
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

42 | P a g e

www.ijacsa.thesai.org

A Recommender System for Mobile Applications of

Google Play Store

Ahlam Fuad
1
, Sahar Bayoumi

2
, Hessah Al-Yahya

3

Department of Information Technology

College of Computer and Information Sciences

King Saud University, Riyadh, Saudi Arabia
1, 2, 3

Institute of Graduate Studies and Research,

Alexandria University, Alexandria, EGYPT
2

Abstract—With the growth in the smartphone market, many

applications can be downloaded by users. Users struggle with the

availability of a massive number of mobile applications in the

market while finding a suitable application to meet their needs.

Indeed, there is a critical demand for personalized application

recommendations. To address this problem, we propose a model

that seamlessly combines content-based filtering with application

profiles. We analyzed the applications available on the Google

Play app store to extract the essential features for choosing an

app and then used these features to build app profiles. Based on

the number of installations, the number of reviews, app size, and

category, we developed a content-based recommender system

that can suggest some apps for users based on what they have

searched for in the application’s profile. We tested our model

using a k-nearest neighbor algorithm and demonstrated that our

system achieved good and reasonable results.

Keywords—Application profile; content-based filtering; Google

play; mobile applications; recommender systems

I. INTRODUCTION

Recent years have witnessed massive growth in mobile
devices with an increasing number of users as mobile devices
have become part of every component of modern life. The
smartphone market has grown dramatically, and users can
now take advantage of various features in applications, which
can easily be obtained from centralized markets, such as
Google Play. Google Play is Google's official store and portal
for Android apps that was launched in 2008 and accumulated
more than 1 million downloadable and ratable applications
now [1]. In December 2018, the number of available apps in
the Google Play App Store was nearly 2.6 million [2].

Due to the substantial and growing number of available
mobile applications in application stores, it becomes necessary
to provide a system that identifies user interest based on what
the system believes the user likes through his/her profile.
Using a user profile would support an efficient and
personalized application filtering system.

The general idea of filtering is to get a sub-collection of
applications based on a specified category. There are different
approaches to performing information filtering, including
classification and recommendation. Classification is a step
taken to reduce the sparseness of the input space by
classifying applications into predefined interest categories.
The applications in stores are labeled according to a high-level

and store-specific classification method. This approach is
limited by the fact that it depends entirely on the textual
description available from the store [3].

Moreover, a recommender system is another way to filter
information and is widely used in several domains. It is a
decision-making tool that helps developers predict what a user
will like or dislike from a list of applications. It provides
personalized information by learning the user’s interests from
tracing through his/her interactions. It is also an excellent
option for search fields as a recommender system that lets
users discover more applications [3].

In this work, we explore a method of constructing
recommender systems for apps in the Google Play app store
based on the app profile. Issues related to modeling app
preferences and choosing a set of recommended apps were
investigated. Furthermore, a k-nearest neighbor classification
approach (KNN) to classify apps based on the most influential
attributes of apps within categories proposed. A prototype
system is then built as a proof of concept, which tracks
application profiles and then presents recommended
applications to the user. Therefore, the research aim to answer
the following question:

What are the most significant attributes of an application
profile that could be used for developing a recommender
system?

The remaining sections of this paper are organized as
follows. Section II presents an overview and background of
the topic. Section III discusses the related work of analyzing
apps in app stores and app recommender systems. In
Section IV, the methodology is introduced, and the results are
explained and discussed in Section V. Finally, conclusions and
future work are presented in Section VI.

II. BACKGROUND

In this section, we discuss the background information and
knowledge domains required for developing a recommender
system.

A. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient is also referred to as
Pearson product-moment correlation coefficient (PPMCC) or
the bivariate correlation, is a measure of the linear correlation
between two variables [4]. It evaluates how well the

https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Correlation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

43 | P a g e

www.ijacsa.thesai.org

relationship between two variables can be described. The
statistic defined in the range [–1, +1] which indicates how
strongly the two variables are associated, where -1 indicates
total negative linear correlation and 1 indicates total positive
linear correlation. A value of 0 indicates no correlation.

