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Abstract—The quality of a high dynamic range (HDR) image 
produced from bracketed images taken at different camera 
exposure times can be degraded by noise contained in bracketed 
images. In this paper, we propose a noise reduction method on 
bracketed images based on exposure time ratio. First, for each 
pixel pair of a same scene point lying on two different images, the 
ratio of their intensity values is compared with the ratio of 
exposure times of the images on which the pixels are lying. If the 
compared ratios are close, these two pixels are included in noise-
free pixels set. The complement of noise-free pixels set is defined 
as noisy pixels set. Then, the intensity value of each pixel in noisy 
pixels set is corrected by its expected value computed from noise-
free pixel of the same scene point lying on another image. 
Experimental results show that all the noisy intensity values can 
be correctly restored from noise-free pixels except the saturated 
pixels. Denoising results by PSNR show that the proposed 
method outperforms the other recent denoising methods such as 
based-on pixel density filter (BPDF), noise adaptive fuzzy 
switching median filter (NAFSMF), and adaptive Riesz mean 
filter (ARmF). 

Keywords—Image denoising; high dynamic range imaging; 
noise detection; noise removal; image restoration 

I. INTRODUCTION 
The human visual system (HVS) can perceive higher 

dynamic range (i.e., the ratio between the maximum and 
minimum intensity values in an image) than most of the 
cameras. This causes the gap between the visual quality of 
image captured from standard camera and the quality of actual 
scene perceived by human eye. One way to reduce this gap is 
using exposure bracketing technique [1]-[3] which is the 
process to achieve high dynamic range (HDR) image from 
merging multiple low dynamic range (LDR) images, which is 
called bracketed images, acquired by gradually increasing the 
camera exposure settings. 

A typical problem in constructing HDR image is that if 
there are moving objects while capturing a series of bracketed 
images, they appear blended in merged HDR image which is 
called as ghosting artefacts. Thus, a lot of research has been 
conducted to remove ghosting artefacts in HDR imaging [4]-
[9]. Like the standard images, the images acquired in 
bracketing process suffer from noise that usually occurs during 
acquisition. And this noise can degrade the quality of the final 
constructed HDR image. Therefore, the denoising of bracketed 

images is one of the most important processes to obtain high 
quality HDR image. Since each bracketed image can be 
denoised using existing image denoising methods [10]-[14], 
more attention of research in HDR imaging has been focused 
on removing ghosting artefacts than image denoising. In this 
article, we propose a method to exploit information during 
exposure bracketing process which can be used to reduce noise 
in bracketed images. 

Most of the exposure bracketing techniques use three 
images: slightly underexposed image, correctly exposed image 
and slightly overexposed image. Thus, we used three bracketed 
images in this work. It is found that the exposure time ratio 
between two differently exposed images is constant and the 
value is equivalent to the ratio between intensity values of the 
two corresponding pixels [15]. Therefore, if the ratio of the two 
corresponding pixels’ intensity values is close to the exposure 
time ratio, these two pixels can be assumed to be noise-free. In 
this way, all the pixels in the bracketed images are checked 
whether they are noise-free, and the classified noise-free pixels 
are grouped into the noise-free pixels set. The noisy pixels set 
is made by taking complement of the noise-free pixels set. 
Then, the intensity values of the pixels in noisy pixels set are 
corrected by their expected values computed from noise-free 
pixels of the same scene point lying on another image. 
Experimental results on several datasets illustrate that the 
proposed method can correctly restore intensity value of any 
noisy pixel when there exists corresponding noisy-free pixel of 
the same scene point in another image. However, noisy 
intensity values of the saturated pixels that have maximum 
intensity values cannot be correctly restored because once an 
intensity value reaches a maximum value, it does not increase 
as the sensor exposure of a pixel increases. 

The rest of this paper is organized as follows. Section II 
presents the proposed algorithm of based-on gamma-corrected 
exposure time ratio filter (BGEF). In Section III, we present 
experimental analysis on different datasets. Conclusions are 
given in Section IV. 

