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Abstract—Imbalanced datasets usually appear popularly to
many real-world applications and studies. For metagenomic data,
we also face the same issue where the number of patients is
greater than the number of healthy individuals or vice versa.
In this study, we propose a method to handle the imbalanced
datasets issues by Cost-sensitive approach. The proposed method
is evaluated on an imbalanced metagenomic dataset related to
Inflammatory bowel disease to do prediction tasks. Our method
reaches a noteworthy improvement on prediction performance
with deep learning algorithms including a MultiLayer Perceptron
and a Convolutional Neural Neural Network with the proposed
cost-sensitive for Metagenome-based Disease Prediction tasks.
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I. INTRODUCTION

The history of medicine is the struggle against the disease
based on “one size fits all” strategy. In general, this strategy
treats patients who have the same diseases in the same way
but in several special cases, that may not be the best treatment
for specific patients. Recently, tremendous headway has been
proposed in personalized health care, also referred to as pre-
cision medicine or personalized medicine. Precision medicine
incorporates the insights on environmental, behavioral factors,
genome, or biology of a patient.

More specifically, the genetic profiles, and several personal
records of the patients are analyzed for identifying the factors
of a specific disease, the treatment and prevention can be
applied to each patient. It does not only prevent the influence
of side effects but also ensures better outcomes. Precision
medicine demands to provide the right treatments to the right
person at the right time. Furthermore, several studies reveal
the contribution of microbiomes on health and disease are
considered as a part of precision medicine [1], [2]. The human
body contains trillions of bacteria and other microbes and these
microbial communities have been examined whole-genome se-
quencing by the study namely The Human Microbiome Project
(HMP) [3]. Metagenomic can be considered as an alternative
approach for clarifying the relationship between microbial
communities and host phenotype. Furthermore, the discovery
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of vast new genealogy of microbial life can be developed based
in the analysis of 16rRNA sequences from the uncultured
microorganisms which represent for the massive majority of
creature [4], [5], [6]. Besides, leveraging metagenomic in
personalized medicine might take care of many crucial issues

(71, [8].

The metagenomic data analysis has created the opportunity
for improving the algorithms for specific disease prediction
but there are still challenge in computational methods and
relatives. The real-world data collection encountered many
difficulties and almost the collected datasets are imbalanced.
Normally, in the field of metagenomics, the interesting classes
have fewer samples than the others and the performance
of predicting true label for interesting classes are extremely
necessary and important. The cost of a misclassified majority
class is usually lower in comparison with the cost of mis-
classified minority class [9]. The imbalanced ratio affects
the performance seriously. Several classic classifiers tried to
maximize the validation accuracy and bypass the sensitivity
of each class.

II. RELATED WORK

In the field of metagenomic analysis, data pre-processing
is truly important and can improve predictive performance.
The study [10] proposed a deep learning framework, namely
DeepMicro to represent microbiome profiles effectively. Sev-
eral auto-encoders and machine learning algorithms are used
to transform from high-dimensionality of microbiome data
into low-dimensional. However, there is still a challenge with
meaningful and noisy information. To leverage the meaningful
information, the meaningful information should be contained
by the learned representation due to encoding of the properties
of the input are depended on auto-encoders.

The limitations of data still challenge for several studies in
metagenomics fields. The study [11] presented an approach for
boosting the performance based on generated metagenomics
data. The authors employed a Conditional Generative Adver-
sarial Network (CGAN) to generate the samples which are very
similar to the original samples. The predicting host phenotype
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performance has been improved by augmenting the training
dataset. Data augmentation is a common technique to improve
performance and generalization in machine learning [12].
Additionally, the authors in [13] also stated the performance
of prediction can be able to boost by using Generative Ad-
versarial Network (GAN) models. Nevertheless, selecting the
best CGAN model is still a difficult task, the optimal model
can be bypassed.

The study [14] presented a machine learning approach for
diagnostic decisions. The predictive model is simple but gains
a powerful score by computing the cumulative abundance of
microbiome measurements. However, the performance of pre-
dictive models can be affected by data quantification problems.
More specifically, the individuals and specific types of micro-
bial ecosystems have a significant difference in microbial loads
[15]. Furthermore, the model can select various sequencing
depth can be over or underestimate less abundant taxa.

