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Abstract—Several issues arise when extending the methods of 

outlier detection from a single dimension to a higher dimension. 

These issues include limited methods for visualization, marginal 

methods inadequacy, lacking a natural order and limitation in 

parametric modeling. The intension to overcome and address 

such limitations the nonparametric outlier identifier, based on 

depth functions, is introduced. These identifiers comprise of four 

threshold type outlyingness functions for outlier detection that 

are Mahalanobis distance, Tukey depth, spatial Mahalanobis 

depth, and projection depth. The object of the present research is 

the application of the proposed nonparametric technique in 

hydrology. The study is intended to be executed in two different 

frameworks that are multivariate hydrological data analysis and 

functional hydrological data analysis. The event of a flood is 

graphically represented by hydrograph whose components are 

used for computing flood characteristics that are peak(p) and 

volume(v). These characteristics are frequently employed for the 

various types of analysis in the multivariate study. Whereas, 

hydrograph is exhaustively employed in the analysis of functional 

data so that all the important information regarding flood event 

are not missed while analysis. The proposed technique in a 

multivariate framework is applied to the bivariate flood 

characteristics      while in functional framework proposed 

approach is applied to the initial two scores of principal 

components denoted as        , since initial two principal 

components capture major variation of data employed for 

analysis. 
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I. INTRODUCTION 

The “outlier” observations in any data set is crucial to be 
detected and identified for nonparametric or parametric 
inferences. “Outliers” are the observations that are 
inconsistent or far from the majority of data points or within 
the chunk of data points with unusual behaviour. The presence 
of unusual observations in the data set acts as an outlier that 
can impact adversely the outcomes of estimation, inference, 
and testing procedures. Therefore, outliers are required to be 
identified and treated so that inferences are not violated due to 
unusual observations [1,2]. 

Outliers identified marginally suffer inadequacy of 
checking, in each coordinate, an outlier can find to be 
nonoutlying. Approaches that are algorithmic and take into 
account underlying geometry are required. A suitable function 
of outlyingness may be formulated with a threshold specified. 
A suitable choice can be Mahalanobis distance which is a 

highly tractable function of outlyingness but constrained for 
having elliptical contours of symmetric outlyingness, even 
though whether the model under consideration is symmetric 
elliptically. 

The author in [3] introduced a nonparametric technique 
which is based on functions of depth and orders the 
multidimensional data in center-outward. Higher depth 
represents higher centrality whereas lower depth greater 
outlyingness. One can associate with any depth function an 
equivalent function of outlyingness. For a suitable selection of 
depth function, actual geometrical structure and data shape are 
formed by equal outlyingness contours. In general, four 
different affine invariant functions of outlyingness were 
derived which are based on Mahalanobis distance 
outlyingness (MO), projection depth outlyingness (PO), 
halfspace or Tukey depth outlyingness (TO), and Spatial 
Mahalanobis outlyingness (SO). Related to these outlyingness 
functions the corresponding points are “outliers” having 
values of outlyingness exceed the constrained threshold of a 
particular function. 

The nonparametric approaches introduced by [3] have 
been practiced by [4] and [5] in hydrology while [4] executed 
multivariate hydrological data analysis using two frequently 
employed flood characteristics; peak(p) & volume(v), for the 
identification of unusual observations i.e. outliers. 

The author in [5] came up with groundbreaking research 
and extended the work of [4] by conducting functional 
hydrological data analysis. The nonparametric outlier 
identification technique was practiced in hydrology by [5] in 
such a way that the initial two scores of principal components 
were employed for the detection of outliers in a functional 
context. In multivariate analysis, employed flood 
characteristics are dependent and mutually correlated whereas 
scores of principal components employed in functional 
analysis are uncorrelated. 

