
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

A Comparative Study of Eight Crossover Operators
for the Maximum Scatter Travelling Salesman

Problem
Zakir Hussain Ahmed

Department of Mathematics and Statistics, College of Science
Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia

Abstract—The maximum scatter traveling salesman problem
(MSTSP), a variation of the famous travelling salesman problem
(TSP), is considered here for our study. The aim of problem is to
maximize the minimum edge in a salesman’s tour that visits each
city exactly once in a network. It is proved be NP-hard problem
and considered to be very difficult problem. To solve this kind of
problems efficiently, one must use heuristic/metaheuristic
algorithms, and genetic algorithm (GA) is one of them. Out of
three operators in GAs, crossover is the most important operator.
So, we consider eight crossover operators in GAs for solving the
MSTSP. These operators have originally been designed for the
TSP which can also be applied on the MSTSP after some
modifications. The crossover operators are first illustrated
manually through an example and then executed on some well-
known TSPLIB instances of different types and sizes. The
obtained comparative study clearly demonstrates the usefulness
of the sequential constructive crossover operator for the MSTSP.
Finally, a relative ranking of the crossover operators is reported.

Keywords—Traveling salesman problem; maximum scatter;
genetic algorithms; crossover operators; sequential constructive
crossover

I. INTRODUCTION
The travelling salesman problem is a famous problem

(TSP) that aims to find shortest tour of a salesman who starts
his journey from depot node and visit all remaining n nodes
(cities) such that each node is to be visited only once and then
returns to the depot. It is a NP- Hard problem [1] that is very
easy to define but difficult to solve. Several researches have
been done to deal with the problem and consequently
numerous good algorithms have been reported in the literature.
However, few circumstances require different restrictions on
the acceptability of a tour as solution. One such restriction is to
maximize the minimum cost edge in a tour of the salesman,
which is named as maximum scatter TSP (MSTSP). In
MSTSP, given a weighted graph, the aim is to find a
Hamiltonian circuit so that the minimum cost edge is
maximized. That is, the aim is to make each point away from
(scattered) its previous and next points in the circuit. It is also
called the max-min 1-neighbour TSP. In the max-min m-
neighbor TSP, the aim is to maximize the minimum cost
between any city and all its m-neighbours in the Hamiltonian
circuit. These problems are close to the bottleneck TSP (BTSP)
[2].

The MSTSP, defined first in [3], has application in
operations involving heating workpiece, where it is equally
important to keep each point away from its immediate ancestor
and successor along with its m-neighbors for allowing cooling
period in each operation. It has application in some other
manufacturing processes that attach metal sheets together.
After required alignment, the topmost sheet has some pre-
specified points where riveting operations are applied to attach
the sheets together. To avoid nonuniform deformation of the
sheets, it is required to arrange the riveting process such that
the distance between any rivet and its next rivet is very large;
that means, the riveting operations must be scattered. It has
application in some kind of medical imaging also. During
imaging physical functions by Dynamic Spatial Reconstructor,
radiation sources are positioned on the upper half of a circular
ring and sensors are positioned directly opposite on the lower.
The ‘firing sequence’ decides the sequence of radiation sources
along with their associated sensors, generally periodically. The
sensors gather energy intensity which goes through the patient
positioned in the middle of the ring. It is required that if the ith
source is activated, then its neighbour sources (for example, (i–
1)th, (i+1)th, (i + 2)th, etc.) must not be activated, and hence
some amount of scattering occurs [1]. The problem can be
applied to a case where someone is falsely accused of a crime
and given is death penalty. Now, he tries to escape from the
police by visiting different safe places across his country to
avoid the capture. Throughout his journey, he looks for a tour
such that the smallest distance between consecutive places is
very big [4].

The MSTSP can be formally defined as follows: Let a
network with a set of n nodes, considering node 1 as depot
node and a travel cost (time or distance, etc.) matrix C=[cij] of
order n connected with ordered pair (i, j) of nodes is given. Let
(1=α0, α1, α2, ,....,αn-1 , αn=1) ≡ {1→α1→α2→.... →αn-1→1}
be a tour. The tour cost is defined as min {𝑐𝛼𝑖,𝛼𝑖+1: 𝑖 =
0, 1, 2, … . ,𝑛 − 1}. The aim is to find a tour that has maximum
tour cost. The problem can be transformed to a BTSP by the
transformation dij = L-cij where D = [dij]nxn is equivalent
BTSP’s cost (or distance) matrix and L is very large number
[5].

Since the problem is NP-hard, obtaining optimal solution
using exact method is very hard, if not possible. The moderate
sized TSP instances have been effectively solved by using

317 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

operations research methods, like branch-and-bound [6],
lexisearch [7], branch-and-cut [8] and local search [9]. As the
problem size increases, obtaining exact solution is very hard.
For solving large sized instances, one must go for heuristic
algorithms, which, of course, don’t promise to obtain optimal
solution of a problem instance; however, they give near exact
solution very quickly. Hence heuristic algorithms are used to
solve some difficult problems. The most current algorithms
that are used to solve various difficult optimization problems
are termed as metaheuristics. There are metaheuristic
algorithms based on simulated annealing [10], tabu search [11],
insertion heuristic [12], ant colony algorithm [13], genetic
algorithms [14], variable neighbourhood method [15], etc.
However, genetic algorithms (GAs) are extensively applied
methods amongst modern metaheuristics, and hence, we are
applying GAs to solve the MSTSP.

Genetic Algorithms (GAs) first developed by John Holland
in 1975, based on imitating the Darwinian survival-of-the-
fittest theory among different species created by arbitrary
changes in the chromosomes’ structure in the natural biology
[14]. They are powerful and robust metaheuristic algorithms
for solving large-sized problem instances. They have been
fruitfully applied to numerous combinatorial optimization
problems to find their solutions. Each feasible solution of a
problem may be assumed as a chromosome whose fitness is
measured by its objective function value [16].

In general, simple GAs begin using randomly created a set
of chromosomes called initial population, also termed as pool
of genes, and then apply, mainly three, genetic operators to
produce new, and possibly, better populations in subsequent
generations. The first operator is selection which
probabilistically copies and discards some of the chromosomes
of the present generation to the next generation. Crossover is
the second operator that selects randomly a pairs of
chromosomes and mates to produce new chromosomes. The
third operator is mutation, which randomly alters some position
values (genes) of a chromosome. Crossover is very powerful
operator in the GA search. Mutation diverges the GA search
space. Generally, probability of applying mutation operator is
fixed very low comparative to probability of crossover operator
[14].

The crossover operators which have been developed for the
usual TSP are also applied on the variant TSP after some
modification. Since the MSTSP is a variant TSP, we consider
eight crossover operators in simple GAs for solving the
MSTSP. The crossover operators are first illustrated manually
through an example and then executed on some well-known
TSPLIB instances of different types and sizes. The obtained
comparative study clearly demonstrates the usefulness of the
sequential constructive crossover operator [16] for the MSTSP.
Finally, a relative ranking of the crossover operators is
reported.

This paper is organized as follows: A survey of the
literature for the MSTSP is reported in Section II. Section III
develops simple genetic algorithms using eight crossover
operators for the problem, whereas, Section IV reports
computational experiments for eight crossover operators.
Finally, Section V presents conclusion and future works.

II. RELATED WORK
There are few literatures about MSTSP, and the relevant

papers are as follows. Arkin et al. [1] developed the first
method for solving the problem. The problem was shown be
NP-hard and unless P = NP, any no constant-factor
approximation method can be designed. They developed
factor-2 (which is best factor) approximation method with the
triangle inequality for the max-min 1-neighbor TSP, for the
cycle and path versions. Further, the method expanded to
obtain a factor-2 approximation solution for the max-min 2-
neighbor TSP, for cycle as well as some cases of path version.
They also developed methods for the max-min 2-neighbor TSP
with the triangle inequality, for both the path and cycle
versions. The methods also expanded to obtain an
approximation solution for path version of the max-min m-
neighbor TSP.

