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Abstract—The tremendous number of Internet of Things
(IoT) devices and their widespread use have made our lives
considerably more manageable and safer. At the same time,
however, the vulnerability of these innovations means that our
day-to-day existence is surrounded by insecure devices, thereby
facilitating ways for cybercriminals to launch various attacks by
large-scale robot networks (botnets) through IoT. In consideration
of these issues, we propose a neural network-based model to
detect IoT botnet attacks. Furthermore, the model provides
multi-classification, which is necessary for taking appropriate
countermeasures to understand and stop the attacks. In addition,
it is independent and does not require specific equipment or
software to fetch the required features. According to the con-
ducted experiments, the proposed model is accurate and achieves
99.99%, 99.04% as F1 score for two benchmark datasets in
addition to fulfilling IoT constraints regarding complexity and
speed. It is less complicated in terms of computations, and it
provides real-time detection that outperformed the state-of-the-
art, achieving a detection time ratio of 1:5 and a ratio of 1:8.
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I. INTRODUCTION

The dominant features of the modern era can be illustrated
by the abundant data that are collected and monitored via
Internet of Things (IoT) devices, as well as by the endless
functionalities enabled by this innovation. As estimated by
experts [1], the number of IoT devices is expected to reach
30 billion by 2020—an important development given that
these widespread and convenient technologies have strongly
influenced many aspects of people’s lives. At the same time,
however, they have also compounded the consequences of
security threats. Given the innumerable IoT devices that are
constantly running and accessible over the public Internet, such
innovations have become an attractive platform for cybercrim-
inals. The hack value of IoT devices is not confined to the
critical information stored, collected, or monitored by these
technologies but extend to any other assets that can be breached
via large-scale botnets. This problem is further exacerbated by
the fact that the IoT ecosystem imposes constraints on security
techniques because of limited resources with respect to central
processing units (CPUs), memory, and power consumption.
These shortcomings render the battle against IoT botnets a
critical and challenging issue.

An equally significant concern is the higher risk that IoT
devices present compared with that arising from general-
purpose computers. This threat stems from numerous factors
[2]. First, the requirements for IoT applications are extremely
heterogeneous in terms of device types, communication pro-
tocols, and operating systems. Second, the global distribution

of IoT devices translates to monitoring by different parties,
thereby preventing the establishment of well-defined perime-
ters among these overseers. From the involvement of multiple
parties comes user and device mobility, which causes contin-
uous changes in perimeters. Third, IoT devices lack strong
authentication and authorization mechanisms, as reflected by
the tendency of most IoT users to employ weak passwords and
default account settings. Devices equipped with IoT technol-
ogy usually do not require user permission or direct interaction
for the installation of software or the modification of settings,
thus facilitating malware propagation through application pro-
gramming interfaces (APIs) and firmware. Finally, vendors
experience difficulties in patching software vulnerabilities. As
a result, the conventional security techniques developed for
general-purpose computers, such as antivirus programs or host-
based intrusion detection systems, are inadequate measures for
securing IoT.

The threat model included in this study consists of attackers
with no physical access to the IoT devices connected to home
routers, functioning as network gateways or other middleboxes.
The actualization of a threat is described as follows: An
attacker needs to exploit the vulnerabilities of different IoT
devices to gain access to them, but it must first discover
the existence of such devices by sending probes to certain
ports. The probes initially pass through a network gateway
before reaching the destination. Most IoT communications are
executed through cloud API services [3] instead of proceeding
directly from one local IoT device to another. In this process,
therefore, a network gateway occupies a vantage point from
which it can inspect every network packet. The use of this
point has been increasingly emphasized in the implementation
of different intrusion detection techniques. Furthermore, a
network gateway provides a homogeneous and lightweight
defensive mechanism and policy enforcer that protects devices
from being assimilated into a botnet without interrupting their
normal functionality. This study focused only on the detection
techniques applicable to network gateways.