The execution of research in the functional framework 
follows the claim made by [5] that the characteristic of flood 
use in conducting the multivariate hydrological study are 
computed by subjective approach and do not encounter the 
complete series of employed data set, therefore, inferences of 
multivariate study suffer lack of authenticity. Hence it is 
crucial to conduct research in a functional framework so that 
authentic estimation regarding the associated risk of flood is 
obtained by incorporating complete phenomena produced 
through employed data series. 
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The objective carried by present research is the 
implementation of nonparametric techniques based on depth 
functions in both the context of a study that is a multivariate 
and functional framework using hydrological data of Kotri 
Barrage on Indus River in Pakistan. 

II. LITERATURE REVIEW 

The methods going to be presented are based mainly on 
the statistical notion of depth functions. These functions 
provide convenient ranking tools for ordering data variables. 
Depth functions were initiatively practiced in hydrology by 
[6]. Several techniques of univariate analysis were extended to 
execute multivariate analysis developed through analogy. The 
variables that are dependent mutually affect the performance 
badly when analysing data component-wise, whereas moment-
based techniques required the moment’s existence. 

Review in detail regarding techniques use for conducting 
classical multivariate analysis, it is referred to follow [7,8]. 
Techniques that are developed on the basis of depth, avoid the 
earlier drawbacks science depth functions are ordered using 
multivariate inward and outward ranking [9]. Indeed, 
techniques based on depth aren’t component-wise, also, they 
are affine invariant and moment-free. Numerous techniques of 
outlier detection are enabled by ranking based on depth. The 
number of depth function formulas have been derived for 
executing the multivariate study. Depth region location 
inference considered by [3] is evaluated on sample space. 
Description of connection and general treatment related to 
multivariate quantile and centre ranked functions can be 
studied through [10,11]. For other inferential applications of 
depth see [12,13]. Numerous studies conducted in hydrology 
using various nonparametric approaches. The functions based 
on depth have been recently employed for the detection of 
outliers by [14,15]. According to [16], nonparametric models 
are suitable for capturing subtle aspects related to the 
frequency estimation of a flood. Flood inundation and flood 
damage were analysed using hydrologically distributed 
models through nonparametric techniques [17]. Similar other 
studies recently conducted in hydrology for outlier detection 
and risk estimation using nonparametric approaches are 
[18,19]. Characteristics of drought evaluation were assessed in 
a multivariate context implementing a nonparametric approach 
by [20-22]. Further research of [23] discussed data cleaning of 
water consumption and estimation of uncertainty regarding 
hydrologic modeling. Depth notion in regression was 
practiced and the performance of runoff model was evaluated, 
see work of [24-26]. Author in [27] used parametric and 
nonparametric multivariate approaches for designing rainfall 
framework whereas [28] applied rank-based nonparametric 
techniques to study trends of rainfall. 

Multidimensional data is reduced by of analysis of 
functional principal component (AFPC) techniques to attain 
an easy approach for analyzing hydrological data. Notable 
work includes profile classification of streamflow, minimum 
indicators selection and functional data analysis application on 
streamflow are the studies executed on the basis of AFPC. 
Simulation of drought interval and drought changes were 
analysed by [29,30]. [31-33] studied rainfall variability 
modeling, pattern identification, and outlier detection. Other 

relevant studies include work of [34-38], are also preferred for 
acquiring information about the useful application of AFPC in 
hydrology. 

This paper is organized in such a way that the discussion 
regarding proposed methodologies is presented in Section 3. 
Section 4 provide description related to hydrological data 
employed for executing present research. Section 5 provides 
an application of the discussed methodology on employed 
hydrological data and obtained results are provided in 
Section 6 whereas Section 7 contain the conclusion drawn 
from the research. 

III. METHODOLOGY 

This section contains methods for computing bivariate 
series of flood characteristic       and also bivariate series of 
principal component scores        . Both the computed series 
      and         are required for obtaining outliers in 
multivariate and functional context, respectively, using 
proposed threshold type nonparametric techniques which will 
also be discussed later in this section. 

A. Flood Characteristics 

The flood peak (p) and volume (v) are the fundamental and 
most studied flood characteristics [39-41] and their 
computation based on the work of [41]. 