Chiang [17] developed approximation methods for the
max-min 2-neighbor TSP that follows the triangle inequality.
He developed approximation methods for the path and cycle
versions by improving methods in [1]. As mentioned, both
algorithms are much simpler. John [4] also studied many works
of MSTSP and its relevant models. Kabadi and Punnen [18]
obtained an approximation method for the MSTSP that
satisfies the triangle inequality, which is claimed to be the best
bound for the case. Hoffmann et al. [19] extended the
algorithm in [1] that produces optimal solutions for the nodes
on a line to a regular mxn-grid. As reported, in some particular
cases, the algorithm takes linear computational time to find an
optimal tour.

The MSTSP is close to the BTSP, where the aim is to
minimize the maximum cost edge in a Hamiltonian circuit
[20]. Exact algorithms based on lexisearch approach have been
developed ([21], [22]). Also, hybrid algorithms have been
proposed for solving the problem ([23], [24]). Another closely
related problem of the MSTSP is the maximum TSP
(MaxTSP), in which the aim is to maximize total length of a
tour in a Hamiltonian circuit [25]. A hybrid GA is proposed for
solving the problem [26].

Dong et al. [27] proposed the multi-salesmen version of the
MSTSP, multiple MSTSP (MMSTSP). They developed three
improved GAs using greedy initialization, hill-climbing and
simulated annealing algorithms to improve GAs for solving the
MMSTSP. As claimed the improved algorithms are efficient
algorithms and can reveal several characteristics in finding the
solution of the problem.

A multi-start iterated local search approach is proposed in
[28] for the MSTSP. Two local search algorithms based on
insertion and modified 2-opt moves have been developed as
part of our approach. To investigate the effectiveness of the
method, it is tested on the TSPLIB instances, and found very
good results.

III. SIMPLE GENETIC ALGORITHMS FOR THE MSTSP
Beginning with an initial population, a simple GA

recurrently applies three genetic operators, selection, crossover
and mutation, until the stopping criterion is satisfied. Though
GA is among the best metaheuristic algorithms, but its
performance verily depends on initial chromosome population,

318 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

three operators and some parameters [14] that are discussed in
this section.

A. Chromosome Representation and Initial Population
There are numerous ways to represent solutions as

chromosomes for the TSP and its variants. Path representation
is considered for the MSTSP that lists labels of nodes so that
no any node is repeated in a chromosome. Suppose, {1, 2, 3, 4,
5, 6, 7, 8} represents the node labels in an 8-node instance,
then the tour {1→7→2→3→8 → 4→6→ 5 →1} can be
denoted by (1, 7, 2, 3, 8, 4, 6, 5). The objective function is
defined as the sum of the costs of edges in the tour. Since the
problem is a maximization problem, fitness and objective
functions are same. Usually a simple GA begins with a pool of
chromosomes called initial population. Here randomly created
initial population is considered.

B. Selection Operator
In selection process, strings/chromosomes are replicated to

the mating pool of next generation based on probabilities
associated with their fitness function values. By transferring a
higher portion of fitter chromosomes to the next generation,
selection imitates the Darwinian survival-of-the-fittest in
natural biology. Here, no any new chromosome is formed.
Generally, the proportionate selection is applied in which any
chromosome is chosen based on a probability that is calculated
as proportional to its fitness function value. For example,
roulette wheel selection, tournament selection, stochastic
remainder, etc. are some of them. We consider stochastic
remainder selection method [29] for our GAs.

C. Crossover Operators
Crossover operators selects two parent chromosomes and a

point throughout the length of the chromosomes and exchanges
their information after the crossover point. It performs a very
significant role in GAs. Several good crossover methods are
suggested for the TSP in the literature which are supposed to
be good for the MSTSP. For example, partially mapped
crossover [30], ordered crossover [31], alternating edges
crossover [32], cycle crossover [33], edge recombination
crossover [34], generalized N crossover [35], greedy crossover
[32], sequential constructive crossover [16] are some of them.
We are going to investigate these eight crossover methods.

1) Partially mapped crossover operator. The partially
mapped crossover (PMX) uses two crossover points and
produces two offspring chromosomes [30]. It defines exchange
mappings in the segment between the crossover points. It is the
first crossover operator designed for the TSP in GAs. We
illustrate the PMX through the 8-node example instance along
with its cost matrix given in Table I and the parent
chromosome pair P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5,
6, 2, 7) with costs 3 and 1 respectively. We start journey
(computation) from the first gene (headquarters), node 1.

Let the arbitrarily assumed cut points are after 3rd and 6th
genes that are marked with “|”, as follows:

P1: (1, 5, 4 | 7, 8, 2 | 3, 6) and

P2: (1, 8, 3 | 4, 5, 6 | 2, 7)

TABLE I. THE COST MATRIX

Node 1 2 3 4 5 6 7 8

1 0 10 15 95 66 55 29 2

2 61 0 55 22 50 72 1 58

3 45 50 0 69 7 89 22 78

4 91 67 75 0 35 27 34 89

5 60 36 90 31 0 50 61 77

6 3 82 20 70 39 0 77 28

7 16 57 26 86 53 19 0 69

8 13 14 54 8 84 37 87 0

The mapping segments are between these cut points. So,
the exchange mappings are 7↔4, 8↔5 and 2↔6. These
mapping segments are copied to the offspring chromosomes as
follows:

O1: (1, *, * | 7, 8, 2 | *, *),

O2: (1, *, * | 4, 5, 6 | *, *)

We now add some more genes from the alternative parent
chromosomes that do not form invalid chromosome as follows:

O1: (1, *, 3 | 7, 8, 2 | *, *),

O2: (1, *, * | 4, 5, 6 | 3, *)

The node 8 should be in the place of first * in O1 which
comes from P2, but, since it is available in O1, so after
checking the mapping 8↔ 5, node 5 is placed there. The
second * in O1 should be 2 which comes from P2, but, since it
is available in O1, so after checking the mapping 2↔6, node 6
is place there. Finally, 4 is added at third *. So, the first
complete offspring becomes.

O1: (1, 5, 3 | 7, 8, 2 | 6, 4) with cost 14.

Similarly, one can create the second complete offspring as:

O2: (1, 8, 7 | 4, 5, 6 | 3, 2) with cost 2.

2) Ordered crossover operator. To create offspring
chromosomes, the ordered crossover (OX) selects a
subsegment of a route from one parent chromosome and then
preserves the relative order of genes from the other one [31].
We choose the same parent chromosomes and cut points
marked with “|” as:

P1: (1, 5, 4 | 7, 8, 2 | 3, 6) and

P2: (1, 8, 3 | 4, 5, 6 | 2, 7)

We always fix first gene as ‘node 1’. At first, the offspring
are created by simply copying the segments between these cuts
into the offspring as:

O1: (1, *, * | 7, 8, 2 | *, *),

O2: (1, *, * | 4, 5, 6 | *, *)

Now, starting from 2nd cut of one parent chromosome, the
genes (un-available) from the other chromosome are copied in
the same sequence. The order of genes in P2 from the 2nd cut is

319 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

{2 → 7→ 8→ 3→ 4→ 5 → 6}. After ignoring the already
available genes 7, 8 and 2 in O1, the order becomes {3→4→5
→6}, which is added in O1 starting from the 2nd cut point:

O1: (1, 5, 6 | 7, 8, 2 | 3, 4) with cost 14.

Similarly, second offspring is created as:

O2: (1, 8, 2 | 4, 5, 6 | 3, 7) with cost 2.