Neural networks and deep learning have demonstrated
promising outcomes in many fields, especially in developing
accurate anomaly-based intrusion detection systems [4]–[7].
Unfortunately, they require high computational use, and it
takes a long time to train a model and detect an attack.
At the same time, rectifying the problem of IoT botnets
necessitates specialized solutions that take into account IoT’s
own constraints. An adequate number of research projects have
been tailored toward the detection and prevention of IoT botnet
attacks using machine or deep learning. However, to the best of
our knowledge and according to the provided literature review
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[8]–[13], we found there were no studies considered the IoTs
requirements for real-time detection and lightness while taking
into account the multi-classification issue. Although, it is a
critical point to recognize the attack type and then take the ap-
propriate countermeasures to prevent any intrusions. Motivated
by these issues, our study provides an independent, accurate,
real-time, and lightweight model applicable to IoT gateways
that is able to multi-classify the IoT network traffic. Therefore,
the main contribution of this study is to adapt the fast, accurate,
stable, tiny gated recurrent neural network (FastGRNN) [14]
algorithm, which is dedicated to text classification, for use with
intrusion detection by treating network packets as sentences
and headers as words. The objectives of this study were to

• provide a model that has accurate detection of IoT botnets,
• decrease the training time,
• decrease the detection time, and
• decrease the model complexity.

We also took into account that the model is independent and
would only consider the features that are directly readable by
the gateway and do not require additional equipment or a third
party to fetch the features and target multi-classification.

The results proved that using FastGRNN [14] provided
high speed for training the model and detecting attacks, with
much less complexity compared to the state-of-the-art while
also preserving a high F1 score, where it attained a score
of 99.04% with the RGU dataset [8] in comparison to the
gated recurrent unit (GRU) model’s 97.82%, and the long
short-term memory (LSTM) model’s 98.60%. Furthermore,
the FastGRNN-based model completed its detection within
29 seconds for the entire test set for both datasets, while the
model proposed by Hwang et al. [9] took 245, 249 seconds
for detection.

The rest of the paper is organized as follows. Section II
presents a detailed background on IoT botnets, with particular
attention paid to how they operate and what destructive effects
they exert. The section also introduces the FastGRNN [14]
algorithm. Section III consists of a literature review and a
comparison of the proposed model and the current state-of-
the-art models. Section IV describes the methodology and the
propose model. Section V summarizes the results and findings,
and Section VI concludes the paper.

II. BACKGROUND

A. IoT Botnets

A botnet basically consists of compromised devices called
bots, each running malicious code under a botmaster’s com-
mand and control (C&C) [2]. Specifically, a bot can propagate
throughout the network. To do so, it scans the entire network
ranges and exploits the known vulnerabilities or weak creden-
tials of devices. After breaking into an unprotected gadget, the
bot embeds itself into the equipment and waits for instructions
from a botmaster to perform malicious activities. An example
of these attacks is the collaborative flooding of a target (an
IoT or non-IoT device) with numerous illegitimate requests,
thus preventing the device from processing legitimate ones
and causing a distributed denial-of-service (DDoS) attack.
The other ill-intentioned activities of IoT botnets [2] include

cryptocurrency mining, password cracking, and email spam
sending, keylogging.