The bivariate series      are generated through 
hydrograph components using following formulas. 

The flow peak series     is calculated as. 

                        (1) 

where         is the highest recorded observation of flow 

on a kth day in a jth year. 

The flow volume series    is calculated as. 

   ∑       
   

     
 

 

 
                  )           (2) 

where        are the recorded observations of flow on a 

kth day in a jth year,          and         are the recorded 

observation of flow on starting       and ending day (     

respectively, in the kth year of flood time span. 

B. Analysis of Functional Principal Component 

Analysis of principal component (APC) practices in a 
multivariate study for reducing the dimensionality through the 
computation of new variables which are the linear 
combination for original values so that the maximum of data 
variation could be captured. After the conversion of data as 
functions, analysis of functional principal component (AFPC) 
permits us to compute new functions so that special kind of 
variation for curve data could be revealed [5]. The AFPC 
method maximizes sample variance scores as orthonormal 
constraints. It divides the functional centred observations in 
orthogonal basis form and defined as follows. 

Let functional observations be                   obtained 

after smoothing the discrete observations 

(     )                      By definition, the curve of 

mean is a same variation for most of the curves which can be 
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fixed by centering. Let     
            ̅            be 

functional centered observations where  ̅    represents the 
function of mean for                . Now AFPC is applied 

to    
             for creating a set of small functions, known 

as harmonics which reveals the type of variation important for 

analysis. The first principal component    
             denoted 

as       be a function so that variance regarding 
corresponding scores     of real value is as follows. 

     ∫       
  

                         (3) 

is maximized under ∫      
   

 
   constraint. The next 

     ; a principal component computed by maximization of 
variance related to corresponding scores     : 

     ∫        
              

 
           (4) 

under ∫                
 

        constraints. 

C. Detection of Outliers 

The approaches for detection of outliers employed by [4] 
in the multivariate context was adapted by [5] in functional 
context; applying functions of outlyingness on the scores of 
initial two principal components. The purpose of this adaption 
is to create a comparison between multivariate and functional 
results. 

Functions of outlyingness in a multivariate context were 
described and employed for detecting outliers. These functions 
have values ranging [0,1] interval. The outlyingness of a 
particular point is measured related to the whole sample. A 
value of outlyingness close to 1 shows high outlyingness, and 
a value close to 0 shows centrality. An observation is 
determined to be an outlier by defining a threshold i.e. the 
outlyingness value corresponds to an outlier must exceed their 
respective threshold values. Reference [3] introduced 
outlyingness functions which are based on the functions of 
depth, are going to be presented in the following section. 

1) Outlyingness functions: A depth function is 

transformed to depth outlyingness for a F given distribution 

and     . Reference [3] studied as follows. 

a) Half space 

                               (5) 

b) Mahalanobis 

           
                  

    (      )           (6) 

c) Projection 

                                         (7) 

where        ,   
             and         are given by 

[4], a location measure is      and      is non-singular 
measure of scale matrix. 

Spatial 

         ‖            ‖            (8) 

d) Spatial Mahalanobis 

         ‖         
 

       ‖           (9) 

where the Euclidean norm is‖ ‖, F-distribution is X and 
the sign multidimensional function is        given by 
          ‖ ‖                         also, C is any 
positive definite affine invariant     symmetric matrix. 

2) Threshold: An essential step in the detection of an 

outlier is the appropriate selection of the threshold. It relates to 

true positive and false positive rates.     denoted for a false 

positive arbitrary rate which is defined as the proportion of 

misidentified nonoutliers as outliers. This constant relates 

closely to the    true positive rate by which the theoretical 

proportion for real outliers are represented (also known as 

contaminants). Ideally,     suppose to be smaller than    . 

Reference [3] fixed the false outliers’ ratio         and 

also used another coefficient     √  , in order to define a 

threshold for the values of outlyingness as        ) quantile. 