In this study, we propose a Cost-Sensitive method [16],
[17] to handle the imbalanced datasets issue. Thereby, enhanc-
ing the performance on disease prediction task. Our contribu-
tions include the following:

e  We present the considered datasets and handling im-
balanced issues with the Cost-Sensitive method.

e The efficiency of the proposed methods is evaluated
on three types of learning models including Multilayer
Perceptron (MLP), and Convolutional Neural Net-
work (CNN). The performance with the Cost-Sensitive
method obtains better results for each learning model.

In the remaining of this study, we introduce the considered
dataset in Section III. The learning algorithms and Cost-
Sensitive are proposed in Section IV. Section V presents
the compared performance of each learning model in cases
of before and after applying the Cost-Sensitive method. We
discuss and summarize the results in Section VI

III. IMBALANCED DATASETS IN METAGENOMICS

The proposed approach performance is evaluated on the In-
flammatory Bowel Disease (IBD) dataset [18], more details are
in Table I. The details of the considered datasets including the
numbers of features, samples, patients, and several additional
information.

Table I indicates that the number of samples and patients
is widely large, it is a basic case of imbalanced datasets.
Imbalanced datasets are relevant primarily in the context of
a classification task where the class distribution is not uniform
among the classes. The considered dataset contains 25 patients
and 110 samples, the patient ratio of 0.23, and the ratio of
the control of 0.77. Each sample or patient includes 443
discriminate features. Each feature reflects the proportion of
a bacterial species existing in a sample’s body.

The total value of all features (relative abundance of
bacterial species) in one patient or a healthy individual is sum
up to 1 (as shown in Equation 1):

Zfz:l (1)
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TABLE I. DETAILS OF INFLAMMATORY BOWEL DISEASE (IBD) DATASET.

Dataset IBD
Features 443
Samples 110
Patients 25
Controls 85
Ratio of patients 0.23
Ratio of controls 0.77
OPERATION DATA DIMENSIONS  WEIGHTS(N) WEIGHTS (%)
Input  #H 1 443
Flatten [1111 0 0.0%
fre g 443
Dense  XXXXX 28416 99.8%
A 64
Dense  XXXXX 65 0.2%
sigmoid  ##### 1

Fig. 1. Visualization of the Multilayer Perceptron Architecture used in the
Experiments.

With:
e Kk is the number of features for a sample.

e  f; is the value of the i-th feature.

IV. COST-SENSITIVE APPROACHES IN DEEP LEARNING
ALGORITHMS FOR IMBALANCED DATASETS

A. Cost-Sensitive Methods

The goal of cost-sensitive learning for imbalanced classi-
fication tasks is to assign different costs to misclassification
errors and compute those costs by specialized methods. A
confusion matrix is a powerful tool for summarizing the
predictions for the individuals and shows how well a method
performs on a prediction. It allows the visualization of the per-
formance of a learning algorithm. There are several common
cost-sensitive methods including Cost-Sensitive Resampling,
Cost-Sensitive algorithms, or Cost-Sensitive Ensembles. In
this study, we investigate the performance of Cost-Sensitive
Algorithms on an imbalanced metagenomic dataset.

The training section of learning algorithms uses the back-
propagation to compute the error on the training set and update
the weights based on those errors. However, the samples of
each class are trained the same as each other, in the case of the
imbalanced dataset, the model focus on the majority class more
than the minority class. During back-propagation, the weight
of misclassification errors can be updated in proportion to the

OPERATION DATA DIMENSIONS WEIGHTS(N)  WEIGHTS(%)

Input  ##HHH# 443 1

Conv1D \|/ 256 0.9%
relu  #### 441 64

Flatten 11111 0 0.0%
i d 28224

Dense  XXXXX 28225 99.1%
sigmoid  ##### 1

Fig. 2. Visualization of the Convolutional Neural Network Architecture used
in the Experiments.
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Confusion matrix - Multilayer Perceptron

Positive 1 14
Negative 4 11
Positive

0.6

Negative

Fig. 3. The Average Confusion Matrix Result Running by Multilayer Perceptron with Cost-Sensitive Method.

importance of the class and have an influence on the model to
pay more attention to samples of the minority class.

In our experimental results, computing the class weight
from class distribution present in the training dataset can
improve the performance effectively. The class weight can be
computed by the Equation 2 inspired by the study [16].

n

2

We =
t* S,

Where w, denotes the weight of class ¢, n represents for
the number of samples in training set, ¢ is number of class and
s stands for the number of samples in class c.

