
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Extending Shared-Memory Computations to Multiple
Distributed Nodes

Waseem Ahmed
Department of Computer Science

Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—With the emergence of accelerators like GPUs,
MICs and FPGAs, the availability of domain specific libraries
(like MKL) and the ease of parallelization associated with CUDA
and OpenMP based shared-memory programming, node-based
parallelization has recently become a popular choice among
developers in the field of scientific computing. This is evident from
the large volume of recently published work in various domains
of scientific computing, where shared-memory programming and
accelerators have been used to accelerate applications. Although
these approaches are suitable for small problem-sizes, there are
issues that need to be addressed for them to be applicable
to larger input domains. Firstly, the primary focus of these
works has been to accelerate the core kernel; acceleration of
input/output operations is seldom considered. Many operations
in scientific computing operate on large matrices - both sparse
and dense - that are read from and written to external files.
These input-output operations present themselves as bottlenecks
and significantly effect the overall application time. Secondly,
node-based parallelization limits a developer from distributing
the computation beyond a single node without him having to
learn an additional programming paradigm like MPI. Thirdly,
the problem size that can be effectively handled by a node is
limited by the memory of the node and accelerator. In this
paper, an Asynchronous Multi-node Execution (AMNE) approach
is presented that uses a unique combination of the shared-file
system and pseudo-replication to extend node-based algorithms to
a distributed multiple node implementation with minimal changes
to the original node-based code. We demonstrate this approach
by applying it to GEMM, a popular kernel in dense linear algebra
and show that the presented methodology significantly advances
the state of art in the field of parallelization and scientific
computing.

Keywords—GPU; OpenMP; shared memory programming;
distributed programming; CUDA

I. INTRODUCTION

Many applications in engineering and scientific computing
involve operations on dense and sparse matrices [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11]. At the core of many of
these applications is the General Matrix-Matrix multiplication
(GEMM) operation, which is regarded as one of the most
widely used high performance kernels. GEMM is also used
in graph theory and in the design of recommender systems
and machine learning algorithms like page rank and logistic
regression. It is used by many kernels in dense linear algebra
(DLA) and has been part of many fast DLA libraries [12],
[13], [14].

It is generally described by the operation C = α · op(A)×
op(B) + β · C, where A, B and C are matrices and α
and β are scalar constants between 0 and 1. The GEMM

kernel is composed of three basic matrix-based operations
- matrix-matrix multiplication, matrix-matrix addition and
scalar-matrix multiplication. Among these three operations, the
matrix-matrix multiplication makes GEMM computationally
expensive. Moreover, when large dense matrices are involved,
the GEMM operation, in addition to being computationally
expensive, becomes I/O intensive as well and making the
operation holistically efficient becomes more challenging.

Although this operation could naively be implemented
using a simple three-nested loop with algorithmic complexity
in O(n3), it has been the subject of a lot of research
over the last few decades. Indeed, areas related to the
optimization of this operation and its parallelization using
improvised algorithms and software paradigms and hardware
architectures are still active areas of research [12], [9], [15],
[3], [16], [17], [18], [19], [20]. More recently, with the
advent of easily available yet powerful workstations equipped
with sophisticated co-processors, researchers have parallelized
GEMM on these single-node workstations using accelerators
like Graphics Processing Units (GPUs), Many Integrated Cores
(MICs) and Field Programmable Gate Arrays (FPGAs) [19],
[21], [12], [17].

When parallelizing GEMM on a single node, shared
memory programming paradigms like OpenMP and
heterogeneous computing paradigms like CUDA, OpenACC
and OpenCL have been the dominant choice among
developers. But as scientists continue to expand their problem
domain, either to investigate larger problem sizes or to
obtain finer results, developers will face three limitations
when developing applications for a single-node execution.
Firstly, is the cap on the maximum speedup that can be
theoretically achieved on a single node that is a function of
the core/compute element per node. Secondly, as the size
of matrices grow (>105 × 105), they become too large to
be accommodated in the limited memory of a single node
with a moderately sized RAM. For example, a single dense
matrix of size 50k × 50k used to store elements of double
floating-point precision will require approximately 18.6GB
of RAM. This makes the GEMM operation for these large
matrices non-trivial to implement on a node with 32GB of
memory or a high-end GPU with 16GB of device memory.
Thus, when dealing with large matrices, parallelization on
a single node will not yield the desired speedup because of
memory constraints. Thirdly, the I/O operations that deal with
reading these matrices from files into memory and writing
them back from memory to file will become prohibitively
expensive and will become the main bottleneck in the GEMM

www.ijacsa.thesai.org 675 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

operation.

One way to address this problem is to distribute the
computation to multiple nodes. But this will require the
developer to port the existing code written for a single-node to
a distributed architecture using a distributed-memory paradigm
like MPI. Moreover, this exercise is not trivial - the process of
rewriting and porting scientific applications from one paradigm
(or architecture) to another has a prohibitively expensive cost
[22]. Besides the learning curve associated with the learning of
a new programming paradigm, testing and debugging will be
an extra burden that the developer will have to bear, in addition
to addressing problems of load balancing and optimization
[9]. Also, with the proliferation of platforms, architectures
and programming paradigms in the HPC arena, it is indeed
challenging for an application developer to command sufficient
expertise to fully exploit the unique architectural features of
multiple platforms and different programming paradigms.

Thus, as researchers continue to expand their problem
domains to larger ones, a more holistic approach will be needed
to address these categories of applications. This paper presents
Asynchronous Multi-node Execution (AMNE) that attempts
to address the afore-mentioned challenges associated with
parallelizing a class of applications known as embarrassingly-
parallel applications [23].

The rest of the paper is organized as follows: the next
section presents the motivation for this approach. Section 3
describes the AMNE approach that forms the core of this
paper. Pseudo-replication using the launcher script is explained
in the section following Section 4. Evaluation and results of
applying the approach to parallelize GEMM are presented next
followed by the related work section. Conclusion is presented
in the last section.

II. MOTIVATION

Consider a GEMM operation on a set of matrices. The
total time taken to execute it sequentially on a single node
comprises the time costs of both its core computation and I/O
where the I/O costs could be disk-access related or network
related. This can be expressed as

tseq = ti + top + to (1)

where ti represents the time taken to read the input matrices
A and B from file into memory, top represents the time taken
to execute the core GEMM operation on matrices A and B to
produce a resultant matrix C, and to represents the time taken
to write matrix C from memory to file. Various approaches
have been proposed in literature to reduce top, ranging from
scalar optimizations like loop transformations [24], [25] and
algorithmic replacement [26], [27] to parallelization of the core
operation on multiple compute elements [18]. Applying any of
these strategies will significantly reduce top. However, there is
limited work in literature that provides strategies or methods
to reduce ti and top on a single node or on multiple nodes;
details on explicitly reducing ti or to are generally absent in
work related to parallelization of GEMM.