II. PROPOSED ALGORITHM 

Through the article, we let 𝐿 = �𝑙𝑖𝑗�𝑟×𝑐
 be an image where 

𝑙𝑖𝑗  is the measured pixel intensity value at location (𝑖, 𝑗), r is 
the number of pixels in a row of 𝐿, c is the number of pixels in 
a column of 𝐿 . The total quantity of light accumulated at 
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camera sensor location (𝑖, 𝑗) for 𝛥𝑡  units of time produces a 
sensor exposure 𝑒𝑖𝑗 ⋅ 𝛥𝑡, where 𝑒𝑖𝑗 is sensor irradiation at (𝑖, 𝑗). 

The measured pixel intensity value 𝑙𝑖𝑗  at location (𝑖, 𝑗) is 
proportional to the sensor exposure 𝑒𝑖𝑗 ⋅ 𝛥𝑡  scaled by the 
camera response function 𝑓  as 𝑓(𝑒𝑖𝑗 ⋅ 𝛥𝑡) . Among various 
methods to estimate 𝑓P

 [16], [17], gamma curve approximation 
is widely used by many camera manufacturers [18]. Assuming 
the camera response function to be a gamma curve, the pixel 
intensity at position (𝑖, 𝑗) can be expressed as 

𝑙𝑖𝑗 = 𝑓(𝑒𝑖𝑗 ⋅ 𝛥𝑡) ≈ (𝑒𝑖𝑗 ⋅ 𝛥𝑡)𝛾              (1) 

For each pixel location (𝑖, 𝑗) , the gamma-corrected 
exposure time ratio 𝛼𝑠𝑡(𝑖, 𝑗)  between differently exposed 
images 𝐿𝑠 and 𝐿𝑡 is defined in [15] as 

𝛼𝑠𝑡(𝑖, 𝑗) =
𝑙𝑖𝑗
𝑡

𝑙𝑖𝑗
𝑠 ≈ �

𝑒𝑖𝑗⋅Δ𝑡𝑡
𝑒𝑖𝑗⋅Δ𝑡𝑠

�
𝛾

= �Δ𝑡𝑡
Δ𝑡𝑠
�
𝛾

,             (2) 

where 𝑙𝑖𝑗𝑠  and 𝑙𝑖𝑗𝑡  are pixel intensity values at (𝑖, 𝑗) in image 
𝐿𝑠 and 𝐿𝑡 respectively. 

It can be observed in (2) that the gamma-corrected 
exposure time ratio 𝛼𝑠𝑡 is constant for all pixel location (𝑖, 𝑗). 
From (2), we can estimate the pixel intensity value 𝑙𝑖𝑗𝑡  at (𝑖, 𝑗) 
in image 𝐿𝑡 from the observed intensity value 𝑙𝑖𝑗𝑠  in image 𝐿𝑠 as 
𝑙𝑖𝑗𝑡 = 𝛼𝑠𝑡 ∙  𝑙𝑖𝑗𝑠 . Thus, if the estimated pixel intensity value 𝑙𝑖𝑗𝑡  is 
different from the observed value 𝑙𝑖𝑗𝑡 , one or both of 𝑙𝑖𝑗𝑠  and 𝑙𝑖𝑗𝑡  
can be thought to be corrupted by noise. 

A. Selection of Noisy Pixels 
We obtain three images 𝐿1 , 𝐿2 , 𝐿3  of the same scene by 

gradually increasing the camera exposure time (𝛥𝑡1< 𝛥𝑡2< 𝛥𝑡3) 
and compute 𝛼12, 𝛼23 and 𝛼31 from (2). For each pixel location 
(𝑖, 𝑗)  in each image frame, we compute the estimated pixel 
intensity value from another image frame as 

𝑙𝑖𝑗1 = 𝛼31 ∙  𝑙𝑖𝑗3  

𝑙𝑖𝑗2 = 𝛼12 ∙  𝑙𝑖𝑗1  

𝑙𝑖𝑗3 = 𝛼23 ∙  𝑙𝑖𝑗2                  (3) 