Although the first IoT botnet, Linux.Hydra, was discovered
in 2008 [15], the security community did not realize the
seriousness of this issue until the emergence of the Mirai
botnet [16]. In September 2016, a Mirai attack was directed
against the Krebs on Security blog, generating 620 Gbps of
traffic. The availability of Mirai’s original source code led
to the development of dozens of variants and inspired the
creation of many other botnets. For instance, the following
month saw a Mirai variant take down the service provider
Dyn, representing the largest DDoS attack in history. This
event engendered other destructive outcomes, which were
summarized by [17]. Mirai was merely the tip of the iceberg,
as predicted by Vlajic and Zhou [18] and indeed we are now
witnessing progressively sophisticated IoT botnet attacks with
considerably more critical victims. In the same year, Rapidity
Networks discovered Hajime, which has a decentralized (or
peer-to-peer [P2P]) architecture in contrast to the centralized
structure of Mirai [19]. The year 2017 saw a demonstration
of BrickerBot’s ability to permanently destroy an IoT device
through a permanent denial-of-service (PDoS) attack [20], and
2018 witnessed Radware’s honeypot capture JenX, which uses
servers to scan vulnerable IoT devices and propagates itself
within such equipment. The centralized scanning mechanism
of JenX enables attackers to offer botnet-for-hire and DDoS-
for-hire services [21]. Other attacks were explored by [18] and
[22], who inquired into potential attacks by employing IoT as
a reflector of DDoS attacks, which are very difficult to trace.
Adding to our understanding of cyberattacks, Soltan et al. [23]
examined a possible attack in which a botnet utilizes high-
wattage IoT devices to manipulate demand and thus disrupt
power grid operations. Scrutinizing the distinctive behaviors
of IoT botnets plays a crucial role in endeavors to combat
them. Generally, the lifecycle of an IoT botnet consists of
two main phases, namely, the botnet establishment and attack
launch phases (Fig. 1). These stages are described below.

1. Botnet establishment
1.1. A bot (or malware code) implements scanning and re-

connaissance to find a vulnerable device. For example,
Mirai sends fingerprintable scan packets to pseudo-
random IPv4 addresses to identify devices accessible
via Telnet (port 23 or 2323) [17]. All communications
pass through a gateway.

1.2. The bot compromises its victim by exploiting weak
credentials through brute force or the exploitation of
the known vulnerabilities of IoT devices or routers
[15].

1.3. On the basis of the victim’s characteristics (as the
processor’s architecture), a compatible version of the
bot is installed and executed. Sometimes, the bot may
remove any other malware and rebind ports to itself
to prevent any other potential malware from attacking
the victimized device.

2. Attack launch
2.1. The attacker initiates the attack command via a (C&C)

server, which then relays the required information to
distributed bots. As previously stated, some botnets use
P2P architecture.

2.2. The bots begin the attack after receiving the corre-
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Fig. 1. The Lifecycle of IoT Botnet.

sponding commands. The attack ranges from PDoS
and DDoS attacks to cryptocurrency mining and so
on.

B. FastGRNN Algorithm

A recurrent neural network (RNN) is a class of neural
network proposed by Jeffrey Elman in 1990 [24]. RNNs have
the ability to preserve learned information from the past (or
previous output) and modify it regularly with current input.
This is done via a structure called hidden states, which are
updated using different mechanisms or gates. A gate is simply
a sigmoid neural net layer and a matrix multiplication. This
ability to preserve historical data has meant that RNNs are
well suited for the tasks of processing time series or sequence
data, such as with neural language processing (NLP).

However, traditional RNN is prone to a vanishing gradient
problem that arises when long input sequences are processed,
which is the problem that LSTM [25], a different algorithm
from the RNN class, was designed to resolve. The complexity
of LSTM and its number of computations led to the GRU [26]
which is less complicated because it has only two gates instead
of the three in LSTM. Basically, GRU merges two gates, the
forget and input gates, into an updated gate. In addition, it
combines the cell state from LSTM with a hidden state.

FastGRNN goes further in decreasing model complexity
and speeding up the learning process by adding a scalar
weighted residual connection for each and every coordinate of
the hidden state ht. As shown in Fig. 2, FastGRNN reuses the
low-rank, sparse, and quantized matrices W ∈ RD̂×D, and
U ∈ RD̂×D̂ for the vector-valued gating function as well.

Fig. 2. FastGRNN Cell [14].

In other words, instead of directly feeding the input xt and
previous hidden state ht−1 into the gates or nonlinear function,
these matrices squeeze those values into smaller size before
passing them to the sigmoid σ or tanh function.