So, if we assume ti and to remain unchanged after the
optimization/parallelization process, the speedup obtained on

a single node (Sn=1) can be expressed as

Sn=1 = tseq/tpar = tseq/(ti + topn=1
+ to) (2)

where topn=1
≤ top is the time taken to execute the optimized

or parallelized core operation (kernel) on a single node.
Theoretically, if tn=1 → 0 , Sn=1 reduces to

Sn=1 = 1 + top/(ti + to) (3)

From this it can be seen that to obtain higher speedups,
the second term in Eq. 3 needs to be maximized. But for
large matrices, both ti and to can become very large. For
example, it takes about ~2745 secs to read a matrix of size
50k × 50k from file to memory and to write it back from
memory to file. This implies that to obtain higher speedups,
a dedicated effort needs to be made to reduce both ti and to.
However, because of hardware limitations, reduction of ti and
to is indeed challenging on a single node regardless of which
programming paradigm is used.

The primary focus of this paper is to help developers in
addressing this challenge (to reduce ti and to) while easily
extending their single-node code implementation to a multiple-
node implementation with minimal code change and with a
zero or low learning curve for the developer. The next sections
further elaborate this strategy.

III. ASYNCHRONOUS MULTI-NODE EXECUTION

The approach described in this paper, referred to as
asynchronous multi-node execution (AMNE), seeks to address
the two limitations of single-node execution in handling large
matrix operations highlighted in the previous sections, namely,
1) to overcome the memory constraint of a single-node, 2) to
reduce ti and to and 3) to have minimal code changes tot he
original single-node code when doing so. To address the first
challenge, the computation is sub-divided or sliced into smaller
sub-problems and the computation distributed over multi-
nodes. This is a classical approach and is a well researched
and documented strategy adopted by various researchers
working with MPI and other distributed computing paradigms.
However, unlike a master-slave relation that exists between
processes in a distributed-computing programming paradigm
like MPI, the launched instances in AMNE are independent of
each other and no communication or synchronization exists
between them. This is applicable to any embarrassingly-
parallel application implemented using the AMNE approach.

Slices, as defined in this approach are unlike tiles and
blocks used in the tiling and batching approach done at the
node or GPU level. In the latter, partial (intermediate) results
of the resultant matrices are generated by multiple compute
elements and has to be aggregated with other partial results
to obtain a block(s) of the final resultant matrices. In AMNE,
on the other hand, the generation of a slice (or a partial-slice)
of the resultant matrices is done by a single compute element.
Additionally, in tiling and blocking, the tiles and blocks are in-
memory representations of the matrices. A slice, on the other
hand, is an out-of memory representation.

These multiple slices are operated on by independent,
albeit similar, instances that are launched on multiple dedicated
nodes in the cluster. To enable this, the single-node code

www.ijacsa.thesai.org 676 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

is to be transformed such that it can be controlled at
run time to operate on any particular slice. Once that is
done, a launcher script is used to initiate an asynchronous
multi-node execution (AMNE) of the code instances, where
the independent instances are asynchronously launched on
multiple nodes in the cluster to operate on their designated
slices.

These steps are further elaborated in the following sub-
sections:

A. Slicing

Deciding the number of slices needed for a given
application and defining their sizes and shapes, is a prerequisite
for applying AMNE. In case of a homogeneous cluster, the
slice sizes could be uniform. For example, consider a 20-node
homogeneous cluster with each node having 32GB of memory.
Also, consider the GEMM operation to be performed on this
cluster for a configuration of (80k × 40k × 80k). For this
GEMM configuration, matrix A of size 80k× 40k and matrix
B of size 40k× 80k need to be loaded into memory from file
and elements of resultant matrix C of size 80k × 80k need to
be generated in memory. Assuming a double takes 8 bytes for
storage, matrices A and B require ∼ 23.8GB memory each
and matrix C requires ∼ 47.63GB, a total of ∼ 95.27GB.
Clearly, it cannot be performed efficiently in a single pass on
a single-node because of memory constraints of the node. To
solve the problem in one pass, the GEMM computations are
distributed across the 20 nodes in the cluster, with each node
assigned a block(s) of matrix C for independent calculation.
To enable this, both matrices A and B need to be sliced; these
slices of matrices A and B are complete, in the sense that they
can independently generate a complete block(s) of the resultant
matrix C.

To decide the slice dimensions of matrices A and B,
consider a slice of matrix A with dimensions (l × m) and
a slice of matrix B with dimensions (m × n), to generate a
block of resultant matrix C of dimensions (l×n). The choice
of the variables l and n should be such that they satisfy the
following relation

f(l,m, n) = [(l×m)+(m×n)+(l×n)]×8] ≤ R×230 (4)

where R refers to the node memory in GBytes. This
simplifies to f(l, 40k, n) ≤ 4295 for the example above where
m = 40k and memory, R = 32GB. Uniformly distributing the
computation load on the cluster of 20-nodes, we get values
l = 4 and n = 4 that also satisfy Eq. 4. These values of l and
n yield dimensions of (4k × 40k), (40k × 4k) and (4k × 4k)
for a slice of matrix A, a slice of matrix B and a block of
resultant matrix C, respectively.

Slicing, in the case of a heterogeneous cluster, is more
intense and depends on the memory constraints of each node
or device on the node, in case an accelerator (GPU/MIC) is
being used on the node. For example, a quad-socket multi-core
node with 32GB RAM and an accelerator (GPU or MIC) with
16GB of device memory may be assigned a bigger slice (sgpu)
when compared to a slice (sn) allocated to a single-socket
dual-core node with no accelerator and with 4GB of RAM. In
this case, the slices sizes will be considerable different with
sgpu � sn.

Fig. 1. Domain Decomposition

One way to obtain slices is to fix a value for l, and
heuristically obtain values of n based on experience or based
on empirically obtained node peak performance values. This
could be repeated for other values of x such that optimum
performance is obtained.

There are two extreme scenarios when solving for
appropriate values of l and n in Eq. 4.

1) If dimensions of the matrices are very large or the
cluster size is small or the memory/node is small,
then Eq. 4 may not be satisfied. This implies that a
full slice of either matrix A or matrix B or slices
of both matrices cannot be accommodated in the
node memory along with a block of matrix C. In
this scenario, a slice may need to be read piece-wise
(tiled) into memory by a node; this will mean that
two or more passes will be required to calculate each
block of matrix C on a node.

2) If the matrices are small or the cluster size is big, then
uniformly distributing the GEMM computation on all
the nodes may not result in the best speedup. In this
scenario, it would be better to limit the computation
to fewer than the maximum nodes in the cluster. This
is further explained later in this section.

