
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

Efficient GPU Implementation of Multiple-Precision
Addition based on Residue Arithmetic

Konstantin Isupov1
Department of Electronic Computing Machines

Vyatka State University
Kirov, Russia 610000

Vladimir Knyazkov2
Research Institute of Fundamental and Applied Studies

Penza State University
Penza, Russia 440026

Abstract—In this work, the residue number system (RNS)
is applied for efficient addition of multiple-precision integers
using graphics processing units (GPUs) that support the Compute
Unified Device Architecture (CUDA) platform. The RNS allows
calculations with the digits of a multiple-precision number to
be performed in an element-wise fashion, without the overhead
of communication between them, which is especially useful for
massively parallel architectures such as the GPU architecture.
The paper discusses two multiple-precision integer algorithms.
The first algorithm relies on if-else statements to test the signs
of the operands. In turn, the second algorithm uses radix
complement RNS arithmetic to handle negative numbers. While
the first algorithm is more straightforward, the second one avoids
branch divergence among threads that concurrently compute
different elements of a multiple-precision array. As a result,
the second algorithm shows significantly better performance
compared to the first algorithm. Both algorithms running on an
NVIDIA RTX 2080 Ti GPU are faster than the multi-core GNU
MP implementation running on an Intel Xeon 4100 processor.

Keywords—Multiple-precision algorithm; integer arithmetic;
residue number system; GPU; CUDA

I. INTRODUCTION

Multiple-precision integer arithmetic, which provides op-
erations with numbers that consist of more than 32 or 64 bits,
is an important and often indispensable method for solving
scientific and engineering problems that are difficult to solve
using the standard numerical precision. The most notable
application of multiple-precision integer arithmetic is cryptog-
raphy, where the level of security depends on the length of the
keys [1], [2]. Multiple precision is also required in computer
algebra (symbolic computation) systems, which operate with
mathematical expressions instead of fixed-precision integer
and floating-point numbers [3]. The intermediate data pro-
duced during a computation may be very large, and multiple-
precision arithmetic is required to prevent overflow. Another
problem requiring computations with very large integers and of
practical interest in polymer physics is counting Hamiltonian
cycles on two- and three-dimensional lattices, triangular grid
graph, and other structures [4]. Multiple-precision arithmetic
is becoming more and more in demand as the scale of
computations increases.

There are several approaches for implementing multiple-
precision arithmetic. One of them is special software libraries
that emulate operations with large numbers using standard
fixed-precision operations. Some of the well-known libraries
for central processors (CPUs) include the GNU MP Bignum

Library (GMP) [5], the Library for doing Number Theory
(NTL) [6], and thr Fast Library for Number Theory (FLINT)
[7]. There are also works devoted to the implementation of
integer arithmetic operations with arbitrary/multiple precision
on GPUs [8], [9], [10], [11], [12].

A higher level of arithmetic precision is also supported in
a number of programming languages, e.g., Python (the built-in
int type), Ruby (the built-in Bignum type), Perl (Math::BigInt),
Java (the BigInteger class), Haskell (the Integer datatype),
and C# (BigInteger). Another actual approach is to develop
hardware accelerators that support integer and floating-point
computations with multiple precision [13], [14], [15].

Previous research in [8], [9], [13], and [15] use the tradi-
tional way of representing multiple-precision numbers, accord-
ing to which a number is represented as an array of weighted
digits in some base, and the digits themselves are machine-
precision numbers [16]. The need for carry propagation under
this number representation is one of the main bottleneck of
efficient multiple-precision algorithms.

This paper deals with another type of multiple-precision
arithmetic, which is based on the residue number system
(RNS) [17], [18]. In the RNS, a number is represented by its
residues relative to a set of moduli. The moduli are mutually
independent, so multiple-precision integer operations such as
addition, subtraction, and multiplication are replaced by groups
of reduced-precision operations with residues performed in an
element-wise fashion and without the overhead of manipulat-
ing carry information between the residues.

