg. Sol 191.70 168.15 75.10 165.75 207.70 173.15 62.50 279.10 

S.D. 39.29 13.54 16.60 24.58 17.31 28.52 11.77 21.89 

Avg. Time 0.15 0.36 0.06 1.50 23.23 0.16 0.16 1.90 

pr226 226 

Best Sol 4887 3640 1650 4014 3796 3790 522 6540 

Avg. Sol 3555.40 3394.15 600.75 3295.50 3080.35 3069.40 304.30 5761.80 

S.D. 595.65 133.00 352.07 389.34 427.27 588.77 83.88 319.06 

Avg. Time 0.18 0.73 0.29 1.89 33.15 0.21 0.25 1.89 

a280 280 

Best Sol 54 40 23 49 45 45 18 88 

Avg. Sol 39.50 34.50 16.50 32.65 35.70 32.85 15.25 72.90 

S.D. 6.84 2.01 2.67 7.70 4.06 6.51 1.95 5.44 

Avg. Time 0.20 0.63 0.13 2.35 34.78 0.19 0.09 3.70 

lin318 318 

Best Sol 860 721 346 860 850 813 202 1151 

Avg. Sol 742.15 602.8 213.5 723.6 635.75 726.6 176.3 1027.6 

S.D. 75.84 57.18 51.71 81.4 64.36 48.88 12.08 72.64 

Avg. Time 0.26 0.85 0.3 3.59 59.5 0.29 0.3 4.73 
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TABLE IX. THE T-VALUES AGAINST SCX AND THE INFORMATION ABOUT CROSSOVERS THAT FOUND SIGNIFICANTLY BETTER SOLUTIONS 

Instance PMX OX AEX CX ERX GNX GX 

dantzig42 15.35 -0.71 -15.85 7.51 24.42 9.40 -27.19 

Better PMX --- SCX CX ERX GNX SCX 

eil51 0.38 -10.83 -11.61 -0.92 1.24 0.00 -20.31 

Better --- SCX SCX --- --- --- SCX 

st70 -3.19 -18.94 -33.19 -11.18 -1.93 -7.50 -30.00 

Better SCX SCX SCX SCX --- SCX SCX 

lin105 -4.46 -14.98 -44.63 -5.39 -5.60 -6.81 -68.70 

Better SCX SCX SCX SCX SCX SCX SCX 

ch130 -4.39 -43.43 -45.01 -7.07 -6.62 -9.18 -21.65 

Better SCX SCX SCX SCX SCX SCX SCX 

kroA150 -8.12 -36.18 -40.86 -9.67 -13.36 -10.92 -24.28 

Better SCX SCX SCX SCX SCX SCX SCX 

si175 -16.88 -27.83 -54.97 -18.24 -18.43 -16.89 -54.97 

Better SCX SCX SCX SCX SCX SCX SCX 

d198 -13.60 -30.17 -51.98 -24.11 -17.91 -20.63 -61.01 

Better SCX SCX SCX SCX SCX SCX SCX 

pr226 -22.86 -47.95 -76.04 -34.30 -35.20 -28.14 -115.80 

Better SCX SCX SCX SCX SCX SCX SCX 

a280 -26.75 -46.35 -65.15 -29.88 -38.36 -33.05 -69.83 

Better SCX SCX SCX SCX SCX SCX SCX 

lin318 -19.03 -32.17 -63.91 -19.51 -28.26 -24.06 -80.92 

Better SCX SCX SCX SCX SCX SCX SCX 

TABLE X. RESULTS OF STATISTICAL HYPOTHESES TESTING ON SYMMETRIC INSTANCES 

Crossover Inferior crossovers 

SCX PMX, OX, AEX, CX, ERX, GNX, GX 

PMX OX, AEX, CX, ERX, GNX, GX 

ERX OX, AEX, CX, GNX, GX 

GNX OX, AEX, CX, GX 

CX OX, AEX, GX 

OX AEX, GX 

AEX GX 

V. CONCLUSION AND FUTURE WORKS 
Numerous crossover operators have been proposed for the 

TSP using GAs which can also be used for its variations. In 
this paper, eight simple GAs using eight different crossover 
operators, namely PMX, OX, AEX, CX, ERX, GNX, GX and 
SCX, have been developed for solving the MSTSP. We first 
applied these operators in manual experiment on two parent 
chromosomes to produce an offspring, for each crossover 
operator. We then run the algorithms run on TSPLIB instances 
of different types and sizes. We set highest crossover 
probability to show exact nature of crossover operators. We 
carried out comparative study of the GAs on nine asymmetric 
and eleven symmetric TSPLIB instances. In terms of solution 
quality, our comparative study showed that crossover operator 
SCX is the best, PMX is the second-best and GX is the worst. 
Our observation is confirmed using Student’s t-test at 95% 

confidence level. Thus, SCX may be good crossover operator 
to obtain more accurate results, researchers may apply it for 
other related combinatorial optimization problems. However, it 
is seen that PMX is better than SCX for small-sized instances. 

In this study, our aim was to compare the solution quality 
found using different crossover operators, neither to improve 
the solution quality nor to develop the most competitive 
algorithm for the MSTSP. So, neither any local search 
technique is used to improve the solution quality nor parallel 
version of algorithms is developed to find exact solution. 
Therefore, we have developed simple and pure GAs. Thus, 
modified SCX operators ([43]-[45]) can be used instead of 
SCX and then good local search and immigration procedures 
[46] can be incorporated to hybridize the algorithm to solve the 
instances more accurately, which is under our investigation. 
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