There is no single one-size-fits-all strategy for deciding a slice
size and shape and how they should be distributed among the
nodes. The slices can be assigned to nodes in one of five ways
as shown in Fig. 1 and as described below

1) One slice assigned to only one node - This is the
case where the entire matrix C (as a single slice) is
calculated by a single node as illustrated in Fig. 1(a).
This is, also, the default method adopted by single-
node developers using OpenMP, CUDA, OpenACC
or OpenCL

2) Same-sized slices assigned to all nodes - In a cluster
of n nodes, the calculation of matrix C is divided
uniformly among n nodes. For example, in a cluster
of n = 12 nodes, the calculation of matrix C is
uniformly divided among all 12 nodes in the cluster,
with each node calculating only 1/12th portion of
matrix C. One slicing option that satisfies Eq. 4 is
shown in Fig. 1(b)

www.ijacsa.thesai.org 677 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

3) Different-sized slices assigned to all nodes - In a
heterogenous cluster of n nodes, calculation of matrix
C is non-uniformly divided among the nodes in the
cluster. This is shown in Fig. 1(c) where nine non-
uniform slices are divided among n = 9 nodes in a
cluster

4) Optimal distribution - Small GEMMs cannot fully
exploit parallelism. Thus, in a homogeneous cluster,
for relative smaller matrices, slices are assigned
to only some nodes in a cluster such that nodes
reach their peak capacity and the total time to
execute (tmax) is minimized. For example, a tile
size of 5120 × 5120 × 5120 achieves 93% of peak
performance (15TFlops) on an NVIDIA Volta 100
GPU [21]. In this option, some nodes in the cluster
are left unassigned. This is illustrated in Fig. 1(d)
where only six nodes of the cluster (n > 6) compute
their assigned slices of matrix C and the other nodes
are left unassigned

5) Non-uniform optimal distribution - This is a
combination of the previous two cases where non-
uniform slices of matrix C are assigned to only some
nodes in the cluster such that all nodes reach their
peak capacity and the total time to execute (tmax)
is minimized. Some nodes in the cluster are left
unassigned. This is illustrated in Fig. 1(c) where only
nine nodes of the cluster (n > 9) compute their
assigned slices of matrix C and other other nodes
in the cluster are left unassigned.

B. Out-of-Memory Slicing

Traditionally, tiles represented in the tiling and blocking
approaches have been in-memory representations of matrix
partitions. Slices, as described in this paper, on the other hand,
are out-of-memory representations of a matrix partition. They
are defined externally and on a shared-file system.

In a shared-file system present in most HPC clusters, every
node in the cluster has access to a common file system.
All nodes in such clusters see a single, unified file system
regardless of whether the file system physically resides on a
single node or is spread over thousands of individual storage
servers. An example of one such shared file system is Lustre,
which was developed for extreme-scale compute clusters [28],
[29], and is currently deployed in more than 60% of the top
100 supercomputers [30]. Some features of Lustre that are
directly relevant to this paper are mentioned below:

1) It can support tens of thousands of client systems
with petabytes (PB) of storage and handle hundreds
of gigabytes per second (GB/sec) as I/O throughput

2) All clients in the cluster see a single, coherent,
synchronized namespace [31]; the file system support
concurrent read/write by multiple clients with data
coherency maintained between all clients by the
Lustre distributed lock manager (LDLM) [31].

3) Files on Lustre are stored as one or more objects,
with each object stored on a separate Object Storage
Target (OST); this allows several clients to write to
different parts of the same file simultaneously while
allowing other clients to read from the file

4) Lustre supports file striping, where a file may be
stored on multiple (≤ 2000) OSTs . This considerably
increases the I/O bandwidth (aggregate) by a factor
of almost 2000 for a single file when accessed by
multiple nodes.

In the approach presented in this paper, all files that contain
the input data (matrices A and B) are not stored locally
but on such a shared-file system. Similarly, the output data
(matrix C) is written to a file on the shared-file system. This
implies that every node in the cluster can independently and
simultaneously read the input data without having it to be
explicitly broadcasted to the slave-nodes by a master-node as is
the case in many MPI-based approaches. Also, the distributed
storage of a file as multiple OSTs and the file striping feature
of the shared-file system makes access to the files much faster
when simultaneously performed by the nodes.

Fig. 2. Calculation of a Block of Matrix C

Once slices have been defined, the developer chooses the
storage format in one of two ways

1) All slices of the input matrices stored in separate
single files on the shared-file system. In the case
of GEMM, this means all elements of matrix A are
stored in a single file. And all elements of matrix B
stored in a separate single file.

2) Each slice of the input matrices stored as a separate
file on the shared-file system. In the case of GEMM,
this means that if matrix A has been divided into
twenty slices, there will be twenty separate files
used to store elements of matrix A, with each file
corresponding to elements of a particular slice.

Once slices have been stored as files in either of the two ways
described above, they need to be accessed by their respective
nodes. For example, consider a GEMM operation illustrated in
Fig. 2 where a node has been assigned a complete block of C
(shaded) for calculation. This node requires only the elements
in the shaded slice of matrix A and the elements in shaded
slice of matrix B to calculate elements in the shaded block of
C, as indicated in the figure. The other nodes may also access
the same slices of matrices A and B for their calculations,
but these accesses are independent of each other as mentioned
previously in this section.

These simultaneous access allowed by the shared-file
system to the input data by the nodes in the cluster,

www.ijacsa.thesai.org 678 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

considerably brings down the sequential access times, ti and
to in Eq. 3. Rewriting Eq. 3 for multiple nodes (n > 1) we
get

Sn>1 = tseq/tpar = tseq/(tin>1
+ topn>1

+ ton>1
) (5)

It was empirically observed that tin>1
→ ti/n and

ton>1
→ to/n for various values of slice dimensions and sizes.

Theoretically, for an embarrassingly parallel application, and
for an infinite cluster size, when topn>1 → 0 then Sn>1 → n
and attains a close-to-peak linear speedup.

C. Code Modification

The main objective of this step is to ensure that code
designed specifically for a single-node execution is extended
to one that can be executed on a distributed-memory cluster.

Based on decisions taken in the previous step, each node
will need to calculate only its specific portion of the slice. Code
will, thus, need to be modified such it can be executed in a
slice-specific fashion on a node in the cluster. When coding
for a heterogeneous implementation, there is an additional
challenge at this stage as multiple versions of the code need
to be explicitly managed. For example, CPU-only code and
code for a CPU+GPU execution will be different and have to
be handled differently when being compiled and executed by
the launcher script (described later). This could be managed
in one of two ways:

1) same code for all nodes (controlled using pre-
processor directives and conditional compilation to
differentiate the CPU-only and CPU+GPU codes);

2) different code for different nodes (by explicitly
separating the CPU-only and CPU+GPU codes).

Both options are supported in this approach and are managed
by the job script (described later).

The first objective in this step is to ensure that all operation-
specific variables are made amenable to modification at run
time and are not hard-coded. This modification of variables at
run-time could be done either through a configuration file or
using command-line parameters. These variables, referred to
as run-time parameters (RTP) in the rest of this paper, ensure
that the same code can be used to operate on different slices
and that it’s execution behaves in a pure SPMD fashion. The
second step is to ensure that all files needed for the read and
write operations, including configuration files, are stored on
the shared-file system.

To illustrate, consider a GEMM operation coded for a
single-node execution using OpenMP, OpenACC or CUDA.
In the original single-node implementation of the code, the
dimensions of the matrices A, B and C, i.e. (l ×m), (m× n)
and (l × n), respectively, and names of filenames that store
data for these matrices may be hard-coded and may not be
amenable to modification at run-time. In this case, code is
modified such that these variables can be modified at run time
as a RTP. The RTP in this case are the three-tuple < l,m, n >
and the full path-names for matrices A, B and C. Also, if the
files that contain the elements of matrices A and B are stored
locally on the node, they need to be moved to the shared-file

system. Similarly, the file that is generated for matrix C, also
has to be placed on the shared-file system.