Recently, a new software library has been developed for ef-
ficient residue number system computations on CPU and GPU
architectures. The library is called GRNS and is freely avail-
able for download at https://github.com/kisupov/grns. GRNS is
designed for arbitrary moduli sets with large dynamic ranges
that far exceed the usual word length of computers, up to sev-
eral thousand bits. In addition to a number of optimized non-
modular RNS operations such as magnitude comparison and
division, GRNS implements multiple-precision integer arith-
metic. This paper considers two multiple-precision addition
algorithms implemented in GRNS. Along with multiplication,
addition and subtraction is key operations for many com-
putational algorithms, e.g., fast Fourier transform. Multiple-
precision addition is usually considered to be faster and easier
than multiplication. However, in the case of RNS, signed
addition is more difficult than multiplication as it requires
determining the sign of the result, which is a time-consuming

www.ijacsa.thesai.org 1 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

operation for RNS.

Both of our multiple-precision addition algorithms use an
interval floating-point evaluation technique for efficient RNS
sign determination [19]. However, the first algorithm relies
on if-else statements to test the signs of the operands, while
the second one uses the radix complement RNS notation for
negative numbers. It is shown that the second algorithm is
better suited for implementation on massively parallel GPU
architectures than the first algorithm.

The rest of this paper is organized as follows. Section
II provides the background on RNS arithmetic. Section III
describes the RNS-based format of multiple-precision integer
numbers. Multiple-precision addition algorithms are presented
in Section IV. Performance comparison results are given in
Section V, and Section VI concludes the paper.

II. BACKGROUND ON RNS ARITHMETIC

An RNS is specified by a set of n pairwise prime moduli
{m0,m1, . . . ,mn−1}. The dynamic range of the RNS is
M = m0 · m1 · · ·mn−1. The mapping of an integer X into
the RNS is defined to be the n-tuple (x0, x1, . . . , xn−1), where
xi = |X|mi

is the smallest non-negative remainder when X is
divided by mi, that is, xi = X mod mi. Within the RNS there
is a unique representation of all integers in the range from 0
to M − 1. Namely, the Chinese Remainder Theorem (CRT)
states that [18]

|X|M =

∣∣∣∣∣
n−1∑
i=0

Mi |xiwi|mi

∣∣∣∣∣
M

, (1)

where Mi = M/mi, and wi =
∣∣M−1i ∣∣

mi
is the modulo mi

multiplicative inverse of Mi.

Since the RNS moduli are independent of each other, arith-
metic operations such as addition, subtraction, and multiplica-
tion can be computed efficiently. If X , Y , and Z have RNS rep-
resentations given by (x0, x1, . . . , xn−1), (y0, y1, . . . , yn−1),
(z0, z1, . . . , zn−1), then denoting ◦ to represent +, −, or ×,
the RNS version of the Z = X ◦ Y , satisfies

Z =(z0, z1, . . . , zn−1)

=(|x0 ◦ y0|m0
, |x1 ◦ y1|m1

, . . . , |xn−1 ◦ yn−1|mn−1
)

(2)

provided that Z ∈ [0,M − 1]. Thus the ith RNS digit, namely
zi, is defined in terms of |xi ◦ yi|mi

only. That is, no carry
information need be communicated between residue digits,
and the overhead of manipulating carry information in more
traditional, weighted-number systems can be avoided [20].

The disadvantage of RNS is the high complexity of esti-
mating the magnitude of a number, which is required to per-
form number comparison, sign calculation, overflow checking,
division, and some other operations. The classic technique to
perform these operations is based on the CRT formula (1) and
consists in computing the binary representations of numbers
with their subsequent analysis. However, in large dynamic
ranges (e.g., a few thousand bits) this technique becomes
slow. Other methods for evaluating the magnitude of residue
numbers are based on the mixed-radix conversion (MRC)
process [21]. But these methods are often also ineffective since
they require a lot of arithmetic operations with residues or the
use of unacceptably large lookup tables.

An alternative method for implementing time-consuming
operations in the RNS is based on computing the floating-
point interval evaluation of the fractional representation of
an RNS number [19]. This method is designed to be fast
on modern general-purpose computing platforms that support
efficient finite precision floating-point arithmetic operations
such as IEEE 754 operations. For a given RNS number
X = (x0, x1, . . . , xn−1), the floating-point interval evaluation
is an interval defined by its lower and upper bounds (endpoints)
X/M and X/M that are finite precision floating-point numbers
satisfying X/M ≤ X/M ≤ X/M . The floating-point interval
evaluation is denoted by I(X/M) = [X/M,X/M].