Let 𝑝𝑖𝑗𝑘  be pixel at location (𝑖, 𝑗) in image 𝐿𝑘 , 𝑃𝑛  is noisy 
pixels set, 𝑃𝑓 is noise-free pixels set and 𝑃𝑢 is collection of all 
the pixels. 𝑃𝑛  and 𝑃𝑓  are initialized as empty set. Gamma-
corrected exposure time ratios 𝛼12 , 𝛼23  and 𝛼31  cannot be 
corrupted values since they are computed from pre-determined 
camera parameters (i.e., exposure time and gamma value) as 
shown in (2). However, pixel intensity values 𝑙𝑖𝑗1 , 𝑙𝑖𝑗2  and 𝑙𝑖𝑗3  can 
be corrupted by various types of noises. Thus, for each pixel 
𝑝𝑖𝑗𝑘 , we guess from (3) whether the pixel belongs to 𝑃𝑛 or 𝑃𝑓 as 

�𝑙𝑖𝑗2 − 𝑙𝑖𝑗2 � < 𝜖 ∙ 𝑙𝑖𝑗2 → 𝑃𝑓 = 𝑃𝑓 ∪ �𝑝𝑖𝑗1 , 𝑝𝑖𝑗2 �, 

�𝑙𝑖𝑗3 − 𝑙𝑖𝑗3 � < 𝜖 ∙ 𝑙𝑖𝑗3 → 𝑃𝑓 = 𝑃𝑓 ∪ �𝑝𝑖𝑗2 , 𝑝𝑖𝑗3 �, 

�𝑙𝑖𝑗1 − 𝑙𝑖𝑗1 � < 𝜖 ∙ 𝑙𝑖𝑗1 → 𝑃𝑓 = 𝑃𝑓 ∪ �𝑝𝑖𝑗3 , 𝑝𝑖𝑗1 �, 

𝑃𝑛 = 𝑃𝑢 − 𝑃𝑓 ,               (4) 

where 𝜖 is predefined tolerance and it is set to 0.1 in this 
work. When the difference between the observed pixel 
intensity value and the estimated pixel intensity value is small, 
both of the two pixels (i.e., the pixel whose intensity value is 
estimated and the pixel from which the other pixel’s intensity 
value is estimated) can be assumed to be noise-free pixels. 
Finally, the noisy pixels set is constructed by subtracting noise-
free pixels from the collection of all pixels. 

B. Correction of Noisy Pixels 
The intensity values of pixels classified as noisy in previous 

section can be corrected from the intensity values of noise-free 
pixels in another image lying on the same location. Equation (4) 
indicates that each pixel location (𝑖, 𝑗), there are three cases: all 
three pixels are noise-free, two pixels are noise-free and the 
remaining one pixel is noisy, all three pixels are noisy. The 
case that two pixels are noisy and the remaining one pixel is 
noise-free cannot occur in (4). In this method, the noisy pixel 
in the second case can be corrected. For each pixel location 
(𝑖, 𝑗), if only one value among 𝑙𝑖𝑗1 , 𝑙𝑖𝑗2  and 𝑙𝑖𝑗3  is noisy, the noisy 
intensity value can be corrected as 

(𝑝𝑖𝑗1 ∈ 𝑃𝑛) ∧ (𝑝𝑖𝑗2 ∈ 𝑃𝑓) ∧ (𝑝𝑖𝑗3 ∈ 𝑃𝑓) → 𝑙𝑖𝑗1 = 𝑙𝑖𝑗1 , 

(𝑝𝑖𝑗1 ∈ 𝑃𝑓) ∧ (𝑝𝑖𝑗2 ∈ 𝑃𝑛) ∧ (𝑝𝑖𝑗3 ∈ 𝑃𝑓) → 𝑙𝑖𝑗2 = 𝑙𝑖𝑗2 , 

(𝑝𝑖𝑗1 ∈ 𝑃𝑓) ∧ (𝑝𝑖𝑗2 ∈ 𝑃𝑓) ∧ (𝑝𝑖𝑗3 ∈ 𝑃𝑛) → 𝑙𝑖𝑗3 = 𝑙𝑖𝑗3                 (5) 

In (5), the noisy pixel intensity value is corrected by its 
estimated value in (3) since the pixel, from which the value is 
estimated, is noise-free. However, if all three pixels lying on 
same location are noisy, the noisy intensity values cannot be 
corrected in this method. 