B. K-Nearest Neighbor Classification (KNN)

The k-nearest neighbors' algorithm is a type of instance-
based supervised learning approach. It is one of the simplest
and most commonly used classification techniques and is easy
to learn and implement and robust to noise. It is used mostly
for classification and sometimes for predictive regression
problems, in which a number of nearest neighbors of each data
point are used based on the value of k, which represents how
many nearest neighbors are to be considered to determine the
class of a test sample data point. In other words, the KNN
algorithm finds solutions by identifying similar objects. It is
also called lazy learning because the function is only
approximated locally and all computation is postponed until
classification. This rule preserves the complete training set
throughout the learning process and assigns to each query a
class represented by the most frequent label of its KNN in the
training set. One of the significant drawbacks of KNN is that
becomes slow as the size of the data in use increases [5], [6].

C. Recommender Systems

Recommender systems (RSs) are techniques and software
tools that provide users with suggestions for information or
items that may be of interest to the user. Those suggestions
will improve the user’s decision-making processes, such as
choosing what music to listen, what things to buy, or what
apps to install. Thus RSs are the most popular and powerful
tools in ecommerce [7]. Coincidence is one of the major
stimuli for RSs to help the user discover things he did not look
for explicitly. The essential computational task of RSs is
predicting the subjective evaluation which the user gives to an
item. These predictions can be computed by using predictive
models with common characteristics. For example, the ratings
of the user's previously purchased items can be exploited.
Recommendation systems can be classified into three major
categories to generate a list of recommendations based on a
particular prediction technique [8], [9].

1) Content-based recommender systems: Content-based

recommendation approaches analyze the descriptions of items

rated by a user previously to build a user profile of his

interests based on the items’ features. Later, this profile will

help to suggest additional items with similar properties.

Content-based recommendation systems use methods that are

focused on the items’ characteristics or descriptions. These

methods build a profile for each user, which is called a

content-based profile that conserves the features of the

previously viewed items. Then, the RS will get the most

suitable details for the user by comparing the information in

the generated profile and the descriptions of items [7]. For

example, we have our items: A, B, C, and D. Tom likes items

B, C, and D; John wants A, B, and C; and Sozy likes C.

Therefore, by comparing John's and Tom's liked items, it is

apparent that they both like B and C, and then the

recommender system conclude that B and C are similar. If

Sozy likes C, then item B should be recommended to him.

2) Collaborative recommender systems: Collaborative

recommender approaches collect feedback information from

all the users who rate the items. These approaches build a

model based on the user's past behavior and the similar

decisions of the other users. Thus, this model can be used to

predict items the user may be interested. For example, Sozy

again likes C and D. We need a recommender system to

search for a person with similar preferences to Sozy, so we

can notice that Tom also likes C and D. Therefore, he is the

user who is identical to Sozy. Because he also likes B, B is

recommended to Sozy.

Content-based approaches mostly perform better than
collaborative filtering, especially when the data is extremely
sparse. Merging both methods may improve the results
{Suggesting Points-of-Interest via Content-Based,
Collaborative, and Hybrid Fusion Methods in Mobile
Devices}.

3) Hybrid recommender systems: Hybrid recommender

systems have been developed by combining the abilities of

both collaborative and content-based recommendations. These

systems were introduced due to the limitations of the two

techniques described above. Hybrid recommender approaches

have been implemented using several methods: by applying

the content-based and collaborative-based predictions

separately and then combining both of them, by adding

content-based capabilities to the collaborative-based approach

(or vice versa), or by unifying the approaches into one model.

Hybrid methods provide more accurate recommendations than

simple approaches (collaborative methods and content-based

methods).

III. RELATED WORK

This section discusses the state of the art of within two
directions: data analysis techniques and recommender
systems. The related studies divided into three categories:
analyzing applications in different app stores, applications
based on similarity measures, and application based on
recommender systems.