3) Alternating edges crossover operator. The alternating
edges crossover (AEX) operator considers a chromosome as a
cycle of arcs [32] that creates only one offspring by choosing
alternative arcs from the parents. In case of invalid offspring,
random arc is chosen to create valid offspring. We choose the
same example chromosomes P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2:
(1, 8, 3, 4, 5, 6, 2, 7).

At the beginning the arc (1, 5) is chosen from P1 and the
arc (5, 6) from P2 are added to the offspring. Next, the arc (6,
1) is chosen P1, as 6 is the last node, but this arc creates a
cycle. So, an arc leaving node 6 to an unvisited node is chosen
randomly. Suppose the arc (6, 2) is chosen. Next, the arc (2, 7)
from P2, (7, 8) from P1 and then (8, 3) from P2 are added to the
current offspring. Finally, the following offspring may be
created:

O: (1, 5, 6, 2, 7, 8, 3, 4) with cost 1.

All arcs present in the offspring (O) are inherited from
either of the parents.

4) Cycle crossover operator. The cycle crossover (CX)
creates offspring in which every node and its corresponding
location are originated from either of the parent chromosomes
[33]. We choose the same example chromosomes P1: (1, 5, 4,
7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5, 6, 2, 7).

The first gene is 1 and for the 2nd position, we choose
randomly either 5 or 8. Suppose we choose node 5, then the
offspring chromosome becomes:

O1: (1, 5, *, *, *, *, *, *)

All genes in the offspring is chosen from either of the
parents in the same location, so the next gene to should be 8,
which is located in P2 just below the present node 5. In P1, this
node 8 is located at 5th position; so, the offspring chromosome
becomes:

O1: (1, 5, *, *, 8, *, *, *)

Since, next node to be selected is 5 that is already available
in O1; thus, a cycle is completed and so, the remaining blank
locations will be filled up by the genes of those locations that
are present in P2. This way the offspring is built as follows:

O1: (1, 5, 3, 4, 8, 6, 2, 7) with cost 1.

Similarly, the 2nd offspring is created:

O2: (1, 8, 4, 7, 5, 2, 3, 6) with cost 2.

5) Edge recombination crossover operator. The edge
recombination crossover (ERX) is proposed in [34]. Most
operators consider the position and the order of the node. This

operator considers the links between these nodes. To apply this
operator, we first construct the edge list of the parents P1: (1, 5,
4, 7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5, 6, 2, 7).

Table II shows the edge list of all the nodes for the given
example. Since the 1st gene of the offspring is 1, the nodes 6, 5,
7 and 8 are the candidates for the next gene. The nodes 6, 7 and
8 have three edges: initially four node minus the present node
1. Similarly, the node 5 has two edges. Among them, node 5
has minimum edges, thus it is chosen, and the offspring
becomes (1, 5).

Node 5 has edges to nodes 4 and 6, so node 4 is chosen
randomly as both have equal two edges, and the offspring
becomes (1, 5, 4).

Node 4 has edges to nodes 7 and 3. Nodes 7 and 3 have 2
and 3 edges. So, node 7 is chosen next and the offspring
becomes (1, 5, 4, 7).

Node 7 has edges to nodes 8 and 2. Nodes 8 and 2 have 2
and 3 edges. So, node 8 is chosen next and the offspring
becomes (1, 5, 4, 7, 8).

Node 8 has edges to nodes 2 and 3. Both nodes have 2
edges. So, node 2 is chosen randomly and the offspring
becomes (1, 5, 4, 7, 8, 2).

Node 2 has edges to nodes 3 and 6. Both nodes have 1
edge. So, node 3 is chosen randomly and the offspring
becomes (1, 5, 4, 7, 8, 2, 3). This way the final offspring is
created as: (1, 5, 4, 7, 8, 2, 3, 6) with cost 3. Here all edges are
chosen from either of the parents.

6) Generalized n-point crossover operator. Radcliffe and
Surry [35] developed generalized N crossover (GNX). Suppose
N=2, and P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5, 6, 2, 7).
Now, if crossover points are 4 and 6, then the bold face nodes
would usually be selected by G2X. Suppose the segments are
tested in the order (3, 2, 1). Then the 3rd segment of random
parent, suppose of P2, will be added to give the proto child (*,
*, *, *, *, *, 2, 7). Next, the nodes in 2nd segment from P1 will
be tested in random order. The node 8 is accepted to give the
proto child (*, *, *, *, 8, *, 2, 7). Then nodes in 1st segment
from P2 is tested, and nodes 1, 3 and 4 are accepted to give the
final proto child after the 1st phase: (1, *, 3, 4, 8, *, 2, 7).

Now, the untested segments of both parents are the tested in
arbitrary order. Only the 2nd segment for P2 is relevant here and
node 6 is accepted. So, the proto child after the 2nd phase is (1,
*, 3, 4, 8, 6, 2, 7).

Since this offspring is yet incomplete, we fill it up
randomly. So, the final offspring may be (1, 5, 3, 4, 8, 6, 2, 7)
with cost 1. Only four edges are chosen from either of the
parents.

TABLE II. THE EDGE LIST OF THE NODES FOR THE PARENTS P1 AND P2

Node Edge list Node Edge list
1 6, 5, 7, 8 5 1, 4, 6
2 8, 3, 6, 7 6 3, 1, 5, 2
3 2, 6, 8, 4 7 4, 8, 2, 1

320 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

4 5, 7, 3 8 7, 2, 1, 3

7) Greedy crossover operator. The greedy crossover (GX)
selects the first node randomly [32]. Since the MSTSP is a
maximization problem, hence some steps of the GX must be
modified. So, our modified GX for the problem is as follows.
In each step, total four neighbor nodes of the present node are
considered from the parents, and the (unvisited) node having
the largest cost is selected, because it is best at present. If either
this best node or all neighbour nodes are available in the
offspring, then any other unvisited node is chosen randomly.
GX produces one offspring only from the parents. We consider
the same chromosomes P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2: (1, 8,
3, 4, 5, 6, 2, 7).

We have the initial offspring (1). The nodes 5 and 8 are
neighbour nodes of node 1 with their costs 66 and 2
respectively. Having higher cos, the node 5 is better, so, it is
added to the offspring: (1, 5).

The nodes 4, 1, 6 and 4 are neighbour nodes of node 5 with
their costs 31, 60, 50 and 31 respectively. Though the node 1 is
the best, since it is available in the offspring, node 2 is chosen
randomly and added to the offspring: (1, 5, 2).

The nodes 3, 8, 7 and 6 are neighbour nodes of node 2 with
their costs 55, 58, 1 and 72 respectively. Node 6 is added to the
offspring, as it the best node: (1, 5, 2, 6).

The nodes 3, 2 and 5 are neighbour nodes of node 6 with
their costs 20, 82 and 39 respectively. Though node 2 is the
best, since it is available in the offspring, node 3 is chosen
randomly and added to the offspring: (1, 5, 2, 6, 3). Finally, the
complete offspring may be: (1, 5, 2, 6, 3, 4, 7, 8) with cost 13.

8) Sequential constructive crossover operator. The
sequential constructive crossover (SCX) operator creates only
one offspring by using better arcs available in the parents'
structure ([16], [36]). Additionally, sometimes it uses better
arcs those are not available in either of the parents' structure. It
sequentially searches both parent chromosomes and selects
first legitimate (unvisited) node that appears after the present
node. If no any legitimate node is available in either of the
parents, it sequentially searches from the beginning of the
chromosome and then compares their associated cost to decide
the next node of the offspring chromosome. This operator is
found to be very effective for the TSP and some other
problems ([37]-[40]). The SCX is slightly modified for the
MSTSP as below:

Step 1: Start from 'node 1’ (i.e., current node p =1).