B. Learning Models

To investigate the performance of training with Cost-
Sensitive method and training without Cost-Sensitive methods,
we used different architectures as mentioned above.

The Multilayer Perceptron (MLP) is a class of Artificial
Neural Network (ANN), a MLP contains at least tree node
layers. The input layer aims to receive the data while the
hidden layers are the primary computational engines. The
output layer produces the prediction result. The architecture of
details of MLP used in the experiments is presented in Fig. 1.

Finally, the Convolutional Neural Networks (CNN) con-
tains a 1D Convolutional layer, followed by a Fully Connected
layer. The model learns an internal representation of a two-
dimensional input, in a process referred to as feature learning.
We visualized the CNN architecture in Fig. 2.

All three learning models are implemented with Adam
optimizer [19], the default learning rate is 0.001. The Early

Stopping method is also applied to avoid overfitting issues with
a patience epoch of 5.

C. Metrics for Comparison

To evaluate the classification performance, we used three
metrics namely Accuracy (ACC) and Area Under the Receiver
Operating Characteristic Curve (ROC-AUC), and Matthews
correlation coefficient (MCC). We investigated the accuracy
and AUC of training with cost-sensitive and training with non-
cost-sensitive. The accuracy and MCC are computed by the
Equation 3 and Equation 4 respectively.

TP+TN
A =
ce TP+TN+FP+FN )

TP xTN —FP x FN

MCC =

/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)
)

Where

e TP denotes True Positive.
e TN denotes True False.

e  FP denotes False Positive.

e FN denotes False False.

Furthermore, the MCC is, in essence, a correlation coeffi-
cient of binary classifications. The MCC value has a range of
—1 to +1. A coefficient of +1 represents a completely correct
binary classifier, O stands for random prediction, whereas —1
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Training - Validation ~ Accuracy
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Fig. 4. Visualization of Training and Validation Accuracy of Multilayer
Perceptron. X-axis Shows the Number of Epochs used in Training Phase
while Y-axis Reveals Accuracy.

Training - Vvalidation Accuracy with Cost-Sensitive
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Fig. 5. An Illustration of Training and Validation Performance in Accuracy
with Multilayer Perceptron Model using Cost-Sensitive Method. X-axis
Shows the Number of Epochs used in Training Phase while Y-axis Reveals
Accuracy.

indicates total disagreement between prediction and observa-
tion.

Another metric is Loss which is also considered. The
loss function implemented in networks in the study is Binary
Cross-Entropy (Equation 5) [20]. The binary entropy function,
denoted H,(q):

Hy(g) =~ 7 Ni = 1 doga(p(y)+(1—0) Joga(1-p(y:))

®)

where y is the ground truth and p(y) is the predicted
probability of the predicted sample.

V. EXPERIMENTAL RESULTS

We trained all considered deep learning architectures with
10-folds stratified-cross validation. The performance of each
model is measured by Accuracy, Area Under Curve (AUC),
Matthews correlation coefficient (MCC), and Loss presented
as follows.

Vol. 11, No. 7, 2020

Training - validation  Loss
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Fig. 6. Visualization of Training and Validation Loss of Multilayer
Perceptron. X-axis Shows the Number of Epochs used in Training Phase
while Y-axis Reveals Loss.

Training - validation Loss with Cost-Sensitive
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Fig. 7. Visualization of Training and Validation Loss of Multilayer
Perceptron with Cost-Sensitive Method. X-axis Shows the Number of
Epochs used in Training Phase while Y-axis Reveals Loss.

A. Performance of Multilayer Perceptron

After 10-folds, the MLP obtained 0.77 of average overall
accuracy, 0.643 of AUC, and 0.052 of MCC. The results are
unsatisfied with the classification task due to the imbalanced
dataset. We conducted training the model again with a cost-
sensitive method and gained better results. More specifically,
the accuracy increased to 0.845, 0.865 for AUC, and 0.552
for MCC. The exceptional increase of MCC stated the model
was much better than before. Fig. 3 visualizes the confusion
matrix of this learning model with cost-sensitive method. The
average True Positive obtained 1.4, False Positive of 0.6, False
Negative, and True Negative gained 1.1 and 7.9 respectively.