Thus, I(X/M) provides information about the range of
changes in the fractional representation (also called relative
value) of an RNS number. This information may not be
sufficient to restore the binary representation, but it can be
efficiently used to perform other difficult operations in RNS,
e.g., magnitude comparison, sign detection, and division.

The most important benefit of this method is that computa-
tion of I(X/M) requires only standard arithmetic operations,
and no residue-to-binary conversion is required. For a given
RNS representation (x0, x1, . . . , xn−1), the calculation of the
bounds of I(X/M) is performed on average in linear and
logarithmic time for sequential and parallel cases, respectively.
Furthermore, the following arithmetic operations are defined:

I(X/M) + I(Y/M) =
[
X/M 5+ Y /M, X/M 4+ Y /M

]
,

I(X/M)− I(Y/M) =
[
X/M 5− Y /M, X/M 4− Y /M

]
,

I(X/M)× I(Y/M) =
[
X/M 5· Y /M 5÷ W, X/M 4· Y /M 4÷ V

]
,

I(X/M)÷ I(Y/M) =
[
X/M 5· V 5÷ Y /M, X/M 4· W 4÷ Y /M

]
.

(3)

In these interval formulas, the following notation are used:

• 5+ ,5− ,5· and5÷ stand for the floating-point operations
of addition, subtraction, multiplication, and division,
performed with rounding downwards;

• 4+ ,4− ,4· and4÷ stand for the floating-point operations
of addition, subtraction, multiplication, and division,
performed with rounding upwards;

• V is the greatest floating-point number that is less than
or equal to 1/M ;

• W is the least floating-point number greater than or
equal to 1/M .

Interval formulas (3) are useful in that they do not limit
the possible values of the result interval in the range of [0, 1).
This allows for easy overflow detection or sign identification
despite the cyclical (modulo M) nature of RNS arithmetic.

Using interval evaluations, new algorithms have been pro-
posed in [19] to efficiently implement several difficult RNS
operations, such as number comparison and general division.

III. NUMBER REPRESENTATION

The format for multiple-precision integers is shown in
Fig. 1. A multiple-precision integer x consists of a sign s, a
significand X composed of n significand digits (x0 to xn–1),
and an interval floating-point evaluation of the significand
I(X/M) = [X/M,X/M]. The sign is interpreted in the same
way as in two’s complement representation: the sign is equal

www.ijacsa.thesai.org 2 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

to zero when x is positive and one when it is negative. The
significand expresses the absolute value of x and is represented
in the RNS with the moduli set {m0,m1, . . . ,mn−1}. The
significand digits (residues) are represented as ordinary two’s
complement integers.

Fig. 1. Multiple-Precision Integer Format.

The size of the moduli set n specifies the number of digits
in the significand. If the product of all RNS moduli is M , then
the precision of x is equal to blog2Mc bits. Thus, changing the
size of the moduli set allows one to achieve arbitrary precision.

The following notation is used to denote a multiple-
precision integer in the described number format:

x = 〈s,X, I(X/M)〉. (4)

The value of a multiple-precision integer of the form (4)
can be computed using the CRT formula:

x = (−1)s ×

∣∣∣∣∣
n−1∑
i=0

Mi |xiwi|mi

∣∣∣∣∣
M

. (5)

The interval evaluation is included in the number repre-
sentation as additional information, that is, X/M and X/M
are stored in system memory along with other fields of the
multiple-precision integer. This provides efficient comparison,
sign computation and overflow detection, allowing one to
calculate I(X/M) in O(1) time using the formulas (3). Re-
cently, this approach has been successfully used in the context
of multiple-precision floating-point arithmetic based on the
residue number system [22].

In order to be able to use interval evaluations for virtually
any (arbitrarily large) value of M without worrying about
underflow, X/M and X/M are represented as binary floating-
point numbers with an extended exponent range, that is, have
the form

f × 2e, (6)

where f is a regular floating-point number (IEEE 754), and i is
a two’s complement integer. This extended-range representa-
tion is not intended to improve the level of numerical precision
or accuracy, but it does ensure that there is no overflow or
underflow when dealing with extremely large or small values.