Step 2: Sequentially search both parent chromosomes and
consider the first ‘legitimate node' (the node that is not yet
visited) appeared after 'node p’ in each parent. If no 'legitimate
node' after 'node p’ is present in any of the parents, search
sequentially from the starting of the parent and consider the
first 'legitimate node', and go to Step 3.

Step 3: Suppose the 'node α' and the 'node β' are found in
1st and 2nd parent respectively, then for selecting the next
node go to Step 4.

Step 4: If cpα > cpβ, then select 'node α', otherwise, 'node β'
as the next node and concatenate it to the partially constructed
offspring chromosome. If the offspring is a complete
chromosome, then stop, otherwise, rename the present node as
'node p' and go to Step 2.

We consider the same example P1: (1, 5, 4, 7, 8, 2, 3, 6)
and P2: (1, 8, 3, 4, 5, 6, 2, 7). Node 1 is the 1st gene. After node
1, nodes 5 in P1 and 8 in P2 are legitimate nodes with costs
c15=66 and c18=2. Since c15>c18, node 5 is accepted and the
offspring becomes (1, 5). =

After node 5, nodes 4 in P1 and 8 in P2 are legitimate nodes
with costs c54=31 and c56=50. Since c56>c54, node 6 is
accepted and the offspring becomes (1, 5, 6).

After node 6, nodes 4 in P1 and 2 in P2 are legitimate nodes
with costs c64=70 and c62=82. Since c62>c64, node 2 is
accepted and the offspring becomes (1, 5, 6, 2).

After node 2, nodes 3 in P1 and 7 in P2 are legitimate nodes
with costs c23=55 and c27=1. Since c23>c27, node 3 is accepted
and the offspring becomes (1, 5, 6, 2, 3).

After node 3, there is no legitimate node in P1 and node 4 is
legitimate in P2. So, for P1, search continues from its starting
and finds same legitimate node 4 with c34=69. So, node 4 is
accepted and the offspring becomes (1, 5, 6, 2, 3, 4). Finally,
offspring (1, 5, 6, 2, 3, 4, 7, 8) with cost 13 is obtained.

D. Mutation Operator
Mutation operator increases variety in the population by

applying random changes in the population. For example, swap
mutation, inversion mutation, insertion mutation, adaptive
mutation [14], etc. are some of them. We have implemented
swap mutation for our simple GAs.

E. Control Parameters
Control parameters rule the genetic process at some extent.

They are - population size that decides number of
chromosomes available during the process, crossover
probability that fixes the probability of performing crossover
between parents, mutation probability that fixes the probability
of performing gene-wise mutation and stopping criterion that
fixes when to stop the genetic process [16]. A simple GA may
be summarized as follows:

SimpleGA()
{ Initialize population randomly;
Evaluate the population;
Generation = 0;
While stopping criterion is not satisfied
{ Generation = Generation + 1;
Select better chromosomes by selection operator;
Perform crossover using crossover probability (Pc);
Perform mutation using mutation probability (Pm);
Evaluate the population;
 }
}

321 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

IV. C COMPUTATIONAL EXPERIENCES AND DISCUSSIONS
To perform compare study among eight different crossover

operators, simple GAs using these crossover operators have
been encoded in Visual C++ on a Laptop with i7-1065G7
CPU@1.30 GHz and 8 GB RAM under MS Windows 10, and
then run for twenty TSPLIB instances [41]. Out of the twenty,
the nine instances ftv33, ftv38, ftv44, ft53, ftv64, ft70, ftv70,
kro124p and ftv170 are asymmetric, and the remaining eleven
instances dantzig42, eil51, st70, lin105, ch130, kroA150,
si175, d198, pr226, a280 and lin318 are symmetric. We run
GAs for different setting of parameters, and selected
parameters are listed in Table III.

Fig. 1 presents results for ftv170 (by considering only 100
generations) by all GAs. Each curve is for one crossover, and it
shows improvement of current solution in the successive
generations. The figure shows some variations of SCX and
shows that SCX is the best. ERX also has some variations and
is place in second position. But GX and AEX have no
variations and get trapped in local maximum very quickly and
shown to be the worst.

The comparative study among the eight simple GAs are
summarized in two tables: Tables IV and VIII. These tables are
prepared similarly: each row is for an instance and each
column is for one GA using a particular crossover operator.
The result is defined best solution cost, average solution cost,
standard deviation (S.D.) of solution costs, and average
convergence time (in second). The best result for a particular
instance among all GAs is marked by bold face.

TABLE III. PARAMETERS FOR THE GAS

Parameters Values

Population size 50

Crossover probability 100%

Mutation probability 10%

Termination criterion 1,000 generations

No. of runs for each instance 50 times

Fig. 1. Result by GAs using different Crossover Operators for ftv170.

From the Table IV, it is seen that the crossovers OX, AEX,
CX, ERX and GX could not obtain either best solution or best
average cost for any asymmetric instance. The crossover PMX
obtains best average costs with lowest S.D. for the instances
ftv33, ftv38 and ftv44, whereas SCX obtains best lowest
average costs with lowest S.D. for the remaining six instances.
So, SCX is shown to be the best. These results are shown in
Fig. 2 that also shows the usefulness of crossover SCX. The
crossovers ERX and GNX are competing, and GX is the worst.

Fig. 2. Average Solution Cost by different GAs for Asymmetric Instances.

To confirm whether SCX-based GA average is statistically
and significantly different from the averages found by other
crossover-based GAs, Student’s t-test is performed. It is to be
mentioned that 50 runs have been performed for each instance.
Following t-test formula is used here [42]:

𝑡 =
𝑋�1 − 𝑋�2

� 𝑆𝐷12
𝑛1 − 1 + 𝑆𝐷22

𝑛2 − 1

𝑤ℎ𝑒𝑟𝑒,

𝑋�1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒,

𝑆𝐷1 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒,

𝑋�2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒,

𝑆𝐷2 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒,

𝑛1 − 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒,

𝑛2 − 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒,

The values of 𝑋�2 and 𝑆𝐷2 are found by the SCX-based GA,
and 𝑋�1 and 𝑆𝐷1 values are found by other GAs. The t-statistic
are reported in Table V. The t-values may be positive or
negative. Since the problem is maximization problem, the
negative value shows that SCX found better solution than the
competitive crossover. In the positive case, the competitive
crossover found better solution. The confidence interval at the

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

So
lu

tio
n

Co
st

Generations

PMX OX AEX CX
ERX GNX GX SCX

0

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e

So
lu

tio
n

Co
st

Instances

PMX OX

AEX CX

ERX GNX

GX SCX

322 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

95% confidence level (t0.05 = 1.96) is used. When t-value is
greater than 1.96, the difference between them is significant. In
this condition, if t-vale is negative then SCX-based GA
solution is better, otherwise the competitive crossover-based
GA solution is better. If t-value is less than 1.96, then there is
no significant difference between the obtained values. The
table also shows the information about the crossovers that
found significantly better solutions.

On four instances there is no statistically significant
difference between SCX and PMX. On three instances SCX is

found better than PMX, whereas, PMX is found better than
SCX on two instance. There is no significant difference
between SCX and CX on two instances. On five instances SCX
performed better than CX, whereas, on two instances CX is
better than SCX. Next, there is no significant difference
between SCX and GNX on three instances. SCX is better than
GNX on five instances, whereas, GNX is better than SCX on
only one instance. On all nine instances, SCX is found better
than OX, AEX and ERX. From this study we can say that SCX
is the best for asymmetric instances.