A. Application Analysis Studies

The author of the study [10] aimed to analyze app store
data. They extracted feature information from a set of data
collected from Blackberry apps using data mining in order to
analyze the technical, business, and customer issues of apps.
The results of this work indicate a strong correlation between
the rank of app downloads and the customer rating and no
relationship between price and rating, nor between price and
downloads. These results partially match those observed in
[11], where the study aimed to analyze the Google app store in
order to identify correlations among app features, and the
authors found a strong relationship between the number of
downloads and price as well as between participation and
price. In a recent study [12], the authors investigated the
factors which impact the rating of Google play store apps.
They analyzed 10,840 apps, and they indicated that app
ratings help to get more downloads. Furthermore they found

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

44 | P a g e

www.ijacsa.thesai.org

that the used keyword in the app title plays an important role
in determining the higher and lower ratings.

Studies [13] and [14] aimed to analyze the characteristics
of apps extracted from app stores. Interestingly the
experiments of [13] proved that the app size, the number of
promotional images displayed on the app's web store page,
and the app SDK version are the most influential factors in
defining high-rated apps. Studies [1] and [15] used the Causal
Impact Release Analysis tool to facilitate app store analysis.

Studies [16] and [17] introduced a novel approach for app
classification utilizing features extracted from both web
knowledge and relevant real-world context. Then, they
integrated these extracted features into a machine learning
model (Maximum Entropy (MaxEnt)) for training an app
classifier.

B. App Similarity Studies

The study [18] introduced a classification system in order
to classify mobile apps. They mined 5,993 apps from both the
Apple and Google app stores and then classified them based
on support vector machines (SVMs). As a result of this study,
the automated app classification system achieved a excellent
accuracy. Another study [19] proposed a novel technique for
measuring the similarity among apps based on agglomerative
hierarchical clustering techniques. They mined data for 17,877
apps from the Google and BlackBerry app stores. The
empirical results of this study indicate an improvement over
the existing categorization quality of both stores. In another
study [11], the authors aimed to build clusters of similar apps
using a probabilistic topic modeling technique and a k-means
clustering method. The results showed that the Google Play
categorization system does not respect application similarity.

The study [20] addressed the application classification
issue and introduced a novel method for classifying apps using
two methods. The first method used a neural language model
applied to smartphone logs to embed apps into a low-
dimensional space, while the second one used the k-nearest
neighbors' classification method in the embedding space; the
experimental results showed that the second proposed
approach outperformed the current state of the art.

In a recent study [21], the authors introduced a
classification method for local mobile app using deep neural
network. They evaluated a dataset of Google Play to
demonstrate the effectiveness of their method. Their results
outperformed the baseline method by 5.5% related to F1
score. This study focused just on classifying local apps such as
“Travel & Local” in the store.

A new framework for app categorization (FRAC+) has
been proposed in [22], which is based on a data-driven topic
model to suggest the appropriate categories for an app store,
as well as to detect miscategorized apps. Experiments with the
proposed system have shown that it is aligned with the new
categories of the Google Play store.

C. Application Recommender System Studies

There is considerable literature available on both
recommendation systems and mobile recommendation
systems with various descriptions of recommendation systems

in general [1], [23], [24]. The authors in [25] discussed the
incorporation of recommender systems in the mobile
application domain. They used a hybrid recommender system
to deal with the added complexity of context and recommend
appropriate mobile applications to users. Thus, this approach
provides positive ratings. Therefore, based on this study, users
can select from among several content-based or collaborative
filtering components.

A new efficient framework called “SimApp” was proposed
to detect similar applications using an online kernel learning
algorithm [26]. They crawled real data from the Google app
store and extracted a multi-modal heterogeneous data set.
Their outcomes indicate the efficiency of the proposed
framework. The similarity of items may help the application
of content-based recommender systems. Another study
introduced a framework based on the incorporation of version
description features into app recommendation [27]. Another
study [28] described the implementation of a hybrid
recommender system that employed five different filtering
techniques to help users when choosing a new application to
download from a market. This system was also able to solve
many common problems found in collaborative recommender
systems that reduce the quality of the generated predictions.
The study was based on using information collected from
different users to support users with recommendations based
on their history. The results showed good performance in
terms of mean absolute error (MAE) and users’ satisfaction.