IV. MULTIPLE-PRECISION INTEGER ADDITION

In this section, two algorithms for signed multiple-precision
integer addition are presented. A naive implementation is pre-
sented first and then an improved one. Step-by-step examples
are also provided for both implementations.

A. Useful Notation

For given a ∈ {0, 1} and X = (x0, x1, . . . , xn−1), the
paper [22] introduces a function B[X, a] such that

B[X, a] =

{
X/M, for a = 0,

X/M, for a = 1.
(7)

That is, the lower bound of I(X/M) is denoted by B[X, 0],
while the upper one is denoted by B[X, 1]. Using this notation,
we have I(X/M) = [B[X, 0], B[X, 1]]. This notation is useful
in that it allows one to dynamically specify the bound to be
accessed. This notation is used in the rest of the present paper.

B. Note on Overflow Detection

For the set of RNS moduli {m0,m1, . . . ,mn−1}, the
largest representable integer is (M–1), and the result of an
arithmetic operation should belong to the interval [0,M–1]
if we want to obtain its valid representation in the RNS.
Otherwise, the result will be reduced modulo M , and this
event is classified as an integer overflow. The GRNS library
implements efficient overflow detection using the floating-point
interval evaluations, but that is beyond the scope of this paper.

Algorithm 1 Multiple-precision integer addition

1: if sx = sy then
2: sz ← sx

3: for each i ∈ {0, 1, . . . , n− 1} do
4: zi ← |xi + yi|mi

5: end for
6: B[Z, 0]← B[X, 0]5+ B[Y, 0]

7: B[Z, 1]← B[X, 1]4+ B[Y, 1]

8: else if B[X, 0] ≥ B[Y, 1] then
9: sz ← sx

10: for each i ∈ {0, 1, . . . , n− 1} do
11: zi ← |xi − yi|mi

12: end for
13: B[Z, 0]← B[X, 0]5− B[Y, 1]

14: B[Z, 1]← B[X, 1]4− B[Y, 0]

15: else if B[Y, 0] ≥ B[X, 1] then
16: sz ← sy

17: for each i ∈ {0, 1, . . . , n− 1} do
18: zi ← |yi − xi|mi

19: end for
20: B[Z, 0]← B[Y, 0]5− B[X, 1]

21: B[Z, 1]← B[Y, 1]4− B[X, 0]

22: else
23: Use mixed-radix conversion to compare the magnitude

of X and Y . If X ≥ Y , subtract Y from X and take
sz ← sx; otherwise, subtract X from Y and take sz ←
sy; In any case, I(Z/M) should be recalculated.

24: end if

www.ijacsa.thesai.org 3 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

C. Algorithm 1 (Naive Implementation)

1) Description: Algorithm 1 takes two multiple-precision
integers x and y represented as x = 〈sx, X, I(X/M)〉 and
y = 〈sy, X, I(X/M)〉, and outputs the sum z = x + y
represented as z = 〈sz, Z, I(Z/M)〉. This algorithm analyzes
the signs of the numbers, and if they are the same, then
RNS addition of the significands is performed; otherwise, RNS
subtraction is performed. The sign of the result is computed
by comparing the magnitude of X = (x0, x1, . . . , xn−1)
and Y = (y0, y1, . . . , yn−1) using the floating-point interval
evaluations.

2) Illustration: Consider the moduli set {7, 9, 11, 13} with
the moduli product M = 9009. Suppose we are given two
integers of the form (3),

x = 〈0, (5, 7, 5, 8), [0.416, 0.420]〉,
y = 〈1, (3, 7, 6, 4), [0.444, 0.448]〉,

and we want to find z = x + y. Since B[Y, 0] (0.444) is
greater than B[X, 1] (0.420), steps 16 to 21 of the algorithm
are performed. They are presented in Table I.

TABLE I. EXAMPLE OF ALGORITHM 1

Step no. Calculations
16 sz = 1

17–19 Z = (3, 7, 6, 4)− (5, 7, 5, 8) = (5, 0, 1, 9)

20 B[Z, 0] = 0.4445− 0.420 = 0.024
21 B[Z, 1] = 0.4484− 0.416 = 0.032

The computed result is z = 〈1, (5, 0, 1, 9), [0.024, 0.032]〉.
We check this result by converting it to decimal: z = −243.
In fact, x = 3778 and y = −4021.