III. EXPERIMENTAL RESULTS 
The proposed method was applied on three sample datasets 

in [6] – ‘Yard’, ‘Shop’ and ‘Cars’ scenes. Each dataset has 
three images of a scene captured by doubling the camera 
exposure time. The sample datasets are shown in Fig. 1. 

Out of several types of image noise that occurs during 
image acquisition and transmission, the impulse noise is one of 
common types of noise which includes salt-and-pepper noise 
(SPN) [19]-[21] and random-valued impulse noise [22], [23]. 
SPN is caused by sudden disturbances in the signal and the 
pixels affected by SPN hold a maximum or a minimum gray 
value. In experiments, we imposed SPN noises on the 
bracketed images with various ratios. 
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Fig. 1. Three Sample Scenes: (a) Bracketed Images of ‘Yard’ Scene, (b) Bracketed Images of ‘Shop’ Scene, (c) Bracketed Images of ‘Cars’ Scene. 

Fig. 2 shows the denoising results of the middle image by 
the proposed method for ‘Yard’ scene where the first column 
shows the corrupted middle image by SPN, the second column 
shows the denoising results in case only the middle image is 
corrupted by SPN and the third column shows the denoising 
results in case all the three images are corrupted by SPN. 
Denoising for only one image is corrupted shows good results 
and denoising quality does not decrease much as the noise 
level increases. The floor parts and the top-left corner of the 
scene are saturated (full white) in all three images in Fig. 1(a). 
In these saturated regions, the proposed filter does not work 
well since the method rely on intensity ratio between images 
and the intensity ratio on saturated region does not reflect 
correct exposure time ratio. However, for all three images are 
corrupted, the denoising quality decreases as the noise level 
increases. For a certain location (𝑖, 𝑗), the proposed method can 
correct the noisy intensity value when only one pixel is noisy 

out of three pixels as in (5). It means, when only one image is 
corrupted by noise, theoretically 100% of noisy pixels except 
saturated pixels can be corrected by corresponding two other 
noise-free pixels lying on the same location in other two 
images. However, when all the three images are corrupted by 
𝛼  % noise level, the probability of a noisy pixel can be 
corrected is equivalent to the probability that the corresponding 
two other pixels are noise-free which is (1 − 𝛼/100)2 ×
100  %; thus, only some portion of noisy pixels can be 
corrected. The same experiments were conducted on ‘Shop’ 
and ‘Cars’ scenes and their denoising results are shown in 
Fig. 3 and Fig. 4, respectively. In both experiments, we can see 
the expected results as in Fig. 2. In ‘Cars’ scene in Fig. 1, the 
saturated parts around sun in the sky occupy large areas in the 
image. Thus, the denoising failure around sun is notable in this 
scene. 

152 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

 
Fig. 2. Denoising Results of the Middle Image by the Proposed Method for ‘Yard’ Scene: (a) Corrupted Images with Different SPN Ratios, (b) Denoising 

Results in Case Only the Middle Image is Corrupted by SPN, (c) Denoising Results in Case All the Three Images are Corrupted by SPN. 
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Fig. 3. Denoising Results of the Middle Image by the Proposed Method for ‘Shop’ Scene: (a) Corrupted Images with Different SPN Ratios, (b) Denoising 

Results in Case Only the Middle Image is Corrupted by SPN, (c) Denoising Results in Case All the Three Images are Corrupted by SPN. 
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Fig. 4. Denoising Results of the Middle Image by the Proposed Method for ‘Cars’ Scene: (a) Corrupted Images with Different SPN Ratios, (b) Denoising Results 

in Case Only the Middle Image is Corrupted by SPN, (c) Denoising Results in Case All the Three Images are Corrupted by SPN. 