TABLE IV. COMPARATIVE STUDY OF 8 CROSSOVER-BASED GAS FOR ASYMMETRIC TSPLIB INSTANCES

Instance n Result PMX OX AEX CX ERX GNX GX SCX

ftv33 34

Best Sol 134 122 107 133 122 133 99 125

Avg. Sol 123.25 106.25 96.8 121 111.4 124.4 85.5 118.3

S.D. 6.72 8.1 11.25 6.16 5.57 5.64 11.15 5.04

Avg. Time 0.02 0.04 0.07 0.06 0.85 0.04 0.08 0.07

ftv38 39

Best Sol 137 121 114 135 125 136 103 133

Avg. Sol 126.70 110.70 94.35 123.35 115.35 122.30 85.45 121.10

S.D. 6.07 5.28 8.79 4.64 7.12 8.49 11.17 5.80

Avg. Time 0.03 0.05 0.07 0.08 1.14 0.04 0.11 0.11

ftv44 45

Best Sol 140 125 94 142 130 143 99 137

Avg. Sol 130.6 104.7 82.45 125.40 118.80 129.00 81.20 129.85

S.D. 6.56 8.68 8.87 8.00 5.48 7.85 10.07 5.34

Avg. Time 0.03 0.05 0.08 0.10 1.44 0.05 0.14 0.14

 Best Sol 329 275 223 321 286 327 323 360

ft53 53 Avg. Sol 299.35 237.50 192.95 300.30 265.30 297.90 279.00 327.80

 S.D. 15.07 12.66 12.51 15.46 11.59 16.16 31.84 10.98

 Avg. Time 0.04 0.05 0.10 0.13 1.99 0.06 0.22 0.22

ftv64 65

Best Sol 123 106 85 122 110 118 88 120

Avg. Sol 110.7 90.25 72.60 109.30 99.70 105.90 73.90 110.90

S.D. 7.88 7.37 5.99 7.31 5.10 7.74 7.44 5.76

Avg. Time 0.05 0.10 0.15 0.19 2.87 0.06 0.28 0.31

ft70 70

Best Sol 816 707 673 823 768 822 816 884

Avg. Sol 778.95 685.95 656.60 785.3 735.35 791.05 770.85 845.85

S.D. 25.70 7.67 11.01 17.57 24.53 23.2 26.78 17.90

Avg. Time 0.06 0.07 0.17 0.22 3.45 0.07 0.30 0.32

ftv70 71

Best Sol 121 111 85 118 108 125 81 125

Avg. Sol 109.95 87 63.75 106.95 99.95 108.1 63.1 110.70

S.D. 6.57 6.57 8.22 5.42 5.17 5.31 6.39 6.23

Avg. Time 0.06 0.09 0.15 0.19 3.49 0.07 0.25 0.29

kro124p 100

Best Sol 1562 1083 1097 1486 1498 1666 1069 1553

Avg. Sol 1406.50 984.35 976.30 1392.30 1302.80 1383.70 966.90 1416.50

S.D. 82.81 43.62 50.12 51.6 83.35 95.47 52.42 81.07

Avg. Time 0.09 0.14 0.29 0.42 6.98 0.11 0.54 0.68

ftv170 171

Best Sol 71 70 78 71 63 73 37 112

Avg. Sol 63.90 62.40 59.95 67.95 59.35 65.60 31.20 104.15

S.D. 2.74 3.43 16.02 1.83 1.80 2.62 2.68 4.09

Avg. Time 0.16 0.31 0.28 0.66 13.81 0.11 0.06 1.36

323 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

TABLE V. THE T-VALUES AGAINST SCX AND THE INFORMATION ABOUT CROSSOVERS THAT FOUND SIGNIFICANTLY BETTER SOLUTIONS

Instance PMX OX AEX CX ERX GNX GX

ftv33 4.13 -8.84 -12.21 2.37 -6.43 5.65 -18.76

Better PMX SCX SCX CX SCX GNX SCX

ftv38 4.67 -9.28 -17.78 2.12 -4.38 0.82 -19.83

Better PMX SCX SCX CX SCX --- SCX

ftv44 0.62 -17.27 -32.05 -3.24 -10.11 -0.63 -29.88

Better --- SCX SCX SCX SCX --- SCX

ft53 -10.68 -37.72 -56.71 -10.15 -27.40 -10.71 -10.14

Better SCX SCX SCX SCX SCX SCX SCX

ftv64 -0.14 -15.45 -32.26 -1.20 -10.19 -3.63 -27.53

Better --- SCX SCX --- SCX SCX SCX

ft70 -14.95 -57.48 -63.04 -16.90 -25.47 -13.09 -16.30

Better SCX SCX SCX SCX SCX SCX SCX

ftv70 -0.58 -18.32 -31.86 -3.18 -9.29 -2.22 -37.34

Better --- SCX SCX SCX SCX SCX SCX

kro124p -0.60 -32.86 -32.33 -1.76 -6.85 -1.83 -32.60

Better --- SCX SCX --- SCX --- SCX

ftv170 -57.23 -54.75 -18.71 -56.55 -70.18 -55.56 -104.43

Better SCX SCX SCX SCX SCX SCX SCX

To rank the other crossover operators, the t-values against
PMX is calculated and reported in Table VI. There is no
significant difference found between PMX and GNX on five
instances. Each of them performed better than the other one on
two instances. There is no significant difference found between
PMX and CX on five instances. On three instances PMX is
found better than CX, whereas, CX is found better than PMX
on one instance. It shows that PMX and GNX are sharing 2nd
rank. We further carried out an adequate statistical analysis.
The results of our hypotheses testing are summarized in
Table VII. In the table, each row contains two columns, where
the first lists a crossover operator and the second column lists
its inferior crossover operators. Each crossover is ranked
according to its number of inferior crossover operators. No
significant difference is found between AEX and GX, and
hence, they share the worst rank.

From the Table VIII, it is seen that the crossovers OX,
AEX, CX and GX could not obtain either best solution or best
average cost for any asymmetric instance. The crossover PMX
and ERX obtain best average costs with lowest S.D. for the
instances eil51 and dantzig42 respectively, whereas SCX
obtains best lowest average costs with lowest S.D. for the
remaining nine instances. So, the crossover SCX is found to be
the best.

The results are shown in Fig. 3 that also shows the
usefulness of SCX. The crossovers ERX, OX, CX and GNX
are competing, and GX is the worst. Based on this study also
one can say that SCX is the best and GX is the worst, and
others are competing.

Fig. 3. Average Solution Cost by different GAs for Symmetric Instances.

For these symmetric instances also, to confirm whether
SCX-based GA average solution is significantly different from
the average solution found by other GAs, Student’s t-test is
performed, and the calculated t-values are reported in the Table
IX.

On two instances there is no statistically significant
difference between SCX and ERX. On eight instances SCX is
better than ERX, whereas, ERX is better than SCX on one
instance only. On one instance, there is no significant
difference between SCX and (PMX, OX, CX and GNX). SCX
performed better than PMX, CX and GNX on nine instances,

0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
ge

 S
ol

ut
io

n
C

os
t

Instances

PMX OX

AEX CX

ERX GNX

GX SCX

324 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

whereas, PMX, CX and GNX are better than SCX on only one
instance. Next, on one instance there is no statistically
significant difference between SCX and OX. On remaining ten
instances SCX is better than OX. From this study we can
conclude that SCX is the best. However, to rank the other
crossover operators, an adequate statistical analysis is carried

out, and the results are summarized in Table X. The crossovers
PMX, ERX, GNX, CX, OX, AEX and GX are placed in the
2nd, 3rd, 4th, 5th, 6th, 7th and worst rank, respectively. On both
kind of problem instance, SCX is placed the 1st rank, PMX is
in the 2nd rank and GX is in the worst rank.