3) Drawback: The main disadvantage of Algorithm 1 is
that checking the signs of the operands via conditionals (if–
else statements) results in branch divergence among threads
that concurrently compute different elements of a multiple-
precision array. This may be normal for modern multi-core
processors with good branch prediction accuracy, but this
is a problem for SIMT (single instruction, multiple threads)
architectures such as GPUs, where many threads run in lock-
step.

For example, a CUDA-compliant GPU consists of an array
of streaming multiprocessors (SMs), each of which contains
multiple streaming processors. Although each SM can run
one or more different instructions, conditionals can greatly
decrease performance inside an SM, as each branch of each
conditional must be evaluated. Long code paths in a condi-
tional can cause a 2-fold slowdown for each conditional within
a warp (a group of 32 threads) and a 2N slowdown for N
nested conditionals. A maximum 32-time slowdown can occur
when each thread in a warp executes a separate condition [23].

This bottleneck is illustrated in Fig. 2, which contains a
flowchart of Algorithm 1. In the figure, 14 threads concurrently
compute 14 multiple-precision additions on a system that
follows the SIMT execution model. The right side of the figure
shows threads running at once.

Fig. 2. Flowchart of Algorithm 1.

D. Algorithm 2 (Improved Implementation)

1) Description: Algorithm 2 shows how to avoid con-
ditional expressions when adding multiple-precision signed
integers. This algorithm is a simplified version of the multiple-
precision RNS-based floating-point addition algorithm that was
originally proposed in [22]. The main idea is to use the radix-
complement representation of a negative number in the RNS.
Recall that the precomputed constant V used in this algorithm
is the greatest finite precision floating-point number that is less
than or equal to 1/M .

www.ijacsa.thesai.org 4 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

Algorithm 2 Multiple-precision integer addition using radix
complement RNS arithmetic

1: α← (1− 2sx)

2: β ← (1− 2sy)

3: for each i ∈ {0, 1, . . . , n− 1} do
4: zi ← (αxi + βyi) mod mi

5: end for
6: B[Z, 0]← αB[X, sx]5+ βB[Y, sy]

7: B[Z, 1]← αB[X, (1− sx)]4+ βB[Y, (1− sy)]
8: if B[Z, 0] and B[Z, 1] have the same sign then
9: Assign the sign of B[Z, 0] and B[Z, 1] to sz

10: else
11: Use mixed-radix conversion to compare X and Y :

• If X > Y , then assign sz ← sx.
• If X < Y , then assign sz ← sy .
• If X = Y , then assign sz ← 0.

12: B[Z, sz]← (1− 2sz)V

13: end if
14: if sz = 1 then
15: for each i ∈ {0, 1, . . . , n− 1} do
16: zi ← (mi − zi) mod mi

17: end for
18: Swap B[Z, 0] and B[Z, 1] with sign inversion, that is,

set B[Z, 0] = −B[Z, 1] and B[Z, 1] = −B[Z, 0]
19: end if

Fig. 3 shows a flowchart of Algorithm 2. The if–else state-
ment at steps 8 to 12 cannot be eliminated, since the accuracy
of B[Z, 0] and B[Z, 1] may be insufficient to unambiguously
determine the sign of z. This ambiguity is possible due to the
limited precision arithmetic used in calculating B[Z, 0] and
B[Z, 1]. However, this is actually a rare case, and it can only
occur when the result is too close to zero.

Fig. 3. Flowchart of Algorithm 2.

We note that the if statement at step 14 of Algorithm 2
does not cause branch divergence, since there is no the
corresponding else statement here.

2) Illustration: In Table II, Algorithm 2 is used to compute
the sum of the numbers from the previous example.

TABLE II. EXAMPLE OF ALGORITHM 2

Step no. Calculations
1,2 α = 1− 2× 0 = 1 β = 1− 2× 1 = −1
3–5 z0 = (5− 3) mod 7 = 2

z1 = (7− 7) mod 9 = 0

z2 = (5− 6) mod 11 = 10

z3 = (8− 4) mod 13 = 4

6 B[Z, 0] = 0.4165+ (−0.448) = −0.032
7 B[Z, 1] = 0.4204+ (−0.444) = −0.024
9 sz = 1

15–17 Z = (7, 9, 11, 13)− (2, 0, 10, 4) = (5, 0, 1, 9)

18 B[Z, 0] = 0.024, B[Z, 1] = 0.032

Thus, as in the first example, the correct result is computed:
z = 〈1, (5, 0, 1, 9), [0.024, 0.032]〉.