IV. JOB EXECUTION AND LAUNCH

A. Job Script Preparation

Once the original single-node code has been modified in
the previous steps, it needs to be compiled on the node that it
needs to be executed on and then launched as an executable on
that node. This is done using a job script specifically prepared
for each defined block of matrix C. The responsibility of the
job script is to load the modules, libraries and the environment
necessary for successfully compiling the code and executing it
on the node. For example, code based on CUDA and cuBLAS
needs to be compiled on a node in the cluster that has one
or more Nvidia GPUs installed on it. Prior to compilation, the
appropriate compilers and libraries, in this case, the appropriate
version of the nvcc compiler and the cuBLAS libraries, need
to be loaded into the environment on the node where the code
is to be compiled. After creating the required environment, the
job script has to compile the code using the specified compiler
flags and links to libraries. If the compilation is successful,
the executable is to be launched on that node with it’s node-
specific RTP supplied as command-line arguments or through
a configuration file. Each block of the output has its own job
script. These job scripts can either be manually created or
automatically generated if the slices are large in number.

The collection of these job scripts is then submitted to the
cluster’s job scheduler by a launcher script, which queues the
jobs based on the job’s priority and the requested type and
number of nodes in the cluster; the jobs are launched as and
when the requested nodes becomes available.

The application is said to have completed execution when
all the jobs in the collection have successfully terminated.

B. Pseudo-Replication

AMNE results in a pseudo-replication of the instances on
the cluster. In pseudo-replication, concurrent instances of an
executable are asynchronously launched on multiple nodes in
the cluster with each instance executing to create a distinct
portion of output. Although the AMNE behavior may initially
appear to be similar to task replication used in distributed
systems [32], [33], [34], [35], it differs in many aspects as
described below:

1) In task replication, all replicated instances of the
executable are identical and they work on the same
data. The job scheduler in the cluster launches
the same executable multiple times. In pseudo-
replication, on the other hand, the replicated instances
work on different data. The job script is different
for each instance and is dynamically generated
depending on the size of the cluster and other
parameters.

2) In task replication, only the result from the first
successful execution is used; all other executing
instances of the executable are either explicitly
terminated or ignored. This results in poor and
inefficient resource utilization as the outputs from
the (other) slower replicated instances are completely

www.ijacsa.thesai.org 679 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

ignored. In pseudo-replication, results generated by
all the replicated instances are used and no launched
instance is prematurely terminated. This results in
better resource utilization of the cluster resources.

3) The primary objective of task replication is to
address latency in nodes, to improve quality of
service or to improve application fault tolerance [34].
Parallelization of tasks is not an objective. On the
other hand, in pseudo-replication, parallelization of
tasks is the primary objective and is explicitly desired.

4) In task replication, the total execution time of
an application is calculated as the time taken by
the fastest successfully completed instance (t =
min(t1, t2, . . . , tn), where ti denotes the time take
by node i to complete a task). On the other
hand, the total execution time of an application in
pseudo-replication is calculated as the time taken
by the slowest successfully completed instance (t =
max(t1, t2, . . . , tn)).

Pseudo-replication also differs from an MPI-based execution.
In applications coded using MPI, identical multiple instances
are concurrently launched on nodes in the cluster using the
mpirun command from the shell. These multiple instances
work together as one coherent entity (based on a master-slave
model) with active message-passing based communications
between them. The instances in pseudo replication, on the other
hand, are launched independently using a launcher script and
work in the form of a loose asynchronous fork-join model.
The instances are completely independent of each other and
no form of direct or indirect communication exists between
them.

V. EVALUATION AND RESULTS

In this section, the proposed approach is evaluated for a
GEMM operation on large matrices and results presented.

A. Experimental Testbed

All experiments for this work were carried out on the Aziz
supercomputer at King AbdulAziz University. Aziz was ranked
359th in the top500 list in the June 2015 ranking with a peak
performance of 228.6TFlops [36].

The Aziz cluster has 380 standard compute nodes with
96GB of memory and 112 high memory compute nodes with
256GB of memory. All nodes have a dual-socket Intel Xeon
E5-2695 12-core processor running at 2.40 GHz. Nodes with
GPU-based accelerators have 96GB of RAM and are equipped
with Nvidia’s Tesla-based K20 GPUs, which consists of 2496
CUDA cores and 5GB of device RAM.

The approach was evaluated on two types of nodes of Aziz
- The first set consisted of nodes with 256GB of RAM with
no accelerators, and the second set consisted of nodes with
96GB of RAM with K20 GPUs. These two sets are referred
to as setA and setB, respectively, in the rest of this section.

Code was written in C/C++ and used Intel’s MKL and
NVidia’s cuBLAS libraries. Code that used Intel’s MKL
libraries was compiled using Intel’s icc version 17.0.2 and
CUDA code was compiled using NVidia’s CUDA 9.2. Jobs on
Aziz were scheduled using the PBS Pro job 12.2.0 scheduler
[37].

TABLE I. SIZE OF MTX FILES ON DISK

M N Size of file

1 10000 10000 1.8 GB
2 20000 20000 7.5 GB
3 30000 30000 17.0 GB
4 40000 40000 31.0 GB
5 50000 50000 48.0 GB
6 100k 100k 84GB

B. Benchmarks

Although the approach is applicable to any embarrassingly
parallel application, the GEMM operation is specifically used
here to illustrate and evaluate the approach. The GEMM
operation, described by C = α · op(A) × op(B) + β · C,
is an operation on two input matrices A and B to produce
a resultant matrix C. The values one and zero and were used
for the scalars α and β, respectively.

All matrices used in this work were generated as double-
precision elements as files on disks in the MTX format, the
format which is used for storing large sparse matrices in the
SuiteSparse Matrix Collection [38]. These MTX files are very
large even for a single large matrix. Table I serves as an
approximate indicator to the size of files when floating-point
value matrices of size (M × N) are stored in the MTX file
format. It is apparent from the size of the files, that operations
involving large matrices cannot be easily executed in one-
pass on nodes with moderately sized RAMs or on GPU-based
accelerators with small device memory.

For experiments on setA, matrices that corresponded to a
GEMM configuration of (50k×50k×50k) were used and for
experiments on setB, matrices that corresponded to a GEMM
configuration of (10k × 10k × 10k) were used.

All file were stored on Aziz on the Fujitsu Exabyte File
System (FEFS) which is a scalable parallel file system based
on Lustre and designed for Fujitsu HPC clusters [39]. Elements
of matrix A and matrix C were stored in the row-major order
and elements of matrix B were stored in column-major order
to enable easier slicing.

C. Slicing

For each experiment, matrices A and B were divided into
slices based on the number of nodes and the type of nodes
available in the cluster. Since the type of nodes in both sets was
homogeneous and the matrices used in the GEMM operation
were sufficiently large, the number of slices (s) was set equal
to the number of nodes.

The shapes (dimensions) of the slices, however, can be
decided in various ways. For example, a matrix of size 40k×
40k could be sliced across eight homogeneous nodes in various
shapes - as eight equal-sized slices of 20k × 10k elements or
eight equal-sized slices of 5k × 40k elements, etc. based on
the memory configuration of the node and other criteria. On
a heterogeneous cluster, the slice sizes and shapes assigned to
nodes could be different.