The learning process starts when W is added to U, and the
result flows into sigmoid σ and tanh, resulting in zt according
to Equation 1 and ht according to Equation 2.

zt = σ (Wxt + Uht−1 + bz) (1)

h̃t = tanh (Wxt + Uht−1 + bh) (2)

The outputs of both functions are used to calculate the
final hidden state ht, as shown in Equation 3. Notably,
0 ≤ ζ, ν ≤ 1 are trainable parameters the sigmoid function
parameterizes along with b ∈ RD̂.

ht = (ζ (1− zt) + ν)� h̃t + zt � ht−1 (3)
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III. RELATED WORK

Anomaly detection involves the adoption of various ma-
chine or deep learning algorithms. It centers on building a
model of normal behavior for a device and then leveraging
the model to detect outliers that could exhibit potential attacks.
Undoubtedly, deciding on appropriate features will affect the
model’s speed and complexity and leverage strong results in
the development of considerably reliable learning models. On
this basis, relevant studies were reviewed to highlight the
features and how they are selected. Each study was analyzed
with regard to the following criteria: detection method, whether
it is multi-classification or binary, whether it is independent or
dependent, whether it is real-time or offline, and whether it
is lightweight or not. That information was then used as a
reference in drawing the contributions of this paper.

IoTGUARD [10] observes diverse traffic types, includ-
ing malicious and benign traffic, regardless of the source
of flow; such traffic are fundamentally the dataset features
collected from a gateway and each device log. A dataset is
subjected to preprocessing steps, including oversampling and
undersampling for the resolution of imbalance issues, feature
extraction, analysis, and reduction techniques. Subsequently,
fuzzy c-means (FCM) is used to cluster data according to
self-similarities. The principal property of FCM is its ability
to maintain a strong association within a cluster and weak
associations with all other clusters. Weak associations facilitate
task prediction because of their consideration of all clusters in
determining labels for new, unknown traffic. A fuzzy interpola-
tion scheme is then employed to ascertain the degree of malice
in an attack and accordingly determine appropriate measures
for various malicious traffic types. IoTGUARD has been
evaluated using a dataset collected from consumer IoT devices.
Aside from encompassing normal traffic, the dataset includes
information on authentication attacks, botnet activities, port
sweeps, port scans, spying, and worms. It achieves a high
prediction accuracy with low false-positive-rate. Its operation
makes minimal demands on systems because it undergoes
preprocessing and reduction. However, IoTGUARD depends
on features that are not directly readable and extracted via a
gateway.

Concentrating on generating more relative features,
Moustafa et al. [11] proposed the use of statistical features in
conjunction with an ensemble method to classify IoT network
traffic. To derive the features, the authors used the Bro-IDS tool
[27], and to acquire specific features, they employed a novel
extractor. These features consist of flow-based, Message Queu-
ing Telemetry Transport (MQTT), and service-based character-
istics, which consist of DNS and HyperText Transfer Protocol
(HTTP) features. Then, the authors applied the correntropy
measure to evaluate the feature set. The most important fea-
tures were selected, and the unnecessary ones were eliminated
on the basis of correlation coefficients (CCs). According to the
correntropy results, the difference between normal and attack
vectors was very small, thereby giving rise to the need to use
many classification techniques, each designed on a particular
kernel, like a probability, weight or feature value. Given this
issue and the need to increase the accuracy of detection, an
ensemble method was used along with three classification
techniques: a decision tree (DT), Naı̈ve Bayes, and artificial
neural networks (ANNs). Afterwards, AdaBoost was employed

to distribute network data among the techniques. The ensemble
method outperformed every individual approach in terms of
accuracy and detection over two benchmark datasets, namely,
UNSW-NB15 [28] and NIMS [29]. However, it required more
time in detecting an attack than that needed by each individual
classifier, except for ANNs. Similar to IoTGUARD [10], the
ensemble method is typified by statistical features that are not
directly readable by the gateway and whose extraction requires
another party—deficiencies that disqualify this approach as a
means of online detection.