The study [8] discussed assisting the users in choosing the
appropriate application using recommendations. The author
proposed a recommender system for mobile applications by
integrating two methods: tracking user behavior to get his
preferences to find new and similar apps to their used ones
and utilizing the user's context in order to provide him with
useful recommendations by using the Google Play Engine.
While in the study [29], the authors proposed a recommender
method for apps based on graph techniques. Interestingly, the
proposed method can recommend apps without the need for
specifying user preferences. Another paper proposed a
recommender system for the mobile application market by
understanding the mobile user’s preferences and usage
patterns for the types of applications they select and the online
downloading process. The authors collected data from Google
Play and then used statistical analysis and a pilot survey to
find app features that influence user choices [30]. In [31], the
authors proposed a novel structural user choice model
(SUCM) to learn fine-grained user preferences by exploiting
the hierarchical taxonomy of apps (tree hierarchy of apps).
Also, they designed an efficient learning algorithm to estimate
the model parameters. They used a diverse dataset of 52,483
users, 26,426 apps, and 3,286,156 review observations. The
outcomes of this study show that SUCM consistently
outperforms state-of-the-art Top-N recommendation methods
by a significant margin. The study in [32] proposed a novel
method using a unified model that combines content-based
filtering with collaborative filtering, harnessing information
from both ratings and reviews. This study applied topic
modeling techniques to the review text and aligned the topics
with rating dimensions to improve prediction accuracy.
Another study [33] proposed a unified model VAMF for the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

45 | P a g e

www.ijacsa.thesai.org

version-aware mobile app recommendation problem to
address the data sparsity issue by incorporating review text
from both the version level and the app level and modeling
version based correlations of version-level temporal
correlations and app-level aggregate correlation. They also
proposed an efficient algorithm to solve the model and
analyze its optimality and complexity. They used a Google
Play dataset that contained the reviews for all of its versions
and the descriptions of its latest version. The experiments
conducted in this study on a large dataset showed that the
proposed method outperforms comparable methods in
prediction accuracy and that the proposed algorithm can be
linearly scaled.

The study in [34] introduced a sequential approach for
modeling the popularity of mobile apps by collecting data
from 15,045 apps. They produced a popularity-based hidden
Markov model (PHMM) for a variety of tasks, including app
recommendation and review spam detection, and
demonstrated its usefulness in ranking fraud detection. The
experimental results validated both the effectiveness and
efficiency of the proposed popularity modeling approach.
Another study built on a hidden Markov model where the
authors proposed a mechanism for modeling three main
factors governing the app installation behavior of smartphone
users: short-term context, co-installation pattern, and random
choice. Then, a heterogeneous hidden Markov model
(heterogeneous HMM) was used to incorporate these main
factors. They used a combination of app installation data from
the installation records of 9009 users with a portion of the
Netflix data set from 54,314 users on 3561 movies. The
experimental results indicated that the proposed system can
outperform other methods consistently under different
experimental settings [35].

The study [36] was generally focused on recommending
independent items to users who were suggested by a hybrid
cross-platform app recommendation (STAR) system. Another
study [37] introduced recommender systems on mobile
platforms based on user profiles generated from the installed
apps. They improved on existing machine learning models to
predict user profiles. The results of this study showed an
increase in these models' predictive accuracy. Furthermore,
study [38] introduced a recommender system (Vanilla) that
considers social and contextual information processes. The
system allows the comparison of different recommendation
techniques. Besides this, Vanilla includes eleven contextual
dimensions and a mechanism for analyzing the influence of
social networks on app consumption. They found that the new
proposed approach has a strong correlation with previous
approaches and better efficiency than other techniques. A
recent study proposed a context-aware approach for mobile
app recommendation using tensor analysis (CAMAR) [39].
They conducted data analysis on Google Play Store and
Apple's App Store in order to find the mobile apps
characteristics. They utilized an effective tensor-based
framework to integrate the features on users and apps and app
category information to facilitate the app recommendation
performance. Thus, they demonstrated the effectiveness of
their proposed method.

A considerable amount of literature has been published
recently regarding recommender systems for mobile apps. One
study proposed a recommender system for mobile apps based
on user reviews using topic modeling techniques and
probability distributions to represent apps features [40].
Hence, this study aimed to construct a user profile based on
his installed apps in order to identify his preferences.
Therefore, they found that user reviews, extracted from
datasets that were crawled from the Apple App Store,
represented apps features efficiently. Another study [41]
introduced a mobile sparse additive generative model (Mobi-
SAGE) to recommend apps. They crawled an extensive
collection of apps from the 360 App Store in China. The
results of their study demonstrated that the proposed model
outperformed other existing state-of-the-art methods.