The largest slice used for a single-node implementation on
setA was for GEMM configuration (50k×50k×50k). For setB,
the slice size was limited to a GEMM configuration (10k ×

www.ijacsa.thesai.org 680 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

TABLE II. SLICES USED FOR EXPERIMENTS ON SETA

No. number
of slices

shape
<l,m,n>

1 1 <50k,50k,50k>
2 2 <25k,50k,50k
3 5 <10k,50k,50k>
4 10 <5k,50k,50k>
5 20 <2.5k,50k,50k>
6 50 <1k,50k,50k>

TABLE III. SLICES USED FOR EXPERIMENTS ON SETB

No. number
of slices

shape
<l,m,n>

1 1 <10k,10k,10k>
2 2 <5k,10k,10k>
3 4 <2.5k,10k,10k>
4 5 <2k,10k,10k>
5 10 <1k,10k,10k>
6 20 <0.5k,10k,10k>

10k × 10k) for a single-node implementation to ensure slices
for both matrices A and B simultaneously fit in the memory
of the GPU (NVidia K20). The shapes of slices used in this
work for experiments on setA and setB are given in Tables II
and III, respectively.

D. Code Modification

Two different node-based code versions were used to
implement the GEMM operation - one was based on Intel’s
MKL [14] and the other was based on CUDA and its cuBLAS
libraries [13]. Both code versions consisted of four main code
sections, that performed the following four main operations:

1) Allocation of memory for the matrices on the host
and/or device.

2) Reading the input matrices A and B from files into
(host and/or device) memory.

3) Execution of the core GEMM (kernel) operation on
matrices A and B to produce matrix C.

4) Writing the resultant matrix C from (device and/or
host) memory onto to files.

Both Intel’s MKL library and NVidia’s cuBLAS provide
single-node implementations for GEMM that is optimized
for their respective target platforms. They are cblas_dgemm()
and cublasDgemm(), respectively, for matrices with double-
precision elements. cblas_dgemm() expects the two input
matrices A and B to be provided in the row-major format and
produces matrix C, also in the row-major format. On the other
hand, cublasDgemm() expects the two input matrices A and
B to be provided in the column-major format and produces
matrix C, also in the column-major format. Thus, the second
section in code, responsible for reading data from files on
disk into memory, in their respective implementations, had to
be slightly modified to accommodate for this slight variation.
Similarly was the case for the last section in code responsible
for writing the resultant matrix to the file.

There were six run-time parameters (RTP) required for the
GEMM implementation - three configuration parameters l, m
and n, which represented the dimensions l×m, m×n and l×n
of the slices of matrices A, B and C, respectively and three

file names with the full pathnames where the slices/blocks
of matrices A, B and C are or will be stored on the FEFS
shared-file system. The filenames associated with blocks of
the resultant matrix C are kept unique to enable a block to
be differentiated from other blocks of matrix C. All relevant
sections in code were modified to accept these six RTP from
the command-line instead of a configuration file. The third
section in code responsible for executing the kernel operation
consisted of the GEMM function call in the library. The
function calls in both versions of code (MKL and cuBLAS)
were modified to reflect the RTPs.

In general, all hard-coded references to L, M and N in both
versions of code were changed, where needed, to reflect ones
provided as RTP at run time from the command line.

E. Launcher and Job Scripts

The Aziz cluster consists of nodes with different
configurations and each of this configurations has a unique
queue associated with it. Thus, a job placed on the queue of
the PBS scheduler [37] may need to be configured individually.
Additionally, as each block generation is unique, it is controlled
through a unique job script. For each defined block of matrix
C, the following details have to be specified in the job script
for the node responsible for generating the block.

1) Node environment required for compilation (PBS
directives, compiler version and libraries to load,
number of threads, etc.)

2) Command for compilation (compiler path,
optimization flags, linker options, etc. specific
to the slice).

3) Absolute pathname of files on the FEFS shared-file
system where the node-specific slices need to be read
from or written to.

4) Command for execution along with the node-specific
RTP.

For a homogeneous cluster, these details will be similar for
all slices. For a heterogenous cluster, the details will vary
depending on the node configuration on which the block is
to be generated. The job details can either be supplied by
an external configuration file or hard coded into the launcher
script. The launcher script then loops through the job details
for each slice, dynamically generates a job script and submits
the jobs collectively to the PBS job queue for execution on
the cluster. The algorithm for the launcher script is described
in Algorithm listing 1. It basically consists of a loop which is
executed n times, with each iteration creating a node-specific
job script (job.i) based on the node configuration and block
allocated to it. After the job script has been generated for
the node, it is then submitted to the appropriate queue on
Aziz using the qsub command of PBS. The launcher script
terminates once all jobs have been successfully submitted to
the PBS queue, which then schedules them based on the
priority of the jobs and the availability of resources on Aziz. It
should be noted that in any multi-user cluster environment, the
availability of nodes is largely non-deterministic and influences
all approaches similarly, and is not considered as a parameter
in evaluating the efficacy of any approach or algorithm in a
multi-user distributed-computing environment.

www.ijacsa.thesai.org 681 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Algorithm 1 Launcher script

s t r u c t b l o c k {
r t p / / run−t ime P a r a m e t e r s
env / / c o m p i l e r e n v i r o n m e n t
compi l e / / compi l e command
exec / / l a u n c h command
queue / / Q name t o s ubm i t on Aziz

}

d e f p r e p a r e _ j o b (i , b) :
s = g e t _ e n v (b . env)
s += compile_cmd (b . compi l e)
s += exec_cmd (b . exec , b . r t p)

w r i t e _ f i l e (j o b f i l e . i , s)
end_de f

b [] = i n i t (N) / / i n i t b l o c k d e t a i l s
f o r i i n N
do

p r e p a r e _ j o b (i , b [i])
submi t_q (j o b f i l e . i , b [i] . queue)

done

F. Results and Analysis

Experiments to evaluate the proposed approach were done
on both setA and setB by varying n, the number of nodes in
the virtual cluster. Slices were uniformly distributed between
the nodes in both the experiments. Readings in seconds were
recorded using the omp_get_wtime() function for multiple runs
and different slice size combinations as tabulated in Tables II
and III. Due to the similarity that exists between single-node
instance execution times on the cluster for AMNE, multiple
readings for single-node instance executions were recorded on
a single node for all slice and cluster sizes (n > 1).

Individual times were recorded for the following: 1) read
operation, i.e. to read a slice of matrix A and a slice of matrix B
from the shared-file system into memory; 2) GEMM operation
on slices of matrices A and B to produce a block of matrix
C, and 3) write operation, i.e. to write the slice of matrix C
from memory to the shared-file system. When a GPU was
used, transfer times for moving data between host and device
and back were included in the GEMM operation time and
not in the read and write. Timings for the experiments were
recorded as t = max(t1, t2,tn) which represented the time
taken to perform the GEMM operation by the slowest node
in the virtual cluster on its allocated slices where ti is the
time taken in seconds to execute the operation on node i, and
∀i, 1 ≤ i ≤ n.