V. PERFORMANCE COMPARISON RESULTS

This section gives comparative results of the presented
multiple-precision integer addition algorithms. In the experi-
ments, we used an GeForce RTX 2080 Ti graphics card that has
11 GB of GDDR6 memory, 4352 CUDA cores, and Compute
Capability 7.5. This GPU was installed on a machine with an
Intel Xeon 4100/8.25M S2066 OEM processor running Ubuntu
18.04.5 LTS, CUDA 10.2 and NVIDIA Driver 450.51.06 were
used. The source code was compiled using the nvcc compiler
with the -O3 and -Xcompiler=-fopenmp options.

A. Methodology

The parameters of the experiments are shown in Table III.
Each dataset was composed of two multiple-precision integer
arrays of the same length, and the performance was evaluated
for element-by-element addition of the arrays. The perfor-
mance was measured in the number of multiple-precision
arithmetic operations (additions) per second. For comparison
purposes, the performance of the GNU MP library was also
measured on 4 CPU cores. In the experiments, we considered
only the computation time, so the measurements do not include
neither the data transfer time nor the time of converting data
into internal multiple-precision representations.

TABLE III. EXPERIMENTAL PARAMETERS

Parameter Value
Size of the RNS moduli set, n from 8 to 256
Bit width of each modulus 32
Precision in bits, p from 128 to 4096
Dataset size 1,000,000
Datasets Dataset-1: pseudo-random integers in

the range 0 to (M − 1)/2

Dataset-2: pseudo-random integers in
the range (1−M)/2 to 0

Dataset-3: pseudo-random integers in
the range (1−M)/2 to (M − 1)/2

www.ijacsa.thesai.org 5 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

For each precision p, a corresponding set of RNS moduli
was generated such that

blog2Mc ≥ p, (8)

where M is the product of all the moduli in the set. Table IV
shows the relationship between the precision and moduli sets
used in the experiments.

TABLE IV. RELATIONSHIP BETWEEN THE PRECISION AND MODULI SETS
USED IN THE EXPERIMENTS

Precision, p Size of moduli set, n Dynamic range, M (approx.)
128 8 3.486474761596273374449E+38
256 16 1.182869237276559892956E+77
512 32 1.381750867498453484869E+154
1024 64 1.834972082650114435387E+308
2048 128 3.267493893788783073405E+616
4096 256 1.113716837551166769174E+1233

The moduli sets were generated using Algorithm 3. This
algorithm takes as input the smallest odd modulus m0, the
size of the desired moduli set n, and produces an increasing
sequence of n−1 consecutive odd integers m1,m2, . . . ,mn–1

that are coprime to each other and also coprime to m0. The
value of m0 is selected by trial and error until the condition (8)
is satisfied. The used tool for generating moduli sets is freely
available at https://github.com/kisupov/rns-moduli-generator.

For the CUDA implementations of the presented multiple-
precision addition algorithms, 32 threads per each thread block
were used, and the total number of blocks was calculated as
follows:

nBlocks =

⌊
N

nThreads

⌋
+K, (9)

where N is the size of the dataset (1,000,000), nThreads =
32, and K is defined as

K =

{
1, if N mod nThreads > 0,

0, otherwise.
(10)

The GNU MP library implementation have been acceler-
ated using the OpenMP library.

B. Results

In the first experiment, the input arrays were filled with
pseudo-random non-negative integers ranging from 0 to (M −
1)/2, where M is the product of all the RNS moduli. The
performance results are shown in Fig. 4.

In the second experiment, the input arrays were filled with
pseudo-random non-positive integers ranging from (1−M)/2
to 0. The results are reported in Fig. 5.

Finally, in the third experiment, the input arrays were filled
with pseudo-random positive and negative integers ranging
from (1 − M)/2 to (M − 1)/2. Fig. 6 demonstrates the
performance results obtained in this setting.