          
                

  (      √ )        (10) 

where false positive rate    is represented as    
    √  and true positive rate    represented as          ; 
a number of true outliers are     and a number of 
observations are  , in such a way that      . For further 
calculations and applications, readers are referred to 
follow [4]. 

IV. DATA DESCRIPTION 

The major source of hydrological data is daily streamflow. 
The daily flow data series of the Kotri barrage are available 
from Sindh Irrigation department, Sindh Secretariat, Karachi, 
Pakistan. 

A daily flow observations (     ) of Kotri barrage which 
is located between Jamshoro and Hyderabad in Sindh province 
on the Indus River, Pakistan. It has a discharge capacity of 
875,000 cusecs (i.e. approximately 24800      ). Fig. 1 
indicates the geographical location of the Kotri Barrage. 

Some studies contain data of complete year while some 
consider section of a year having high flow observations. 
Hydrological data observations of the present study contain a 
duration of 6 months (          days) per year spanning 
1977 to 2017 (i.e. n=41 years) since high flow period is 
observed during the months April to September, in Pakistan. 

The series of observations are    (                   )
 

, 

            ,          , where n=41 years,       days 
and        is the recorded flow observation on    day in the jth 

year. Before any computation is performed the streamflow 
observations which are recorded on measurement scale in 
cusec (a volume flow rate) are required to be converted into 
cubic meter per second (       ). 

https://en.wikipedia.org/wiki/Jamshoro
https://en.wikipedia.org/wiki/Hyderabad,_Sindh
https://en.wikipedia.org/wiki/Sindh
https://en.wikipedia.org/wiki/Pakistan
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Fig. 1. Geographical Location of Kotri Barrage. 

V. APPLICATION 

The two most studied and examined characteristics of the 
flood that is peak (p) and volume (v) are focused here. The 
series of bivariate (p,v) are computed by using (1) and (2) and 
results are displayed in Table I. 

According to [4], an approach developed by [3] are based 
on the function of depth outlyingness and the threshold 
corresponded. The four functions of depth outlyingness are 
evaluated for the (p,v) series of bivariate observation i.e., 
Mahalanobis (MO), Projection (PO), Spatial (SO) and Tukey 
(TO). The values of depth outlyingness correspond to each 
(p,v) observation for years 1977-2017 are reported in the last 
four columns of Table I. The thresholds correspond to each 
outlyingness functions are computed by selecting 15% false 
outlier ratio and the number of true outliers as 5, this selection 
is similar to the choices made by [4] in such a way that the 
outlyingness value corresponds to an outlier must exceed their 
respective threshold values. 

Hence, 98% quantile is a corresponding threshold for the 
values of outlyingness. The computed values of the threshold 
for MO, PO, SO & TO are 0.9412, 0.9040, 0.9719, and 
0.9444, respectively. The values of threshold approximately 
remain constant if the number of true outliers is considered 
greater than 5 with changed false outlier ratio i.e. 5%, 10% 
and 20%. The detected outliers correspond to MO, PO, SO & 
TO with respect to their respective threshold values are 
graphically displayed by Fig. 2. 

Reference [5] employed the procedure for detecting 
outliers which are based on the function of depth outlyingness 
and the threshold corresponded. As discussed earlier and also 
practiced in preceding section, four functions of depth 
outlyingness are evaluated for the series of the bivariate score 
        i.e., Mahalanobis (MO), Projection (PO), Spatial (SO) 
and Tukey (TO). 