The read and write operations in both the experiments were
performed by a single thread on the node and these operations
were not parallelized at the node-level. All slices of matrices A
and B, required for the experiments, were stored as separate
files on the shared-file system. Blocks of resultant matrix C
were also generated as separate files on the shared-file system
by the multiple instances of the AMNE. Slices in all cases
were stored in the MTX format, as stated earlier.

Timings for the read, write and the core GEMM operations
were recorded separately and plotted as shown in Fig. 3. The
total time represented in the figure is the sum of the time taken
for the read, write and the core GEMM operation. Also, all
readings in the figure represent readings recorded with minimal
change to the original code; no extra node-based optimizations
were performed to the code in any of the experiments.

Fig. 3(a) shows the readings for experiments on setB using
a K20 GPU for different six different values of n, the virtual
cluster size for a GEMM configuration of 10k × 10k × 10k.
The size of the configuration was chosen so as to comfortably
enable a single-pass execution when n=1. The code was
compiled using CUDA 9.0 and used the cublasDgemm()
function from the cuBLAS library. Fig. 3(b) shows the readings
for experiments on setB but without using any accelerator.
Six different values of n, were used in this case as well for
a GEMM configuration of (10k × 10k × 10k). The code in
this case was compiled using icc and used the cblas_dgemm()
function from Intel’s MKL. Fig. 3(c) shows the readings
for experiments on setA without using any accelerator. Six
different values of n, were used in this case as well for a
GEMM configuration of (50k × 50k × 50k). The code in this
case was compiled using icc and used the cblas_dgemm()
function from Intel’s MKL. A GPU was not used in the
experiments on setA as the matrix size was too large to fit
in the device memory without making a substantial change to
the original code/algorithm and node-based optimization was
not an intent of this research.

Speedups for all operations with n > 1 were calculated
relative to the timings obtained for a single-node execution
(n = 1). It can be observed from the Figure, that the speedup
for both the read and write operations varies almost linearly
with the increase in the number of nodes. However, for the
core GEMM operation, a small dip was observed when the
sizes of the matrices became smaller. In the case of the GPU
this was expected as the data transfer time (communication)
between device and host start to dominate the computation
time. This has also been documented in [21] which notes that
the efficiency of the Dense Linear Algebra (DLA) libraries for
smaller sizes of matrices is not as high as for larger matrix
sizes. Thus, having slices that lie beyond the dip would not be
profitable. This gives a clear indication that the optimal size of
slices has to be decided, either based on developer experience
or using results from prior auto-tuner software runs for the
application. However, in this experiment, as the time taken to
execute the core operation was negligible when compared to
the time taken to read and write data, the total speedup for the
operation was not affected much and showed an almost linear
speedup as well. No such dip was observed in readings for the
experiment on setA as the slice sizes were sufficiently large to
enable optimized parallelization.

For these GEMM configurations, node-scalability
performance was observed to be almost linear with n.
Extrapolating from the graphs in the figure it can stated that
Sn>1 → n in Equation 5.

G. Comparison with other Approaches

Since this work is a multi-node implementation,
comparisons with any single-node approaches would be

www.ijacsa.thesai.org 682 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

(a) (b) (c)

Fig. 3. Speedups obtained by Asynchronous Batching on Cluster Nodes

unfair as the speedup obtained using this approach will
always be much higher for large matrices. Also, the size of
matrices that can be handled on single-nodes in a single-pass
is constrained by node-memory. On the other hand, using
the presented approach, matrices of very large sizes can be
handled comfortably in a single-pass on reasonably large
clusters.

When compared to other multi-node methods, this
approach performs equally well if not better. This is because
in most MPI-based and distributed-computing approaches,
reading data from files is mainly done by a single process
[15]. Although the overall operation time could be reduced
by overlapping communication and computation using clever
heuristics [40], [41], it is still an extra exercise. Else, dealing
with large matrices would mean that the speedup would be
constrained by the large values of ti and to in Equation 5.
Also, the criss-cross message passing between processes to
aggregate the partial (intermediate) results, creates an increase
in the network activity on the cluster. The approach proposed in
this paper has an added advantage of simplicity and increased
developer productivity over MPI-based approaches, as coding,
testing, debugging and workload balancing using CUDA or
OpenMP single-nodes are relatively simpler operations than
their equivalents on traditional distributed-memory clusters
using MPI [42], [10].

VI. RELATED WORK

The optimal distribution of computations across compute
elements to reduce an application’s overall execution time is
a decades-old, well-researched and well-documented problem
[43], [44], [45]. A few common approaches used by
researchers when dealing with large matrices in applications is
to change the mathematical formulation of the operation[46],
[20], to use secondary memory [18], [20], to pipeline the
operations [13], to operate on data in multiple passes, or to
distribute these operations over compute elements either on a
single node or across multiple nodes.

The approach adopted on distributed platforms, is generally
based on a master-slave process model where blocks of data
are broadcast by a node to other nodes in the cluster [15].
Another popular approach is to use tiling followed by batching,
where tiling refers to the partitioning of the matrices into tiny
blocks or tiles, while batching refers to the assignment of
these tiles to threads or computing elements for computation.

Batching has been used on GPUs in combination with tiling to
parallelize GEMM [12], [21]. Here, the GEMM operation is
broken down into smaller GEMMs, the computation of which
is then distributed among the available compute elements on
a single-node (CPU or GPU). The compute elements then
generate partial results of the resultant matrix C, which are then
combined to obtain the final resultant matrix. Here, blocks are
generally of uniform size and are in-memory representation
of the matrices. Also, data reuse is an important concern in
efficient batching as memory is shared between computing
elements. In AMNE on the other hand, slicing (a combination
of tiling and batching) is an out-of-memory operation and data
reuse at the inter-node cluster level is not a concern. Also, in
these approaches, the reduction of the time involved in I/O
when dealing with large matrices is not explicitly addressed.

The number of nodes in an exascale system is expected to
grow to more than 50 times of what it was in 2010 [47].
When programming using OpenMP or CUDA, parallelism
is restricted to the node on which the program executes
and cannot be extended beyond that node. Also, it becomes
increasingly difficult for DLA libraries like PLASMA and
MAGMA to handle large-scale matrix multiplication on a
single-node due to hardware resource limitations [15]. To
extend parallelism beyond a single node, a pure distributed
programming paradigm like MPI could be used. But some
researchers prefer a hybrid combination over a pure MPI
implementation [48] and there have been many who have used
multiple programming paradigms on heterogeneous platforms
in various combinations [4], [11], [49], [48], [8], [10], [22],
[50], [3].

However, for a developer who is only proficient in
using single-node-based programming models like OpenMP or
CUDA, learning to code, test and debug using an additional
distributed memory paradigm, like MPI, could be a big
challenge. On the other hand, not utilizing the potential
parallelism inherent in a large distributed cluster, also, is not
desirable. But to efficiently combine programming paradigms
like MPI and OpenMP/CUDA requires the developer to have
intricate knowledge of the multiple hardware architectures
and programming paradigms to fully exploit the combined
platform’s capability. For example, besides the knowledge
about the number and type of streaming processors (SM) and
cores on the GPU, the size and memory hierarchy on the
device, registers per thread, the CUDA version that it supports
and its compute-capability, support for unified memory, the

www.ijacsa.thesai.org 683 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

optimal dimensions for the grid and block combination
to use, etc. which are required to achieve optimized
performance on the GPU, a developer will be required to
know the network-topology of the cluster, communication
modes between processes, sophisticated algorithms that relate
to efficient overlapping of computation and communication,
[40], [41], etc. when using MPI. This leads to lower developer
productivity.