TABLE VI. THE T-VALUES AGAINST PMX AND THE INFORMATION ABOUT CROSSOVERS THAT FOUND SIGNIFICANTLY BETTER SOLUTIONS

Instance OX AEX CX ERX GNX GX

ftv33 -11.31 -14.13 -1.73 -9.50 0.92 -20.30

Better PMX PMX ---- PMX --- PMX

ftv38 -13.92 -21.20 -3.07 -8.49 -2.95 -22.71

Better PMX PMX PMX PMX PMX PMX

ftv44 -16.66 -30.55 -3.52 -9.66 -1.09 -28.77

Better PMX PMX PMX PMX --- PMX

ft53 -22.00 -38.03 0.31 -12.54 -0.46 -4.04

Better PMX PMX --- PMX --- PMX

ftv64 -13.27 -26.94 -0.91 -8.20 -3.04 -23.77

Better PMX PMX --- PMX PMX PMX

ft70 -24.27 -30.63 1.43 -8.59 2.45 -1.53

Better PMX PMX --- PMX GNX ---

ftv70 -17.29 -30.73 -2.47 -8.37 -1.53 -35.78

Better PMX PMX PMX PMX --- PMX

kro124p -31.57 -31.11 -1.02 -6.18 -1.26 -31.40

Better PMX PMX --- PMX --- PMX

ftv170 -2.39 -1.70 8.60 -9.72 3.14 -59.72

Better PMX --- CX PMX GNX PMX

TABLE VII. RESULTS OF STATISTICAL HYPOTHESES TESTING ON ASYMMETRIC INSTANCES

Crossover Inferior crossovers

SCX PMX, OX, AEX, CX, ERX, GNX, GX

PMX OX, AEX, CX, ERX, GX

GNX OX, AEX, CX, ERX, GX

CX OX, AEX, ERX, GX

ERX OX, AEX, GX

OX AEX, GX

AEX ----

GX ----

325 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

TABLE VIII. COMPARATIVE STUDY OF 8 CROSSOVER-BASED GAS FOR SYMMETRIC TSPLIB INSTANCES

Instance n Results PMX OX AEX CX ERX GNX GX SCX

dantzig42 42

Best Sol 65 54 50 62 69 62 41 52

Avg. Sol 57.80 48.75 39.50 53.85 61.30 55.50 31.70 49.05

S.D. 3.78 2.66 4.02 4.29 3.27 4.63 4.28 1.28

Avg. Time 0.03 0.04 0.07 0.09 1.32 0.04 0.10 0.13

eil51 51

Best Sol 29 25 24 30 29 31 21 30

Avg. Sol 25.75 22.10 20.90 25.25 26.00 25.60 18.40 25.60

S.D. 2.02 1.26 2.12 1.89 1.26 2.40 1.62 1.88

Avg. Time 0.04 0.05 0.08 0.10 1.47 0.05 0.17 0.13

st70 70

Best Sol 48 42 30 44 48 45 33 48

Avg. Sol 41.00 32.70 25.55 37.20 41.90 38.55 27.00 43.15

S.D. 3.91 2.81 2.60 2.62 3.69 3.38 2.68 2.65

Avg. Time 0.06 0.07 0.15 0.23 3.29 0.07 0.29 0.37

lin105 105

Best Sol 906 736 385 850 857 832 282 914

Avg. Sol 768.40 645.80 261.85 765.45 760.95 751.05 189.45 822.30

S.D. 62.20 59.35 66.69 46.63 51.11 45.59 29.66 57.26

Avg. Time 0.09 0.18 0.10 0.45 8.20 0.10 0.70 0.75

ch130 130

Best Sol 265 173 163 269 253 250 208 273

Avg. Sol 236.00 160.35 140.80 228.60 234.40 227.65 180.35 251.90

S.D. 21.79 7.09 11.45 19.10 13.23 13.20 19.18 12.94

Avg. Time 0.11 0.20 0.44 0.69 12.10 0.13 1.22 1.19

kroA150 150

Best Sol 1147 791 719 1142 1053 1094 899 1238

Avg. Sol 997.85 706.20 657.65 983.45 944.85 966.10 771.50 1113.20

S.D. 73.05 40.69 39.32 65.35 56.88 65.94 71.82 67.41

Avg. Time 0.13 0.29 0.51 0.94 16.64 0.15 1.42 1.45

si175 175

Best Sol 211 193 149 211 208 211 149 248

Avg. Sol 196.15 186.60 136.85 189.95 197.10 195.20 136.85 231.40

S.D. 9.93 3.44 5.46 11.74 7.39 10.49 5.46 10.73

Avg. Time 0.13 0.31 0.14 0.81 15.24 0.13 0.09 1.81

d198 198

Best Sol 265 198 114 218 234 217 92 309

Avg. Sol 191.70 168.15 75.10 165.75 207.70 173.15 62.50 279.10

S.D. 39.29 13.54 16.60 24.58 17.31 28.52 11.77 21.89

Avg. Time 0.15 0.36 0.06 1.50 23.23 0.16 0.16 1.90

pr226 226

Best Sol 4887 3640 1650 4014 3796 3790 522 6540

Avg. Sol 3555.40 3394.15 600.75 3295.50 3080.35 3069.40 304.30 5761.80

S.D. 595.65 133.00 352.07 389.34 427.27 588.77 83.88 319.06

Avg. Time 0.18 0.73 0.29 1.89 33.15 0.21 0.25 1.89

a280 280

Best Sol 54 40 23 49 45 45 18 88

Avg. Sol 39.50 34.50 16.50 32.65 35.70 32.85 15.25 72.90

S.D. 6.84 2.01 2.67 7.70 4.06 6.51 1.95 5.44

Avg. Time 0.20 0.63 0.13 2.35 34.78 0.19 0.09 3.70

lin318 318

Best Sol 860 721 346 860 850 813 202 1151

Avg. Sol 742.15 602.8 213.5 723.6 635.75 726.6 176.3 1027.6

S.D. 75.84 57.18 51.71 81.4 64.36 48.88 12.08 72.64

Avg. Time 0.26 0.85 0.3 3.59 59.5 0.29 0.3 4.73

326 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

TABLE IX. THE T-VALUES AGAINST SCX AND THE INFORMATION ABOUT CROSSOVERS THAT FOUND SIGNIFICANTLY BETTER SOLUTIONS

Instance PMX OX AEX CX ERX GNX GX

dantzig42 15.35 -0.71 -15.85 7.51 24.42 9.40 -27.19

Better PMX --- SCX CX ERX GNX SCX

eil51 0.38 -10.83 -11.61 -0.92 1.24 0.00 -20.31

Better --- SCX SCX --- --- --- SCX

st70 -3.19 -18.94 -33.19 -11.18 -1.93 -7.50 -30.00

Better SCX SCX SCX SCX --- SCX SCX

lin105 -4.46 -14.98 -44.63 -5.39 -5.60 -6.81 -68.70

Better SCX SCX SCX SCX SCX SCX SCX

ch130 -4.39 -43.43 -45.01 -7.07 -6.62 -9.18 -21.65

Better SCX SCX SCX SCX SCX SCX SCX

kroA150 -8.12 -36.18 -40.86 -9.67 -13.36 -10.92 -24.28

Better SCX SCX SCX SCX SCX SCX SCX

si175 -16.88 -27.83 -54.97 -18.24 -18.43 -16.89 -54.97

Better SCX SCX SCX SCX SCX SCX SCX

d198 -13.60 -30.17 -51.98 -24.11 -17.91 -20.63 -61.01

Better SCX SCX SCX SCX SCX SCX SCX

pr226 -22.86 -47.95 -76.04 -34.30 -35.20 -28.14 -115.80

Better SCX SCX SCX SCX SCX SCX SCX

a280 -26.75 -46.35 -65.15 -29.88 -38.36 -33.05 -69.83

Better SCX SCX SCX SCX SCX SCX SCX

lin318 -19.03 -32.17 -63.91 -19.51 -28.26 -24.06 -80.92

Better SCX SCX SCX SCX SCX SCX SCX

TABLE X. RESULTS OF STATISTICAL HYPOTHESES TESTING ON SYMMETRIC INSTANCES

Crossover Inferior crossovers

SCX PMX, OX, AEX, CX, ERX, GNX, GX

PMX OX, AEX, CX, ERX, GNX, GX

ERX OX, AEX, CX, GNX, GX

GNX OX, AEX, CX, GX

CX OX, AEX, GX

OX AEX, GX

AEX GX

V. CONCLUSION AND FUTURE WORKS
Numerous crossover operators have been proposed for the

TSP using GAs which can also be used for its variations. In
this paper, eight simple GAs using eight different crossover
operators, namely PMX, OX, AEX, CX, ERX, GNX, GX and
SCX, have been developed for solving the MSTSP. We first
applied these operators in manual experiment on two parent
chromosomes to produce an offspring, for each crossover
operator. We then run the algorithms run on TSPLIB instances
of different types and sizes. We set highest crossover
probability to show exact nature of crossover operators. We
carried out comparative study of the GAs on nine asymmetric
and eleven symmetric TSPLIB instances. In terms of solution