TABLE I. MULTIVARIATE RESULTS FOR FLOOD  PEAK AND VOLUME 

Year Peak Volume MO PO SO TO 

1977 7490 248765 0.0979 0.5424 0.4134 0.4634 

1978 15747 249063 0.8782 0.8631 0.4183 0.9512 

1979 7342 305373 0.4843 0.7099 0.6352 0.7561 

1980 5776 170479 0.0852 0.2978 0.0255 0.2195 

1981 7149 246426 0.1473 0.5673 0.3586 0.5610 

1982 5560 129340 0.1783 0.4059 0.2671 0.3171 

1983 9367 260061 0.1161 0.5753 0.4844 0.5610 

1984 7913 290839 0.2922 0.6491 0.5849 0.7073 

1985 3662 126804 0.3419 0.5121 0.3348 0.5610 

1986 10160 185277 0.6149 0.7608 0.1526 0.9024 

1987 2771 128432 0.4982 0.6217 0.2893 0.9024 

1988 14527 467773 0.6348 0.7848 0.7808 0.8049 

1989 6276 112997 0.3567 0.6141 0.3900 0.6585 

1990 6355 243994 0.3066 0.6250 0.3110 0.6585 

1991 5309 276870 0.6496 0.7430 0.5363 0.9512 

1992 15241 618581 0.8350 0.8484 0.8783 0.9024 

1993 9617 217016 0.3713 0.6765 0.1981 0.7073 

1994 19109 921882 0.9482 0.9043 0.9756 0.9512 

1995 17998 483519 0.7882 0.8274 0.8288 0.8537 

1996 8520 417460 0.7610 0.8073 0.7321 0.9024 

1997 6898 145428 0.2501 0.5854 0.1765 0.4634 

1998 6263 181396 0.0444 0.2874 0.1065 0.2195 

1999 4133 59546 0.4171 0.5835 0.5856 0.8049 

2000 1372 27595 0.5406 0.6543 0.8807 0.9512 

2001 1969 39701 0.4927 0.6301 0.6815 0.8537 

2002 2581 32254 0.4782 0.6272 0.7895 0.8537 

2003 4171 146269 0.3006 0.4783 0.1627 0.5122 

2004 898 30884 0.5784 0.6626 0.8236 0.9512 

2005 6800 236405 0.1577 0.5614 0.2491 0.5122 

2006 7922 154970 0.3857 0.6698 0.0733 0.7073 

2007 3323 147582 0.4653 0.5966 0.1364 0.8049 

2008 2882 87966 0.4016 0.5513 0.4880 0.6098 

2009 2111 36592 0.4870 0.6291 0.7316 0.8049 

2010 28244 694249 0.9404 0.9044 0.9267 0.9512 

2011 4459 45005 0.5054 0.6305 0.6391 0.9512 

2012 2115 22688 0.5078 0.6420 0.9725 0.9512 

2013 8475 174738 0.3751 0.6731 0.0634 0.6585 

2014 3005 24519 0.5024 0.6425 0.9248 0.9512 

2015 14155 325111 0.6981 0.7957 0.6819 0.8537 

2016 3257 86015 0.3600 0.5389 0.5355 0.5610 

2017 5730 97637 0.3715 0.5963 0.4407 0.7561 

Legend 

                              Highest 

                                    2nd Highest 

                                   3rd Highest 
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Fig. 2. Detected Outliers using Flood Peak and Volume. 

The thresholds correspond to each outlyingness functions 
are computed by selecting 15% false outlier ratio and the 
number of true outliers as 5, this selection is similar to the 
choices made by [4] in such a way that the outlyingness value 
corresponds to an outlier must exceed their respective 
threshold values. Hence, 98% quantile is a corresponding 
threshold for the values of outlyingness. The computed values 
of the threshold for MO, PO, SO & TO are 0.9106, 0.8905, 
0.9264, and 0.9444, respectively. The values of threshold 
approximately remain constant if the number of true outliers is 
considered greater than 5 with changed false outlier ratio i.e. 
5%, 10% and 20%. The computed outlyingness values of MO, 
PO, SO & TO for years 1977-2017 are tabulated in Table II 
whereas Fig. 3 displays the detected outliers correspond to 
MO, PO, SO & TO with respect to their respective threshold 
values. 