Algorithm 3 Moduli set generation
1: t← m0 + 2

2: k ← 1

3: while k < n do
4: p← 1

5: for i← 1 to k do
6: if gcd(mi, t) > 1 then
7: p← 0

8: end if
9: end for

10: if p = 1 then
11: mk ← t

12: k ← k + 1

13: end if
14: t← t+ 2

15: end while

Fig. 4. Performance of Multiple-Precision Integer Addition Implementations
with Non-Negative Inputs (Dataset-1).

C. Discussion

For Dataset-1 (Fig. 4), Algorithm 1 has nearly the same
performance as Algorithm 2. This is because in Algorithm 1,
all parallel threads follow steps 2–7 and there is no divergent
execution paths. The results show that the developed CUDA
functions are up to 65× faster than the parallel CPU imple-
mentation using GNU MP.

In the case of Dataset-2 (Fig. 5) the performance of
Algorithm 1 remains the same as in the case of Dataset-1,
since there are still no branch divergence (all parallel threads
follow steps 2–7). In turn, the need to restore negative results
reduces the performance of Algorithm 2 by an average of 1.1×
compared to Dataset-1, and this performance degradation does
not seem to be significant.

When using Dataset-3 (Fig. 6), branch divergence leads to
an average 1.9-fold decrease in the performance of Algorithm

www.ijacsa.thesai.org 6 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

Fig. 5. Performance of Multiple-Precision Integer Addition Implementations
with Non-Positive Inputs (Dataset-2).

Fig. 6. Performance of Multiple-Precision Integer Addition Implementations
with Mixed Positive and Negative Inputs (Dataset-3).

1 compared to Dataset-1 and Dataset-2. With 512-bit precision,
the performance of Algorithm 1 is reduced by almost 3×
compared to Dataset-1. In turn, the performance of Algorithm
2 reduced by at most a factor of 1.2 compared to Dataset-1.
The net result is that when the operands have different signs,
Algorithm 2 outperforms Algorithm 1 by up to 3×.

A limitation of the proposed CUDA implementations is that
the execution time grows linearly with increasing the precision.
This happens for the following reasons:

1) Each multiple-precision addition is performed as a
single thread, that is, the digits of multiple-precision
numbers are calculated sequentially.

2) As the precision increases, the stride between ele-
ments in the input arrays increases accordingly and
the effective GPU memory bandwidth decreases.

It should be noted that it is possible to compute all the
digits (residues) of multiple-precision significands in parallel
across different RNS moduli without worrying about carry

propagation. This parallel arithmetic property of the RNS is
employed in [22] to implement GPU-accelerated multiple-
precision linear algebra kernels. Furthermore, we note that if
all the digits of a multiple-precision number are computed
in parallel, then the structure-of-arrays (SoA) layout with a
sequential addressing scheme will provide coalesced access to
the global GPU memory. Implementing digit-parallel multiple-
precision integer addition is a direction for future work.

VI. CONCLUSION

In this paper, we have considered two multiple-precision
integer addition algorithms for graphics processing units. The
algorithms are based on the representation of large integers in
the residue number system.

The first algorithm uses conditional operators to check
the signs of the operands. However, in this case, threads
that concurrently compute different elements of a multiple-
precision array take divergent execution paths, which leads to
an increase in the total computation time. To overcome this
disadvantage, the second algorithm uses the radix-complement
representation of a negative number in the RNS.

Experiments have shown that when the signs of the
operands are different, the second algorithm outperforms the
first one by far. In turn, both algorithms running on an NVIDIA
RTX 2080 Ti GPU have shown to be faster than the multi-core
GNU MP implementation on an Intel Xeon 4100 processor.

The presented implementation is part of GRNS, a library
for efficient computations in the residue number system using
CUDA-enabled GPUs. In the future, we plan to implement
digit-parallel versions of the multiple-precision integer op-
erations to take full advantage of the internal RNS paral-
lelism. Furthermore, we will focus on extending the GRNS
functionality and implementing real-world multiple-precision
applications using this library.

ACKNOWLEDGMENT

This research is supported by the Ministry of Science
and Higher Education of the Russian Federation, grant id
RFMEFI61319X0092.

REFERENCES

[1] A. Omondi, Cryptography Arithmetic. Springer International Publish-
ing, 2020.

[2] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Transactions on
Computers, vol. 64, no. 3, pp. 698–706, 2015.