For quantitative assessment of the effectiveness of image 
denoising, we use the common error metric peak signal-to-
noise ratio (PSNR) which is defined as 

𝑃𝑆𝑁𝑅(𝑈,𝑉) =  10log10 �
𝑝𝑒𝑎𝑘𝑣𝑎𝑙2

𝑀𝑆𝐸(𝑈,𝑉)
�,               (6) 

where peakval is the maximum intensity value in image 
datatype and MSE stands for mean square error defined as 

𝑀𝑆𝐸(𝑈,𝑉) =  1
𝑟𝑐
∑ ∑ �𝑢𝑖𝑗 − 𝑣𝑖𝑗�

2𝑐
𝑗=1

𝑟
𝑖=1 ,            (7) 
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where 𝑈 = �𝑢𝑖𝑗�  is a ground truth and 𝑉 = �𝑣𝑖𝑗�  is an 
evaluated (denoised) image. The higher value of PSNR 
indicates a better image quality. 

In Table I, PSNR results of the proposed BGEF method on 
middle images are compared with recent SPN filtering 
techniques − based-on pixel density filter (BPDF) [24], noise 
adaptive fuzzy switching median filter (NAFSMF) [25], 
adaptive Riesz mean filter (ARmF) [26]. PSNR results show 
that BGEF performs better than the other filtering methods in 
all three scenes. Since BGEF reduces noise in bracketed 

images using exposure time ratio computed from a priori 
knowledge, it can be considered as preprocessing technique 
before applying existing denoising filters. Thus, we also tried 
to apply BPDF, NAFSMF and ARmF after applying the 
proposed BGEF, each of which is termed as BGEF-BPDF, 
BGEF-NAFMSMF and BGEF-ARmF respectively. We can 
see these combined filters have further improved the results 
when only one image is corrupted. However, in some cases 
when all three images are corrupted, the combined filters 
showed worse performance than single BGEF filter as the 
noise level increases. 

TABLE I.  PSNR RESULTS OF THE METHODS FOR THREE SCENES (‘YARD’, ‘SHOP’ AND ‘CARS’) WITH DIFFERENT SPN RATIOS 

Scene Filter 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Yard BPDF 14.7948 11.4381 6.2123 5.6429 5.1229 4.6501 4.1760 3.7424 3.2312 

(1 image NAFSMF 15.0718 12.0522 7.1495 6.0000 4.7246 3.6800 3.0632 2.6904 2.3894 

corrupted) ARmF 15.0571 11.9665 6.8119 6.1399 5.4926 4.8384 4.1750 3.5102 2.8162 

Yard BGEF 21.8402 18.7996 16.1532 13.9080 13.4803 13.0882 12.7175 12.4245 12.1324 

(1 image BGEF-BPDF 29.6673 25.5969 22.2504 19.0001 18.2520 17.6507 16.7814 16.2212 15.5347 

corrupted) BGEF-NAFSMF 30.4498 27.2424 24.6925 22.2148 21.7592 21.3514 20.9294 20.4732 20.1004 

 BGEF-ARmF 30.9520 27.7618 25.2913 22.9088 22.4732 22.0864 21.6867 21.2919 20.9479 

Yard BGEF 18.9944 14.4602 8.4810 6.7813 6.1835 5.6645 5.2017 4.8173 4.4624 

(3 images BGEF-BPDF 21.5826 15.9649 8.3388 6.4079 5.6515 4.9834 4.3708 3.8375 3.2594 

corrupted) BGEF-NAFSMF 21.7394 16.2873 9.3411 7.4919 6.0903 4.4046 3.3017 2.7642 2.4070 

 BGEF-ARmF 21.8109 16.3091 9.0471 7.0728 6.1896 5.3225 4.4799 3.6633 2.8587 

Shop BPDF 14.7087 11.3417 9.3041 7.8520 6.7130 5.7847 4.9741 4.2544 3.5631 

(1 image NAFSMF 15.0598 12.0510 10.2880 9.0314 7.9707 6.5051 4.4296 3.1085 2.5226 

corrupted) ARmF 15.0192 11.9364 10.0583 8.6448 7.4472 6.3683 5.3174 4.2662 3.1910 