According to the literature review, many models were
developed using variety of features to support users selecting
applications. Table I show a summary for researches discussed
in the last section regarding the platform and used features for
deployed recommender systems.

TABLE I. SUMMARY OF RECOMMENDER SYSTEM RESEARCHES

Ref. Platform Attributes

[25]
play.tools

framework
Ratings.

[26] Android
Name, category, description, developer, update,
permissions, and app logo/images.

[27] Apple Version-categories, genre, and ratings.

[28] Android, Apple
User history, Tags used to define the

applications by the user, and user satisfaction.

[29]

Apple, Android,

Blackberry and

Windows App
store

Apps installed on the user’s phone.

[30] Android
Cost, app logo/ image, gender, and types of
downloaded applications.

[31] Android Category tree.

[32] Amazon Dataset Ratings and reviews.

[33] Android # of users, # of versions, and # of ratings.

[34] Apple
Trend based Applications, rating, review spam

detection, and ranking fraud detection.

[35] Android
User installation behavior, user preferences, and
Modeling random choice.

[36] Apple

Application Rating between different platforms

(iPhone-iPad platform and iPhone-iPad-iMac
platform).

[37] Android
Cost, ratings, and user profile based on the

installed applications.

[38] Android Categories and ratings.

[39] Android, Apple
User’s preference, app category, and features of
multiple views.

[40] Apple User preferences and reviews.

[41] Android User interests, ratings, and privacy preferences.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

46 | P a g e

www.ijacsa.thesai.org

As shown, most of previous researches used either
collaborative or hybrid approaches for building recommender
systems which increase system complexity.

Our research aims to study the inter-relation between app
attributes to select the most significant features. Furthermore,
develop a content-based recommender system using the
selected attributes.

IV. METHODOLOGY

In this section, we illustrate our proposed system, which
includes five steps, as shown in Fig. 1. In the first step, we
acquired the dataset. In the second step, we prepared the
dataset for analysis to complete the other steps. In the third
step, we analyzed the data to identify the correlations among
the features. In the fourth step, we designed a suitable
recommender system model. The final step is to test the
recommender system model and make some
recommendations.

The rest of this section explains the steps of our approach
in more detail.

A. Data Acquisition

The dataset used to achieve this study is consists of 10841
apps scraped from the Google Play store, which publicly
available on the Kaggle website [42], where its most recent
update provided two months ago. This dataset provides
detailed information from Google about the apps on the
Google Play store. Thus, it includes 13 attributes with three
datatypes: String, Categorical and Numeric. Only the
“reviews” belongs to the numeric data type with values range
from 0 to approximate 78Million reviews. Table II shows the
attributes based on data types.

The dataset includes 33 different categories (shown in
Fig. 2) and 118 genres, which define the sub-category for each
application.

An initial statistical summary about the numerical data
shown in Table III to provide a deep understanding about each
attribute for further processing.

Fig. 1. Proposed System Methodology.

TABLE II. THE GOOGLE PLAY STORE ATTRIBUTES CLASSIFIED BY DATA

TYPE

 Categorical attributes

Installs Type Genres

Category Content Rating Android Ver.

 Rating

 String attributes

App name Size Price

Last Update App Ver.

 Numeric

 Reviews

Fig. 2. A Cloud Showing the Categories.

TABLE III. STATISTICAL SUMMARY FOR THE NUMERICAL ATTRIBUTES

 Count Mean STD Min Max

Rating 8196 4.17E+00 5.37E-01 1.00E+00 5.00E+00

Reviews 9660 2.17E+05 1.83E+06 0.00E+00 7.82E+07

Size 9660 3.18E+07 3.48E+07 8.70E+03 1.05E+08

Installs 9660 7.78E+06 5.38E+07 0.00E+00 1.00E+09

Type 9660 7.82E-02 2.68E-01 0.00E+00 1.00E+00

Price 9660 1.10E+00 1.69E+01 0.00E+00 4.00E+02

B. Data Preparation

Data preparation is a necessary step to analyze the data
correctly, and to facilitate understanding of the relationships
among the data and to gain useful insights. As shown from
Table III; the Kaggle dataset contains some missing values for
"rating" attribute. In addition, inconsistencies in the attributes
"size", "installs", "price" and "reviews" by remove unwanted
information.