To handle large matrices by overcoming memory-
constraints of a single-node or a GPU, out-of core
computations [51], [1], [7], [9] have been used which seek
to decompose a matrix into smaller pieces and operate on
them in multiple passes; data resides in disk and has to
be explicitly moved in and out of memory for the passes.
While this addresses the problem of handling large matrices
on memory-constrained single-nodes and accelerators, the
achievable speedup is constrained by the sequential passes that
the algorithm has to make.

VII. CONCLUSION

Single-node programming paradigms like OpenMP, CUDA
and OpenACC have recently gained popularity among
researchers in Engineering and scientific computing and
optimized libraries like Intel’s MKL, NVidia’s cuBLAS, and
PLASMA are available to them that have been optimized
for execution on single-nodes. However, as HPC moves to
Exascale, and the number of nodes available in a cluster is set
to dramatically increase, researchers will continue to expand
their problem domains, either to investigate larger problem
sizes or to obtain finer results. These domain sizes will be
much larger than can be comfortably handled on resource
constrained single-nodes. In such cases, efficient ways of
handling the large I/O associated with these large applications
and distributing the computations beyond a single-node and
across multiple nodes will be needed. For the latter, porting
single-node implementations to multiple-nodes will be needed
which is a large and non-trivial exercise and will require time
and developer expertise to fully exploit the unique architectural
features of multiple platforms and different programming
paradigms.

In this paper, an Asynchronous Multi-node Execution
(AMNE) approach was proposed that works in combination
with existing node-based optimizations while addressing
the afore-mentioned challenges. AMNE combines shared-
file storage commonly available in HPC clusters, pseudo-
replication and out-of-memory matrix slicing in a unique way,
which reduces the I/O time considerably with minimally-
required code changes which positively influence developer
productivity. AMNE was evaluated for the GEMM operation
on large matrices. Matrices, stored as files on the shared-file
system, were partitioned into slices at the node-level and slices
allocated to nodes such that a block of the resultant matrix
could be independently calculated by a node. The calculations
were then independently run in an AMNE fashion to generate
the final resultant matrix. Different combinations of nodes were
used with different slice shapes and sizes. Results showed that
the speedup obtained on multi-nodes using AMNE for the
overall GEMM operation, including both I/O and computation
times, over single-node execution time was almost linearly
scalable with the number of nodes allocated to it in the cluster.

Although the approach was evaluated for GEMM on large
matrices in this paper, AMNE can be easily extended to any
HPC application that falls in the category of embarrassingly-
parallel applications.

ACKNOWLEDGMENT

This work was supported by the Deanship of Scientific
Research (DSR) at King Abdulaziz University, Jeddah under
grant number DF-403-611-1441 . The authors, therefore,
gratefully acknowledge the DSR technical and financial
support. All experiments for this work were conducted on the
Aziz supercomputer managed by the HPC Center at the King
Abdulaziz University.

REFERENCES

[1] M. G. Awan, F. Saeed, and F. Saeed, “An out-of-core GPU based
dimensionality reduction algorithm for big mass spectrometry data and
its application in bottom-up proteomics,” in in Proceedings of the
8th ACM International Conference on Bioinformatics, Computational
Biology,and Health Informatics, August 2017.

[2] P. Czarnul, “Parallelization of large vector similarity computations in a
hybrid CPU+GPU environment,” Journal of Supercomputing, pp. 768–
786, 2018.

[3] M. Kreutzer, J. Thies, M. Röhrig-Zöllner, A. Pieper, F. Shahzad,
M. Galgon, A. Basermann, H. Fehske, G. Hager, and G. Wellein,
“GHOST: Building blocks for high performance sparse linear
algebra on heterogeneous systems,” International Journal of Parallel
Programming, vol. 45, no. 5, pp. 1046–1072, 2017.

[4] V. Lončar, L. E. Young-S., S. Škrbić, P. Muruganandam, S. K. Adhikari,
and A. Balaž, “OpenMP, OpenMP/MPI, and CUDA/MPI C programs
for solving the time-dependent dipolar Gross-Pitaevskii equation,”
Computer Physics Communications, vol. 209, pp. 190 – 196, 2016.

[5] F. Rabbi, C. Daley, H. Aktulga, and N. Wright, “Evaluation of
directive-based GPU programming models on a block Eigensolver with
consideration of large sparse matrices,” Lawrence Berkeley National
Laboratory, Tech. Rep., 2020.

[6] F. Yu, P. Strazdins, J. Henrichs, and T. Pugh, “Shared memory and GPU
parallelization of an operational atmospheric transport and dispersion
application,” in 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2019, pp. 729–738.

[7] M. Chillarón, G. Quintana-Ortí, V. Vidal, and G. Verdú, “Computed
tomography medical image reconstruction on affordable equipment by
using out-of-core techniques,” Computer Methods and Programs in
Biomedicine, vol. 193, p. 105488, 2020.

[8] X. Guo, J. Wu, Z. Wu, and B. Huang, “Parallel computation of
aerial target reflection of background infrared radiation: Performance
comparison of OpenMP, OpenACC, and CUDA implementations,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 9, no. 4, pp. 1653–1662, 2016.

[9] D. Zheng, D. Mhembere, V. Lyzinski, J. T. Vogelstein, C. E. Priebe,
and R. Burns, “Semi-external memory sparse matrix multiplication for
billion-node graphs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 5, May 2017.

[10] D. S. Henty, “Performance of hybrid message-passing and shared-
memory parallelism for discrete element modeling,” in Proceedings
of the 2000 ACM/IEEE Conference on Supercomputing. Washington,
DC, USA: IEEE Computer Society, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=370049.370069

[11] S. R. Miri Rostami and M. Ghaffari-Miab, “Finite difference generated
transient potentials of open-layered media by parallel computing using
OpenMP, MPI, OpenACC, and CUDA,” IEEE Transactions on Antennas
and Propagation, vol. 67, no. 10, pp. 6541–6550, 2019.

[12] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-
Lara, and M. Zounon, “The design and performance of batched BLAS
on modern high-performance computing systems,” Procedia Computer
Science, vol. 108, pp. 495 – 504, 2017.

www.ijacsa.thesai.org 684 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

[13] Nvidia, “Cuda toolkit documentation,”
https://docs.nvidia.com/cuda/cublas/index.html.

[14] Intel, “Developer reference for intel math kernel library,”
https://software.intel.com/content/www/us/en/develop/.

[15] R. Gu, Y. Tang, C. Tian, H. Zhou, G. Li, X. Zheng, and Y. Huang,
“Improving execution concurrency of large-scale matrix multiplication
on distributed data-parallel platforms,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 9, pp. 2539–2552, 2017.