The training and validation accuracy of the compared
methods are visualized in Fig. 4 and Fig. 5. Fig. 4 represents
for the performance of non cost-sensitive. Otherwise, Fig. 5
visualizes the results of the cost-sensitive method, the training
and validation accuracy got better epoch by epoch with the
cost-sensitive method. Also with the loss, Fig. 6 and Fig. 7
present the training and validation loss of the learning model.
As observed, the validation loss in Fig. 7 is better in compar-
ison with the other in Fig. 6.
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Confusion matrix - Multilayer Perceptron
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Fig. 8. The Average Confusion Matrix Result Running by on Convolutional Neural Network with Cost-Sensitive Method.

Training - vValidation Accuracy
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Fig. 9. Visualization of Training and Validation Accuracy of Convolutional
Neural Network. X-axis Shows the Number of Epochs used in Training
Phase while Y-axis Reveals Accuracy.

B. Performance of Convolutional Neural Network

We also investigated the performance of the Convolutional
Neural Network on 10-folds cross-validation. In comparison
with Multilayer Perceptron, the performance of the Convolu-
tional Neural Network is very close. The average accuracy
reached 0.773, AUC of 0.629, and MMC of 0. The boosted
performance with the cost-sensitive method is slightly better,
the accuracy increased to 0.855 but the AUC reached 0.871
and the MCC obtained 0.513. By applying the boosting per-
formance method, the AUC of Convolutional Neural Network

Training - Validation Accuracy with Cost-Sensitive
1

I
|
|

0.9
0.8 -

0.7

50 100 150 200 250 300 350 400 450 500

Validation

— Training

Fig. 10. Results of Training and Validation Accuracy with Convolutional
Neural Network Combining Cost-Sensitive Method. X-axis Shows the
Number of Epochs used in Training Phase while Y-axis Reveals Accuracy.

is better than Multilayer Perceptron whereas the accuracy and
MCC are similar.

The confusion matrix of Convolutional Neural Network is
visualized in Fig. 8. In comparison with the prior learning
model, the values of True Positive, False Positive, False
Negative, and True Negative are relatively similar. We also
presented the training and accuracy/loss validation of Convo-
lutional Neural Network in Fig. 9, Fig. 10, and Fig. 11, Fig. 12
respectively.

In the comparison of validation accuracy in Fig. 9 and
Fig. 10, the validation accuracy of non-cost-sensitive method
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Fig. 11. Visualization of Training and Validation Loss of Convolutional
Neural Network. X-axis Shows the Number of Epochs used in Training
Phase while Y-axis Reveals Loss.
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Fig. 12. Visualization of Training and Validation Loss of Convolutional
Neural Network with Cost-Sensitive Method. X-axis Shows the Number of
Epochs used in Training Phase while Y-axis Reveals Loss.

kept stable at 0.77 in almost training section and peaked at last
epochs whereas the accuracy of model applying cost-sensitive
reached the optimal performance around 50 epochs. Similar to
Loss validation, the loss of non-cost-sensitive method stopped
at 0.4 whereas the other is almost equal to O.

C. Comparison of Multilayer Perceptron and Convolutional
Neural Network

We summarized the performance of Multilayer Perceptron
and Convolutional Neural Network in Table II. In general, the
performance of the two learning models is similar. With the
Cost-Sensitive method, the overall accuracy improved slightly
but AUC and MCC were significant. The cost-sensitive method
affected effectively to the classification performance.

VI. CONCLUSION

We introduced a method based on a Cost-sensitive ap-
proach to improving the performance of imbalanced datasets.
The proposed method is efficient on not only Multi-Layer
Perceptron but also Convolutional Neural Network.

Vol. 11, No. 7, 2020

TABLE II. THE COMPARISON OF MULTILAYER PERCEPTRON (MLP) AND
CONVOLUTIONAL NEURAL NETWORK (CNN).

Model Accuracy AUC MCC
MLP 0.770 0.643 0.052
MLP with Cost-Sensitive 0.845 0.865 0.552
CNN 0.773 0.629 0.000
CNN with Cost-Sensitive 0.855 0.871 0.513

The performance is assessed by various metrics including
Accuracy, AUC, MCC which reveal significant improvements
with the cost-sensitive method. Besides, the proposed method
enables the learning model to learn faster as well as speed up
the convergence of models.

Further research can investigate more data and test on
sophisticated machine learning algorithms.
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