quality, our comparative study showed that crossover operator
SCX is the best, PMX is the second-best and GX is the worst.
Our observation is confirmed using Student’s t-test at 95%

confidence level. Thus, SCX may be good crossover operator
to obtain more accurate results, researchers may apply it for
other related combinatorial optimization problems. However, it
is seen that PMX is better than SCX for small-sized instances.

In this study, our aim was to compare the solution quality
found using different crossover operators, neither to improve
the solution quality nor to develop the most competitive
algorithm for the MSTSP. So, neither any local search
technique is used to improve the solution quality nor parallel
version of algorithms is developed to find exact solution.
Therefore, we have developed simple and pure GAs. Thus,
modified SCX operators ([43]-[45]) can be used instead of
SCX and then good local search and immigration procedures
[46] can be incorporated to hybridize the algorithm to solve the
instances more accurately, which is under our investigation.

327 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

ACKNOWLEDGMENT
The author is very much thankful to the honourable

anonymous reviewers for their constructive comments and
suggestions which helped the author to improve this paper.
This research was supported by Deanery of Academic
Research, Al-Imam Mohammad Ibn Saud Islamic University,
Saudi Arabia vide Grant No. 18-11-09-010. The author is also
thankful to the Deanery for its financial support.

REFERENCES
[1] E.M. Arkin, Y.-J. Chiang, J.S.B. Mitchell, S.S. Skiena, and T.-C. Yang,

“On the maximum scatter traveling salesperson problem,” SIAM Journal
of Computing, vol. 29, pp. 515–544, 1999.

[2] Z.H. Ahmed, “A hybrid genetic algorithm for the bottleneck traveling
salesman problem,” ACM Transactions on Embedded Computing
Systems, vol. 12, Art. No. 9, 2013.

[3] F. Scholz, “Coordination hole tolerance stacking,” Technical Report
BCSTECH-93-048, Boeing Computer Services, November 1993.

[4] L.R. John, “The bottleneck traveling salesman problem and some
variants,” Master of Science of Simon Fraser University, Canada, 2010.

[5] J. LaRusic and A.P. Punnen, “The asymmetric bottleneck traveling
salesman problem: Algorithms, complexity and empirical analysis,”
Computers & Operations Research, vol. 43, pp. 20–35, 2014.

[6] J.D.C. Little, K.G. Murthy, D.W. Sweeny, and C. Kare, “An algorithm
for the travelling salesman problem,” Operations Research, vol. 11, pp.
972-989, 1963.

[7] S.N.N. Pandit, “The Loading Problem,” Operations Research, vol. 11,
pp. 639-646, 1962.

[8] D. Applegate, R.E. Bixby, V. Chv´atal and W. Cook, “On the solution of
traveling salesman problems,” Documenta Mathematica, Extra Vol.
ICM III, pp. 645-656, 1998.

[9] D.S Johnson and L.A. McGeoch, “The traveling salesman problem: a
case study,” in E. Aarts, J.K. Lenstra, eds. Local Search in
Combinatorial Optimization. Wiley, Chichester, UK. Pp. 215-310, 1997.

[10] J.W. Ohlmann and B.W. Thomas, “A compressed-annealing heuristic
for the traveling salesman problem with time windows,” INFORMS
Journal of Computing, vol. 19, no. 1, pp. 80–90, 2007.

[11] W.B. Carlton and J.W. Barnes, “Solving the travelling salesman
problem with time windows using tabu search,” IEE Transaction, vol.
28, pp. 617–629, 1996.

[12] M. Gendreau, A. Hertz, G. Laporte and M. Stan, “A generalized
insertion heuristic for the traveling salesman problem with time
windows,” Operations Research, vol. 46, no. 3, pp. 330–335, 1998.

[13] C.-B. Cheng and C.-P. Mao, “A modified ant colony system for solving
the travelling salesman problem with time windows,” Mathematical
Computer Modelling, vol. 46, pp. 1225–1235, 2007.

[14] D.E. Goldberg, “Genetic algorithms in search, optimization, and
machine learning,” Addison-Wesley, New York, 1989.

[15] R.F. da Silva and S. Urrutia, “A general VNS heuristic for the traveling
salesman problem with time windows,” Discrete Optimization, vol. 7,
no. 4, pp. 203–211, 2010.

[16] Z.H. Ahmed, “Genetic algorithm for the traveling salesman problem
using sequential constructive crossover operator,” International Journal
of Biometrics & Bioinformatics, vol. 3, pp. 96-105, 2010.

[17] Yi-J. Chiang, “New approximation results for the maximum scatter
TSP,” Algorithmica, vol. 41, pp. 309–341, 2005.

[18] S.N. Kabadi and A.P. Punnen, “The bottleneck TSP,” In The Traveling
Salesman Problem and Its Variations, G. Gutin and A.P. Punnen (eds.),
Chapter 15, Kluwer Academic, Dordrecht, 2002.

[19] I. Hoffmann, S. Kurz, and J. Rambau, “The maximum scatter TSP on a
regular grid,” in Operations Research Proceedings 2015, Springer, 2015,
pp. 63–70.

[20] G. Gutin and A.P. Punnen (eds.), “The Traveling Salesman Problem and
Its Variations,” Kluwer Academic, Dordrecht, 2002.

[21] Z.H. Ahmed, “A lexisearch algorithm for the bottleneck travelling
salesman problem,” International Journal of Computer Science and
Security, vol. 3, no. 5, pp. 569-577, 2010.

[22] Z.H. Ahmed, “A data-guided lexisearch algorithm for the bottleneck
travelling salesman problem,” International Journal of Operational
Research, vol. 12, no. 1, pp. 20-33, 2011.

[23] Z.H. Ahmed, “A hybrid sequential constructive sampling algorithm for
the bottleneck traveling salesman problem,” International Journal of
Computational Intelligence Research, vol. 6, no. 3, pp. 475-484, 2010.

[24] Z.H. Ahmed, “A hybrid genetic algorithm for the bottleneck traveling
salesman problem,” ACM Transactions on Embedded Computing
Systems, vol. 12, Art. No. 9, 2013.

[25] A. Barvinok, S.P. Fekete, D.S. Johnson, A. Tamir, G.J. Woeginger and
R. Woodroofe, “The geometric maximum traveling salesman problem,”
Journal of the ACM, vol. 50, no. 5, pp. 641–664, 2003.

[26] Z.H. Ahmed, “An experimental study of a hybrid genetic algorithm for
the maximum travelling salesman problem,” Mathematical Sciences,
vol. 7, pp. 1-7, 2013.