[16] K. Li, Y. Pan, and S. Q. Zheng, “Fast and processor efficient parallel
matrix multiplication algorithms on a linear array with a reconfigurable
pipelined bus system,” IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no. 8, pp. 705–720, Aug 1998.

[17] R. Lim, Y. Lee, R. Kim, and J. Choi, “OpenMP-based parallel
implementation of matrix-matrix multiplication on the Intel Knights
landing,” in Proceedings of Workshops of HPC Asia, 2018, pp. 63–66.

[18] M. Marques, G. Quintana-Orti, E. S. Quintana-Orti, and R. A.
van de Geijn, “Solving large dense matrix problems on multi-
core processors,” in 2009 IEEE International Symposium on Parallel
Distributed Processing, May 2009, pp. 1–8.

[19] J. Shen, Y. Qiao, Y. Huang, M. Wen, and C. Zhang, “Towards a multi-
array architecture for accelerating large-scale matrix multiplication
on FPGAs,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), 2018, pp. 1–5.

[20] J. Alman and V. V. Williams, “Limits on all known (and some
unknown) approaches to matrix multiplication,” in 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), 2018,
pp. 580–591.

[21] X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li, “A coordinated tiling and
batching framework for efficient GEMM on GPUs,” in Proceedings
of the 24th Symposium on Principles and Practice of Parallel
Programming, 2019, pp. 229–241.

[22] M. Martineau, S. McIntosh-Smith, M. Boulton, and W. Gaudin, “An
evaluation of emerging many-core parallel programming models,”
in Proceedings of the 7th International Workshop on Programming
Models and Applications for Multicores and Manycores, ser.
PMAM’16. New York, NY, USA: ACM, 2016, pp. 1–10. [Online].
Available: http://doi.acm.org/10.1145/2883404.2883420

[23] K. Hwang, Advanced computer architecture with parallel programming.
McGraw-Hill, 1993.

[24] P. Boulet, A. Darte, G. A. Silber, and F. Vivien, “Loop parallelization
algorithms: From parallelism extraction to code generation,” Parallel
Computing, vol. 24, no. 3-4, 1988.

[25] V. Sarkar, “Optimized unrolling of nested loops,” International Journal
of Parallel Programming, vol. 29, no. 5, 2001.

[26] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, “Petabricks: A language and compiler for algorithmic
choice.” ACM SIGPLAN Conference on Programming Language Design
and Implementation, Dublin, Ireland,, vol. 44, pp. 38–49, June 2009.

[27] J. Ansel, “Petabricks: a language and compiler for algorithmic choice,”
Master’s thesis, MIT, 2009.

[28] P. Dickens and J. Logan, “Towards a high performance implementation
of MPI-IO on the Lustre file system,” in Proceedings of the OTM 2008
Confederated International Conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008. Part I on On the Move to Meaningful Internet Systems:,
2008, pp. 870–885.

[29] P. M. Dickens and J. Logan, “A high performance implementation
of MPI-IO for a Lustre file system environment,” Concurrency and
Computation: Practice and Experience (CCPE), vol. 22, pp. 1433–
1449, September 2009.

[30] L. Grandinetti, G. Joubert, and M. Kunze, Big Data and High
Performance Computing, ser. Advances in Parallel Computing. IOS
Press, 2015.

[31] Lustre, “Lustre file system,” http://lustre.org/documentation/.
[32] W. Cirne, F. Brasileiro, D. Paranhos, L. F. W. Góes, and W. Voorsluys,

“On the efficacy, efficiency and emergent behavior of task replication

in large distributed systems,” Parallel Comput., vol. 33, no. 3, pp. 213–
234, April 2007.

[33] G. D. Ghare and S. T. Leutenegger, “Improving speedup and response
times by replicating parallel programs on a snow,” in Proceedings of the
10th International Conference on Job Scheduling Strategies for Parallel
Processing, ser. JSSPP’04. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 264–287.

[34] Z. Qiu, J. F. Pérez, and P. G. Harrison, “Tackling latency via replication
in distributed systems,” in Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering, March 2016.

[35] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast
response times in parallel computation,” in The 2014 ACM International
Conference on Measurement and Modeling of Computer Systems, 2014,
pp. 599–600.

[36] Top500, “Top500 list - june 2015,”
https://www.top500.org/list/2015/06/.

[37] Altair, “PBS professional,” https://www.altair.com/pbs-professional/,
February 2020.

[38] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, December 2011.

[39] Fujitsu, “Fujitsu Exabyte file system (FEFS),”
https://www.fujitsu.com/downloads/TC/sc11/fefs-sc11.pdf.

[40] S. Ghosh, J. R. Hammond, A. J. Peña, P. Balaji, A. H. Gebremedhin,
and B. Chapman, “One-sided interface for matrix operations using MPI-
3 RMA: A case study with Elemental,” in 2016 45th International
Conference on Parallel Processing (ICPP), 2016, pp. 185–194.

[41] X. S. Li and J. W. Demmel, “SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems,” ACM
Trans. Math. Softw., vol. 29, no. 2, pp. 110–140, June 2003.

[42] L. Dagum and R. Menon, “OpenMP: An industry standard API
for shared memory programming,” IEEE Computational Science and
Engineering, pp. 46–55, January 1998.

[43] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Computing
connected components on parallel computers,” Commun. ACM, vol. 22,
no. 8, pp. 461–464, August 1979.

[44] A. P. Reeves, “Parallel pascal: An extended pascal for parallel
computers,” Journal of Parallel and Distributed Computing, vol. 1,
no. 1, pp. 64 – 80, 1984.

[45] H. Hussain, S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler, N. Min-
Allah, M. B. Qureshi, L. Zhang, W. Yongji, N. Ghani, J. Kolodziej,
A. Y. Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu, F. Pinel, J. E. Pecero,
D. Kliazovich, P. Bouvry, H. Li, L. Wang, D. Chen, and A. Rayes, “A
survey on resource allocation in high performance distributed computing
systems,” Parallel Computing, vol. 39, no. 11, pp. 709 – 736, 2013.

[46] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2016, pp.
58:1–58:12.

[47] B. Klenk and H. Fröning, “An overview of MPI characteristics of
exascale proxy applications,” in High Performance Computing, J. M.
Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds. Springer International
Publishing, 2017, pp. 217–236.

[48] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes,” in 2009
17th Euromicro International Conference on Parallel, Distributed and
Network-based Processing, Feb 2009, pp. 427–436.

[49] F. J. M.-Z. . J. R. P. Alonso, R. Cortina, “Neville elimination on
multi- and many-core systems: OpenMP, MPI and CUDA,” Journal
of Supercomputing, pp. 215–225, 2011.

[50] D. D. Nikolić, “Parallelisation of equation-based simulation programs
on heterogeneous computing systems,” PeerJ Computer Science, 2018.

[51] L. Dongha, O. Jinoh, and Y. Hwanjo, “OCAM: Out-of-core coordinate
descent algorithm for matrix completion,” INFORMATION SCIENCES,
vol. 514, pp. 587 – 604, April 2020.

www.ijacsa.thesai.org 685 | P a g e