VI. RESULTS 

A. Multivariate Result 

The year 1994 contain outlyingness values greater than 
their respective threshold values by MO, PO & SO functions. 
Several years including years 1978, 1994, 2010 and 2012 are 
detected by TO function as outliers. The year 2010 is detected 
by MO and PO, and year 2012 is detected by SO functions as 
the closest value of outlyingness with respect to their 
threshold values. In addition, the year 1978 corresponds to the 
third highest MO and PO values whereas the year 2010 
correspond the third highest SO value compare to their 
respective threshold values. Hence, it can objectively be 
inferred from Table I that the years 1994 and 2010 are 
identified as outliers by all the four functions of outlyingness. 
Whereas, the year 1978 is detected by the three and the year 
2012 is detected by the two functions of outlyingness. For 
illustrative purpose a scatter plot constructed between 
bivariate (p,v) series (i.e. flood peak and flood volume) is 

displayed through Fig. 2 so that the above interpretation can 
explicitly comprehensible. The years 1978, 1990, 1994, 2000, 
2004, 2010, 2011, 2012 and 2014 computed as outliers by the 
outlyingness functions, among them the years 1978 and 1992 
are present outside compare to the rest of the years whereas 
the years 1994 and 2010 are appear as outliers. 

TABLE II. FUNCTIONAL RESULTS FOR PRINCIPAL COMPONENT         

Year z1 z2 MO PO SO TO 

1977 -2.29 -2.339 0.1671 0.5215 0.3226 0.5122 

1978 13.09 -10.776 0.8342 0.8565 0.8512 0.9024 

1979 6.218 7.085 0.6323 0.8256 0.6295 0.7561 

1980 -3.056 0.173 0.1077 0.2189 0.0381 0.1707 

1981 9.388 8.516 0.7435 0.8548 0.7702 0.9512 

1982 -5.564 3.525 0.4119 0.5763 0.4923 0.7073 

1983 7.676 -2.302 0.4697 0.7249 0.6046 0.6585 

1984 -3.352 -4.623 0.3994 0.6705 0.5732 0.8537 

1985 -9.07 -1.06 0.5201 0.5805 0.7348 0.9512 

1986 -3.226 -2.818 0.2465 0.5537 0.3994 0.6585 

1987 1.832 5.992 0.4786 0.7791 0.5310 0.6585 

1988 7.617 -3.672 0.5177 0.7498 0.6238 0.7073 

1989 -5.09 0.182 0.2501 0.3459 0.2150 0.3171 

1990 6.42 -1.683 0.3743 0.6943 0.5049 0.5610 

1991 20.652 9.365 0.8839 0.8928 0.9015 0.9512 

1992 28.743 3.228 0.9157 0.8888 0.9422 0.9512 

1993 7.174 7.721 0.6788 0.8378 0.6965 0.8049 

1994 7.345 -21.331 0.9217 0.8938 0.9077 0.9512 

1995 9.233 -6.894 0.6926 0.8068 0.7436 0.8049 

1996 7.365 -4.316 0.5350 0.7577 0.6280 0.7561 

1997 -4.721 -0.359 0.2244 0.2994 0.2017 0.3659 

1998 9.949 8.385 0.7490 0.8559 0.7998 0.9024 

1999 -6.452 1.793 0.3800 0.4861 0.4139 0.5610 

2000 -10.234 2.782 0.6053 0.6467 0.8525 0.9512 

2001 -5.921 6.952 0.6195 0.7290 0.7311 0.9512 

2002 -9.377 1.845 0.5479 0.5970 0.7410 0.8537 

2003 -3.783 -0.194 0.1559 0.2193 0.0807 0.2195 

2004 -10.197 2.608 0.6002 0.6415 0.8266 0.9512 

2005 0.865 2.131 0.1073 0.6408 0.3050 0.4634 

2006 -6.466 -2.704 0.4169 0.6282 0.6128 0.8537 

2007 0.884 6.854 0.5359 0.7897 0.5904 0.9024 

2008 -8.884 0.856 0.5077 0.5714 0.6634 0.7561 

2009 -8.824 1.963 0.5224 0.5829 0.6608 0.8049 

2010 -0.407 -19.296 0.9007 0.8898 0.8743 0.9512 

2011 -6.425 -1.158 0.3601 0.4990 0.4612 0.6098 

2012 -9.277 -0.121 0.5251 0.5829 0.7346 0.9024 

2013 -6.19 -2.373 0.3862 0.5996 0.5283 0.7561 

2014 -7.242 1.574 0.4233 0.5073 0.4995 0.6098 

2015 1.404 -1.802 0.0946 0.5918 0.3483 0.4634 

2016 -3.317 5.357 0.4567 0.7064 0.5341 0.9024 

2017 -6.487 0.934 0.3596 0.4502 0.3736 0.5610 

Legend 

                              Highest 

                                    2nd Highest 

                                    3rd Highest 
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Fig. 3. Detected Outliers using Principal Component Scores. 

B. Functional Result 

It is observed that the year 1994 contain outlyingness 