In contrast to IoTGUARD [10] and the ensemble method
established by Moustafa et al. [11], the technique proposed
by Doshi et al. [12] examines only flow-based features that
are directly readable by most modern gateways. The dataset
that comes with the approach includes classes of DoS attacks
that might be generated by a Mirai-infected device; examples
of such assaults are transmission control protocol synchronize
(SYN) flooding, a user datagram protocol (UDP) flood, and
an HTTP GET flood. The main contribution of Doshi et al.’s
[12] work is feature engineering, which guides the feature
extraction process. Selected features were either found in each
packet’s header or generated in flows from different packets.
After this, evaluation was directed toward binary classification
algorithms from among the following list: K-nearest neighbors
(KNN), random forest, DT, support vector machines with
linear kernel (LSVM), and deep neural networks (DNN). All
the algorithms performed excellently, achieving an accuracy
of 99%, with the exception of the LSVM, which exhibited
the worst performance, possibly because the data could not
be separated in a linear manner. The study also confirmed the
effectiveness of neural networks despite their use with a small
dataset that consisted of only 491,855 packets. The selected
features are common among all protocols, indicating that
Doshi et al.’s [12] proposed method is a protocol-independent
technique. It supports low memory constraints because it
depends on a stateless algorithm, but the accompanying dataset
reflected only one phase of Mirai propagation, that is, the
launch of a DoS attack. The dataset was also imbalanced,
containing 459,565 malicious packets and only 32,290 benign
packets, potentially adversely affecting the results.

Given that flow-based approaches suffer significant detec-
tion delay, other researchers proposed to replace flow features
with packet features. For instance, Pulse’s dataset [13] com-
prises only the attack time, the destination IP address, the pro-
tocols used, and the packets size, as well as labels that indicate
malicious or benign traffic. It is a Naı̈ve Bayes classifier that
focuses on botnets’ primary behaviors, specifically network
scanning, network probing, and DoS. The model was built
using Weka [30], which in turn, imports the dataset collected
from a testbed equipped with real IoT devices. The model
is better at detecting probing attacks than it is for flood-type
attacks, which might be due to insufficient feature vectors.
The authors [13] chose Naı̈ve Bayes because it outperforms
other methods, but they did not specify which approaches were
compared and what the results were.

In like manner, McDermott et al. [8] introduced a novel
approach wherein word embedding is applied on texts in
network packets and fed into a bidirectional long short-term
memory-based recurrent neural network (BLSTM-RNN). The
main advantage of BLSTM-RNN over LSTM-RNN is its
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TABLE I. THE SUMMARY OF IOT BOTNETS DETECTION TECHNIQUES.

Work Method Multi-classification Independent Real-time Lightweight
[10] Fuzzy C-means (FCM) clustering 4 8 8 8

[11]

Decision tree (DT),
Naı̈ve Bayes,
Artificial neural networks (ANNs),
and AdaBoost

8 8 8 8

[12]

K-nearest neighbor (KNN),
random forest, DT
Support vector machines with linear kernel (LSVM),
and deep neural networks (DNN)

8 4 8 8

[13] Naı̈ve Bayes 8 4 8 8
[8] Bidirectional long short-term memory (BiLSTM) 4 4 8 8
[9] Long short-term memory (LSTM) 8 4 8 8

Proposed model Fast, accurate, stable, and tiny gated recurrent neural network (FastGRNN) 4 4 4 4

ability to accumulate contextual information from both the past
and future. The framework consists of three modules. First,
data preprocessing is completed on network packets to extract
length, protocol, and payload information within the info field,
after which word embedding is implemented on each token and
encoded into an integer format. Next, packets are normalized
and unnecessary ones are removed. Second, LSTM-RNN and
BLSTM-RNN models are defined and evaluated, and third, a
test dataset is used to determine the effectiveness of anomaly
detection. The authors also provided the dataset named Mirai-
RGU, which was generated using Mirai and IoT cameras.
The traffic consisted of Mirai messages between a bot (an
infected IoT) with a C&C. Additionally, four attack vectors
were chosen, including User Datagram Protocol (UDP) flood,
Acknowledgment (ACK) flood, DNS flood, and SYN flood
attacks, as well as normal traffic generated by the cameras.
A couple of experiments indicated that the accuracy and loss
metrics exhibited by LSTMN-RNN and BLSTM-RNN were
close but favor the latter. Nevertheless, the bidirectional model
added to the overhead and increased processing time.