[3] R. Sehgal and V. Nehra, “Symbolic computation of mathematical
transforms and its application: A MATLAB computational project-based
approach,” IUP Journal of Electrical & Electronics Engineering, vol. 8,
no. 1, pp. 53–76, 2015.

[4] O. Bodroža-Pantić, H. Kwong, and M. Pantić, “Some new characteriza-
tions of Hamiltonian cycles in triangular grid graphs,” Discrete Applied
Mathematics, vol. 201, pp. 1–13, 2016.

[5] “The GNU multiple precision arithmetic library,” 2020. [Online].
Available: https://gmplib.org/

[6] “NTL: A library for doing number theory,” 2020. [Online]. Available:
https://shoup.net/ntl/

[7] “FLINT: Fast library for number theory,” 2020. [Online]. Available:
http://www.flintlib.org/

www.ijacsa.thesai.org 7 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

[8] K. Zhao and X. Chu, “GPUMP: A multiple-precision integer library for
GPUs,” in Proceedings of the 2010 10th IEEE International Conference
on Computer and Information Technology (CIT 2010), Bradford, UK,
2010, pp. 1164–1168.

[9] T. Ewart, A. Hehn, and M. Troyer, “VLI – a library for high precision
integer and polynomial arithmetic,” in Supercomputing, J. M. Kunkel,
T. Ludwig, and H. W. Meuer, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 267–278.

[10] E. Ochoa-Jiménez, L. Rivera-Zamarripa, N. Cruz-Cortés, and
F. Rodrı́guez-Henrı́quez, “Implementation of RSA signatures on GPU
and CPU architectures,” IEEE Access, vol. 8, pp. 9928–9941, 2020.

[11] N. Emmart and C. C. Weems, “High precision integer multiplication
with a GPU using Strassen’s algorithm with multiple FFT sizes,”
Parallel Processing Letters, vol. 21, no. 3, pp. 359–375, 2011.

[12] B.-C. Chang, B.-M. Goi, R. C.-W. Phan, and W.-K. Lee, “Multiplying
very large integer in GPU with Pascal architecture,” in Proceedings
of the 2018 IEEE Symposium on Computer Applications Industrial
Electronics (ISCAIE), Penang, Malaysia, 2018, pp. 401–405.

[13] K. Rudnicki, T. P. Stefański, and W. Żebrowski, “Open-source copro-
cessor for integer multiple precision arithmetic,” Electronics, vol. 9,
no. 7, p. article no. 1141, 2020.

[14] A. Bocco, Y. Durand, and F. De Dinechin, “SMURF: Scalar multiple-
precision unum Risc-V floating-point accelerator for scientific comput-
ing,” in Proceedings of the Conference for Next Generation Arithmetic

2019. New York, NY, USA: ACM, 2019.
[15] M. J. Schulte and E. E. Swartzlander, “A family of variable-precision in-

terval arithmetic processors,” IEEE Transactions on Computers, vol. 49,
no. 5, pp. 387–397, 2000.

[16] R. Brent and P. Zimmermann, Modern Computer Arithmetic. Cam-
bridge: Cambridge University Press, 2010.

[17] P. V. Ananda Mohan, Residue Number Systems: Theory and Applica-
tions. Cham: Birkhäuser, 2016.

[18] A. Omondi and B. Premkumar, Residue Number Systems: Theory and
Implementation. London, UK: Imperial College Press, 2007.

[19] K. Isupov, “Using floating-point intervals for non-modular computations
in residue number system,” IEEE Access, vol. 8, pp. 58 603–58 619,
2020.

[20] F. J. Taylor, “Residue arithmetic a tutorial with examples,” Computer,
vol. 17, no. 5, pp. 50–62, 1984.

[21] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and its Application
to Computer Technology. New York, USA: McGraw-Hill, 1967.

[22] K. Isupov, V. Knyazkov, and A. Kuvaev, “Design and implementation
of multiple-precision BLAS level 1 functions for graphics processing
units,” Journal of Parallel and Distributed Computing, vol. 140, pp.
25–36, 2020.

[23] R. Farber, CUDA Application Design and Development. Boston:
Morgan Kaufmann, 2011.

www.ijacsa.thesai.org 8 | P a g e