[27] W. Dong, X. Dong and Y. Wang, “The improved genetic algorithms for
multiple maximum scatter traveling salesperson problems,” In J. Li et al.
(Eds.): CWSN 2017, CCIS 812, pp. 155–164, 2018.

[28] P. Venkatesh, A. Singh and R. Mallipeddi, “A multi-start iterated local
search algorithm for the maximum scatter traveling salesman problem,”
in 2019 IEEE Congress on Evolutionary Computation (CEC),
Wellington, New Zealand, 2019, pp. 1390-1397.

[29] K. Deb, “Optimization for engineering design: algorithms and
examples,” Prentice Hall of India Pvt. Ltd., New Delhi, India, 1995.

[30] D.E. Goldberg, and R. Lingle, “Alleles, loci and the travelling salesman
problem,” In J.J. Grefenstette (ed.) Proceedings of the 1st International
Conference on Genetic Algorithms and Their Applications. Lawrence
Erlbaum Associates, Hilladale, NJ, 1985.

[31] L. Davis, “Job-shop scheduling with genetic algorithms,” Proceedings of
an International Conference on Genetic Algorithms and Their
Applications, pp. 136-140, 1985.

[32] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Gucht, “Genetic
algorithms for the traveling salesman problem,” In Proceedings of the
First International Conference on Genetic Algorithms and Their
Applications, (J. J. Grefenstette, Ed.), Lawrence Erlbaum Associates,
Mahwah NJ, pp. 160–168, 1985.

[33] I.M. Oliver, D. J. Smith and J.R.C. Holland, “A study of permutation
crossover operators on the travelling salesman problem,” In J.J.
Grefenstette (ed.). Genetic Algorithms and Their Applications:
Proceedings of the 2nd International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, Hilladale, NJ, 1987.

[34] D. Whitley, T. Starkweather and D. Shaner, “The traveling salesman and
sequence scheduling: quality solutions using genetic edge
recombination,” In L. Davis (Ed.) Handbook of Genetic Algorithms.
Van Nostrand Reinhold, New York, pp. 350-372, 1991.

[35] N.J. Radcliffe and P.D. Surry, “Formae and variance of fitness,” In D.
Whitley and M. Vose (Eds.) Foundations of Genetic Algorithms 3,
Morgan Kaufmann, San Mateo, CA, pp. 51-72, 1995.

[36] Z.H. Ahmed, “Improved genetic algorithms for the traveling salesman
problem,” International Journal of Process Management and
Benchmarking, vol. 4, no. 1, pp. 109-124, 2014.

[37] Z.H. Ahmed, “The ordered clustered travelling salesman problem: A
hybrid genetic algorithm,” The Scientific World Journal, vol. 2014, Art
ID 258207, 13 pages, 2014.

[38] Z.H. Ahmed, “A simple genetic algorithm using sequential constructive
crossover for the quadratic assignment problem,” Journal of Scientific &
Industrial Research, vol. 73, pp. 763-766, 2014.

[39] Z.H. Ahmed, “The minimum latency problem: a hybrid genetic
algorithm,” IJCSNS International Journal of Computer Science and
Network Security, vol. 18, no. 11, pp. 153-158, 2018.

[40] Z.H. Ahmed, “Performance analysis of hybrid genetic algorithms for the
generalized assignment problem,” IJCSNS International Journal of
Computer Science and Network Security, vol. 19, no. 9, pp. 216-222,
2019.

328 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

[41] G. Reinelt, TSPLIB, http://comopt.ifi.uni-heidelberg.de/ software/
TSPLIB95/

[42] M. Nikolić and D. Teodorović, “Empirical study of the bee colony
optimization (BCO) algorithm,” Expert Systems with Applications, vol.
40, pp. 4609–4620, 2013.

[43] Z.H. Ahmed, “Solving the traveling salesman problem using greedy
sequential constructive crossover in a genetic algorithm,” IJCSNS
International Journal of Computer Science and Network Security, vol.
20, no. 2, pp. 99-112, 2020.

[44] Z.H. Ahmed, “Adaptive sequential constructive crossover operator in a
genetic algorithm for solving the traveling salesman problem,” IJACSA
International Journal of Advanced Computer Science and Applications,
vol. 11, no. 2, pp. 593-605, 2020.

[45] Z.H. Ahmed, “Genetic algorithm with comprehensive sequential
constructive crossover for the travelling salesman problem,” IJACSA
International Journal of Advanced Computer Science and Applications,
vol. 11, no. 5, pp. 245-254, 2020.

[46] Z.H. Ahmed, “A hybrid algorithm combining lexisearch and genetic
algorithms for the quadratic assignment problem,” Cogent Engineering,
vol. 5, Article 1423743, 2018.

AUTHOR’S PROFILE
Zakir Hussain Ahmed is a Full Professor in the

Department of Mathematics and Statistics at Al Imam
Mohammad Ibn Saud Islamic University, Riyadh,
Kingdom of Saudi Arabia. Till the end of 2019, he was
in the Department of Computer Science at the same
University. He obtained MSc in Mathematics (Gold
Medalist), Diploma in Computer Application, MTech
in Information Technology and PhD in Mathematical

Sciences (Artificial Intelligence/Combinatorial Optimization) from Tezpur
University (Central), Assam, India. Before joining the current position, he
served in Tezpur University, Sikkim Manipal Institute of Technology,
Asansol Engineering College and Jaypee Institute of Engineering and
Technology, India. His research interests include artificial intelligence,
combinatorial optimization, digital image processing and pattern recognition.
He has several publications in the fields of artificial intelligence,
combinatorial optimization and image processing.

329 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Simple Genetic Algorithms for the MSTSP
	A. Chromosome Representation and Initial Population
	B. Selection Operator
	C. Crossover Operators
	1) Partially mapped crossover operator. The partially mapped crossover (PMX) uses two crossover points and produces two offspring chromosomes [30]. It defines exchange mappings in the segment between the crossover points. It is the first crossover operator�
	2) Ordered crossover operator. To create offspring chromosomes, the ordered crossover (OX) selects a subsegment of a route from one parent chromosome and then preserves the relative order of genes from the other one [31]. We choose the same parent chromoso�
	3) Alternating edges crossover operator. The alternating edges crossover (AEX) operator considers a chromosome as a cycle of arcs [32] that creates only one offspring by choosing alternative arcs from the parents. In case of invalid offspring, random arc i�
	4) Cycle crossover operator. The cycle crossover (CX) creates offspring in which every node and its corresponding location are originated from either of the parent chromosomes [33]. We choose the same example chromosomes P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2�
	5) Edge recombination crossover operator. The edge recombination crossover (ERX) is proposed in [34]. Most operators consider the position and the order of the node. This operator considers the links between these nodes. To apply this operator, we first co�
	6) Generalized n-point crossover operator. Radcliffe and Surry [35] developed generalized N crossover (GNX). Suppose N=2, and P1: (1, 5, 4, 7, 8, 2, 3, 6) and P2: (1, 8, 3, 4, 5, 6, 2, 7). Now, if crossover points are 4 and 6, then the bold face nodes woul�
	7) Greedy crossover operator. The greedy crossover (GX) selects the first node randomly [32]. Since the MSTSP is a maximization problem, hence some steps of the GX must be modified. So, our modified GX for the problem is as follows. In each step, total fou�
	8) Sequential constructive crossover operator. The sequential constructive crossover (SCX) operator creates only one offspring by using better arcs available in the parents' structure ([16], [36]). Additionally, sometimes it uses better arcs those are not �

	D. Mutation Operator
	E. Control Parameters

	IV. C Computational Experiences and Discussions
	V. Conclusion and Future Works