Similar to [13] and [8], Hwang et al. [9] eliminated the
time required for accumulating network packets to generate
flow-based features by directing attention exclusively to the
headers of individual packets. At the same time, the authors
avoided the high cost of deep-packet inspection required by
[8]. The central advantage here is that packet header fields
are directly readable by gateways once they arrive, thus
facilitating real-time detection. The authors put forward the
application of word embedding on an incoming network packet
to extract its semantic meanings, then adjusting three layers
of LSTM to classify the packet as normal or malicious. To
evaluate the model, a dataset called Mirai-CCU collected
besides Mirai-RGU [8] and ISCX2012 [31] dataset. Primarily,
the performance is affected by word-embedding and attack
representation in the dataset. Unfortunately, the size of the
input data exceeded the size of flow-based features. Thus, the
time required for training was higher than usual, reaching 17
hours at 200 epochs on some datasets.

As discussed in this section, a growing body of the liter-
ature has recognized the importance of developing machine
or deep learning models to detect IoT botnet attacks. These
efforts are confronted with critical challenges that also point to
gaps in this prominent research area. Distinctly, most proposed
mechanisms focus on accuracy and disregard the analysis of
other important metrics, such as algorithmic complexity and
speed. Thus, this study proposes a lightweight model that

provides real-time detection. Table I shows the proposed model
in comparison to the current state-of-the-art.

IV. METHODOLOGY

The proposed classification model follows the same princi-
ple as in [9]. Thus, it treats each packet as a single sentence and
each packet header field as a word because the stringent order
of fields serves as a grammar rule, which is in essence creating
sentence patterns for benign or malicious traffic. Therefore,
word embedding is used to derive the semantics and syntactical
features of packets. In the following subsections we will
discuss dataset selection, feature extraction, dataset sampling,
input preprocessing, proposed architecture, and experimental
setup.

A. Dataset Selection

The effectiveness of neural network or deep learning mod-
els hinges primarily on the quality and size of a dataset.
Research on IoT security suffers from the absence of bench-
mark datasets, but recent endeavors have been initiated to
publish datasets meant to overcome this issue. Nevertheless,
certain drawbacks remain. For example, the effectiveness of the
dataset put forward in [33] is impeded by highly imbalanced
records because it has only 477 legitimate traffic samples and
3,668,045 attack traffic samples. Among these recent efforts,
and for the purposes of this study, the MedBIoT [32] and
Mirai-RGU [8] datasets were selected. These datasets have
been selected for the following reasons:

• A variety of IoT devices were used to generate the
network traffic.
• There was realism in the attacks because real botnet

binary codes were used to launch the attacks.
• Both phases of IoT botnet lifecycle are covered (see

Section II-A).
• There was a diversity of attacks that were launched.

The MedBIoT dataset [32] is collected from a medium-
sized network with 83 physical and virtual IoT devices,
including switches, light bulbs, locks, and fans. Mirai [17],
BashLite [15] and Torii [34] were used to initiate the malicious
behavior of botnets. In contrast, the Mirai-RGU [8] dataset
was generated using two Sricam AP009 IP cameras infected
with Mirai source code that initiated different attacks against
a raspberry Pi.
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Fig. 3. MedBIoT Dataset [32] Classes Before Undersampling. Fig. 4. MedBIoT Dataset [32] Classes After Undersampling.