values greater than their respective threshold values by MO 
and PO functions whereas outlyingness value of the year 1992 
is greater than the threshold value by SO function. Several 
years including 1991, 1992, 1994 and 2010 are detected by 
TO function as outliers. The year 1991 is detected by the PO, 
the year 1992 is detected by MO and the year 1994 is detected 
by the SO functions as a second highest outlyingness values 
compare to their respective threshold values. In addition, the 
year 2010 corresponds to the third highest MO and PO values, 
whereas the year 1991 corresponds to the third highest SO 
outlyingness value according to their respective threshold 
values. 

Hence, it can distinctly be inferred from the values of 
Table II, the year 1994 is detected by all the four outlyingness 
functions as an outlier. Whereas the years 1991, 1992 and 
2010 are identified as outliers by the three outlyingness 
functions. Above interpretation can better be comprehended 
by the scatter plot constructed between scores of initial two 
principal components (i.e. PC score 1 & score 2) and 
represented by Fig. 3 which reveals that the years 1981, 1985, 
1991, 1992, 1994, 2000, 2001, 2004 and 2010 computed as 
outliers by the outlyingness functions, among them the years 
1991 and 1992 are present outside compare to the rest of the 
years whereas the years 1994 and 2010 are appear as outliers. 

The functional results are almost consistent with the results 
of the multivariate framework such that the years 1992, 1994 
and 2010 have been detected as the most unusual flows in 
both the multivariate and functional context. 

VII. CONCLUSION 

The nonparametric techniques based on depth function for 
outlier identifiers have been practiced in two different 

frameworks of study that are multivariate hydrological data 
analysis and functional hydrological data analysis. The 
identification of outlier is essential for the appropriate 
selection of suitable hydrologic models so that risk associated 
with flood events can be authentically estimated. The methods 
employed in the present research are multivariate methods that 
are superior to previously practiced classical methods that 
were moment-based, follow normality assumption and 
component-wise techniques. The implemented techniques are 
based on depth function notion, free of moment, do not require 
normality assumption, and also affine invariant. 

The proposed approaches have been implemented in two 
different frameworks of analysis. The intention of executing 
this study is to gauge the performance of proposed 
methodologies in both multivariate and functional context. 
The two most widely practice flood characteristics in 
hydrological analysis, peak (p) & volume (v) have been 
included to execute study in multivariate hydrological data 
analysis. Besides this, two initial scores of principal 
components         used as a series of bivariate variables for 
executing functional hydrological data analysis since initial 
two principal components have a capability to capture major 
variation of data employed for analysis. 

The outliers of both the framework are almost consistent 
but the results of functional analysis can be considered more 
reliable since it is based on complete information of flood 
hydrograph whereas flood characteristics       are not able to 
generate hydrograph even though more than two 
characteristics of flood are included in study. Nevertheless, the 
multivariate results cannot be ignored and must be employed 
in a parallel complement to functional results so that dynamics 
of a hydrological event can be analysed to attain 
comprehensive information related to causes of flood. 
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