Shop BGEF 24.9141 21.9940 20.1777 18.9365 17.9786 17.1791 16.5227 15.9288 15.4317 

(1 image BGEF-BPDF 31.4590 27.0027 24.3549 22.8316 21.7053 20.8822 20.1632 19.4482 18.8491 

corrupted) BGEF-NAFSMF 35.7117 32.6009 30.8208 29.4552 28.3801 27.2541 25.9238 24.8079 23.9785 

 BGEF-ARmF 35.9673 32.8380 31.0408 29.6687 28.5375 27.5648 26.5999 25.7053 24.7991 

Shop BGEF 20.2299 15.2058 12.1941 10.1033 8.5269 7.2946 6.3060 5.5085 4.8720 

(3 images BGEF-BPDF 21.8178 15.9985 12.5090 10.0352 8.1471 6.6743 5.4721 4.4840 3.6301 

corrupted) BGEF-NAFSMF 22.1633 16.4435 13.1993 10.9770 9.3180 7.9352 5.7493 3.4285 2.5703 

 BGEF-ARmF 22.1693 16.4216 13.1239 10.8032 8.9757 7.4191 5.9865 4.6163 3.2977 

Cars BPDF 14.8187 11.3948 9.2533 7.8058 6.7074 5.7750 5.0027 4.2856 3.2390 

(1 image NAFSMF 15.3301 12.3603 10.5488 9.2893 8.2503 6.7610 4.7317 3.4027 2.5738 

corrupted) ARmF 15.2982 12.2514 10.3253 8.9084 7.7372 6.6436 5.6071 4.5534 2.9151 

Cars BGEF 19.6201 16.6098 14.7801 13.6059 12.6231 11.8479 11.1817 10.5849 9.8555 

(1 image BGEF-BPDF 25.2672 20.6474 18.0166 16.6609 15.6628 14.8775 14.3970 13.8015 13.2473 

corrupted) BGEF-NAFSMF 29.8784 26.8546 25.1235 23.8845 22.8178 21.5618 19.9973 18.8440 17.9175 

 BGEF-ARmF 30.0175 26.9541 25.1497 23.8159 22.6637 21.6471 20.7404 19.8288 18.4150 

Cars BGEF 17.8410 13.6806 11.0502 9.2383 7.8255 6.6908 5.7810 5.0148 4.1730 

(3 images BGEF-BPDF 20.7992 15.3088 11.9637 9.7250 7.9892 6.5736 5.4645 4.4877 3.3172 

corrupted) BGEF-NAFSMF 21.9909 16.5503 13.3413 11.1763 9.5627 8.1487 6.0204 3.7153 2.6201 

 BGEF-ARmF 22.0124 16.5366 13.2700 11.0044 9.2214 7.6584 6.2648 4.8930 3.0291 
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IV. CONCLUSIONS 
A noise reduction method based on exposure time ratio on 

three bracketed images has been proposed. For each location 
(𝑖, 𝑗), the ratio of intensity values of the corresponding pixels 
between two images is equivalent to gamma-corrected 
exposure time ratio which can be computed from a priori 
knowledge of camera parameters. Thus, when a ratio of two 
corresponding pixels’ intensity values is different from 
gamma-corrected exposure time ratio, one or both of them are 
classified as noisy pixels. Then, the classified noisy pixels are 
corrected from noise-free pixels on the same location lying in 
another image using gamma-corrected exposure time ratio as a 
cue. Experimental results show that if only one image out of 
three is corrupted by noise, most of the noisy pixels’ intensity 
values except saturated pixels can be correctly restored by the 
proposed method regardless of noise level imposed on the 
image. However, if all the three images are corrupted by noise, 
the denoising performance decreases as the noise level 
increases. Experimental results on several datasets using PSNR 
show that the denoising performance of the proposed method is 
better than the recent denoising filters BPDF, NAFSMF and 
ARmF. When the proposed method was used as a pre-
processing filter and the existing noise specific denoising filters 
were applied on the processed images, the denoising 
performance has further improved. 
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