Fig. 5. Mirai-RGU Dataset [8] Classes Before Undersampling. Fig. 6. Mirai-RGU Dataset [8] Classes After Undersampling.

TABLE II. PACKET HEADERS THAT USED AS FEATURES FOR THE
PROPOSED INDEPENDENT MODEL.

Header Features
Ethernet eth source, eth destination, eth type

IP ip version, ip hdr len, ip tos, ip length, ip identification, ip flags,
ip offset, ip ttl, ip protocol, ip checksum, ip source, ip destination

TCP
tcp source port, tcp destination port, tcp sequence, tcp acknowledge,
tcp offset, tcp flags res, tcp flags, tcp window size, tcp checksum,
tcp urgent point

UDP udp source port, udp destination port, udp ulen, udp checksum

B. Feature Extraction

Both datasets consist of raw network packets as packet
capture files (PCAPs). To provide an independent, lightweight,
and real-time model, we needed to extract the features that are
directly readable by the gateway. The required features were
extracted from PCAPs using TShark [35] and converted into
comma-separated values (CSVs). The extracted features were
Ethernet, IP, TCP, and UDP headers, as displayed in Table II.

C. Dataset Sampling

A random undersampling technique followed to minimize
the number of samples and to introduce some kind of balancing
for the imbalanced classes. For MedBIoT [32], we split the

dataset into two halves, normal and attacks, and then divided
the attack classes equally. For the Mirai-RGU [8], we followed
the attack vectors distribution of Mirai published by [17] to
reflect a more realistic situation. Fig. 3, 4, 5, and 6 illustrate
the undersampling effect on the classes of the datasets.

D. Input Preprocessing

Unlike LSTM-based model by [9], we did not duplicate any
features. We only considered real packet headers because they
require less preprocessing. To prepare a packet for embedding,
all features were first converted into strings. Then, we split
the dataset into training and testing sets in a ratio of 80:20,
respectively. Afterward, tokenizer was applied to produce the
dictionary and map each packet header with its associated
integer number from the dictionary. Finally, we padded each
packet to be the size of 32 words.

E. Architecture Designing

Basically, the proposed model consists of input layer,
embedding layer, FastGRNN layer, dropout layer, and dense
layer as illustrated in Fig. 7. First, vector of tokenized words or
header fields with a size of 32 represented the input layer. The
second layer was the random embedding layer that transferred
each tokenized word n into a vector of size 64. Then, each
embedded vector was passed into a FastGRNN cell with
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Fig. 7. The Proposed FastGRNN-based Model.

a hidden state of size 64. As mentioned in Section II-B,
FastGRNN was selected due to its simplicity and lightness.
Afterward, the dropout layer was used with 0.2 as the dropout
rate to overcome the overfitting by dropping random neurons
from the previous layer. To generate the desired output for
the multi-classification task, a dense layer with Softmax as the
activation function was used. Finally, to compile the model,
a categorical cross entropy was used as the loss function in
addition to RMSProp optimizer to adjust the learning rate.

F. Experimental Setup

The model was written in Python 3.7.3 and TensorFlow
1.15.0 [36] with Keras 2.2.4 [37]. All the experiments were
done using Tesla K20 GPU, with 2496 CUDA cores and 5 GB
memory besides 96 GB RAM.

V. RESULTS AND DISCUSSION

To evaluate the model against the desired objectives, we
needed to calculate the correctness of classification and the
required time for training and prediction. Because both datasets
were imbalanced and the model targets multi-classification, F1
score was the most appropriate metric to use. The F1 score
was calculated according to Equation 4. In addition, wall time
was considered when calculating the time required for training
and detection. Furthermore, the model was compared with
the LSTM-based model proposed by [9], but because there
is no published information regarding time or the MedBIoT
dataset in the paper by [9], we implemented their model and
trained it ourselves. Moreover, we implemented the proposed
architecture once with LSTM as a replacement for FastGRNN
and called it the LSTM-based model, and then we implemented

it once with GRU and called it the GRU-based model. We
trained both of those architectures with both datasets, and the
results are summarized in Table III.

F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
(4)

As shown in Table III, our FastGRNN achieved the lowest
training time for MedBIoT at only 1 hour, 18 minutes, and
51 seconds (1:18:51), while the second-lowest one was the
LSTM-based model at 4 hours, 3 minutes, and 5 seconds
(04:03:05). In addition, FastGRNN had the fastest detection
speed of only 29 seconds for the entire test set, compared to
the second-lowest time which was 53 seconds for the GRU.
The reason the GRU had a longer training time than the
LSTM is that the GRU needed more epochs to train before
stopping. Actually, GRU takes about 25 minutes to complete
one epoch, while LSTM completes an epoch in about 27
minutes. The LSTM-based model proposed by [9] had the
slowest performance in training and detection due to using
multiple LSTM layers and a large hidden states size, which
makes the computations more expensive. For the F1 scores,
all of the models had F1 scores of 99.99%, which might be
due to the balancing of the attack classes.

Afterward, we followed another strategy of balancing
classes with Mirai-RGU, as mentioned in Section IV-C. Again,
the proposed model completed training within 2:0:41 while the
second-fastest one, which was GRU, took 3:51:2. Also, work
by [9] took the longest time to train, 10:42:38. Regarding the
detection time, FastGRNN succeeded in reaching a detection
time of 29 seconds, while GRU needed about 55 seconds.
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Fig. 8. The Required Training Time of The Proposed
FastGRNN-based Model Compared to Other Models.

Fig. 9. The Required Detection Time of The Proposed
FastGRNN-based Model Compared to Other Models.

TABLE III. EVALUATION RESULTS OF THE PROPOSED MODEL ON THE TWO DATASETS COMPARED TO OTHER MODELS.

Dataset Model F1 score Training Time in hours:minutes:seconds Detection Time in seconds
MedBIoT [32] LSTM by [9] 99.99% 11:37:53 245

LSTM baseline 99.99% 4:3:5 65
GRU baseline 99.99% 5:58:49 53
FastGRNN-based 99.99% 1:18:51 29

Mirai-RGU [8] LSTM by [9] 99.46% 10:42:38 249
LSTM baseline 98.60% 4:44:59 66
GRU baseline 97.82% 3:51:2 55
FastGRNN-based 99.04% 2:0:41 29

The proposed model outperformed GRU and LSTM in F1
score as well, with 99.04%, 97.82%, and 98.60%, respectively.
Furthermore, FastGRNN achieved an F1 score close to that
of LSTM. Finally, Fig. 8 and 9 illustrate the performance of
the proposed model in terms of training and detection time
compared to other models.

VI. CONCLUSION

IoT botnets are increasingly recognized as a serious world-
wide cybersecurity concern. Investigating machine and deep
learning is a continuing concern in relation to intrusion de-
tection approaches against IoT botnets, but such exploration
involves several issues. This study focused on developing a
lightweight multi-classification neural network-based model
with the aim of providing fast training time, real-time detec-
tion, and accuracy. According to the experiments, we proved
that the proposed FastGRNN outperformed the other mod-
els when benchmarking both datasets by decreasing training
and detection time while also preserving a high F1 score.
Specifically, the proposed model completed training in 1:18:51
and 2:0:41 for the MedBIoT and RGU datasets, respectively.
Detection was completed by FastGRNN within 29 seconds
for the entire test set. Moreover, our model had competitive
F1 scores of 99.99% and 99.04% for multi-classification of
MedBIoT and RGU, respectively.

Finally, distinct technologies, along with IoT botnet de-
tection measures, may be adopted. As future work, we will
look into the opportunities engendered by federated learning.
Because we aim to centralize the learning process using
FastGRNN on the grounds of a fog or cloud and distributing
a collection of network traffic data among several nodes or
gateways, this direction would promote the application of
collaborative intrusion detection approaches.
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