The data preparation process of the dataset using Python
are applied in three consecutive steps as follows:

1) Removed duplicated rows which reduce the dataset by

1181 records.

2) Convert string and categorical datatypes into numeric

to allow further data analysis.

3) Insure consistency of numeric attributes through the

following:

a) Convert the characters 'K' and 'M' within the “Size”

attribute to a numeric values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

47 | P a g e

www.ijacsa.thesai.org

b) Propagate last valid observation forward using

forward fill method to replace the “Varies with device” value

to get a numeric value within the “Size” attribute.

c) Convert the characters '+', '$', and 'M' from “Installs,”

“Price,” and “Reviews,” into numeric values.

d) The last attribute that needed to be converted was

“Type,” where we mapped the string values to numeric ones.

Regarding the missing values for the "rate" attributes, a
null value kept for the associate records as they represent
15.15% of the total dataset. There are different reasons for the
missing values within the "rate" attributes such as: new
released application or not common for users. Therefore, we
decided to include the records with the null value.

C. Statistical Analysis

Pearson’s correlation coefficient is used to measure the
linear correlation between the numerical features of the apps
in the Google Play store. Pearson’s correlation coefficient is a
statistical measure used to determine the strength of the
relationship between paired data [4]. Fig. 3 shows the
Pearson’s correlation coefficient heatmap between the
numeric features for the dataset. The correlation coefficients
between attributes is the ground truth that help in choosing the
most prominent features for further use in building the
recommender system.

According to the heatmap; the attributes "reviews", "size",
and "installs" are the most correlated attributes while other
attributes are not.

D. Recommender System Construction

When looking for app a common attribute to be specified
is the category. Then, a list of all apps under the specified
category are shown. Sorting the apps to guide you to the best
is restricted by choose one attribute. Based on the correlation
coefficient and the importance of category attribute for the
user; we decided to include all the four attributes ("reviews",
"size", "installs", and "category") in defining the app profile
for a content-based recommender system. The app profile
consists of 37 columns; the first column is the app id within
the dataset, and the next 33 columns represent the 33
categories of apps and three columns for "reviews",
"installations", and "size". Furthermore, each column/feature
scaled by its maximum absolute value for efficient
calculations.

Fig. 3. Pearson's Correlation Coefficient Heat Map.

E. Classification using K-NN

A K-nearest neighbors (K-NN) algorithm; as an
unsupervised machine learning; is used to measure the
similarity between apps using their profiles. The nearest
neighbor algorithm uses a “brute” algorithm and “cosine”
metric.

V. RESULTS AND DISCUSSION

Our proposed recommender system developed based on
building a profile for each app using the most significant
attributes. However, Pearson's correlation coefficient (as in
Fig. 3) showed that "reviews", "size" and "installs" are the
most significant correlated positively attributes. The highest
correlated pair is “Installs” and “Reviews” with value 0.63.
Thus, obviously highlight that users prefer to download apps
that intensively reviewed. Fig. 4 shows a log scale for the
relationship between the "installs" and the "reviews".

The second significant correlation between “Size” and
“Installs” with value 0.19 shows a considered level of
importance of the application size for users. The log scale
relationship (Fig. 5) shows increase number of installs for
small size applications while still large applications attract
users.

However, most popular mobile apps, especially game
apps, tend to be feature-rich, which implies that additional
code and assets can pump up file sizes. Generally, the statistic
indicates an increase in the number of mobile game app
downloads from Google Play worldwide. In 2018, a total of
29.4 billion mobile games were downloaded globally across
Google’s app store [43]. For example, the famous PUBG
Game, which is sized at 1.6 GB for Android, is considered to
be the most downloaded mobile game in the last quarter,
which is a free, high-resolution game with excellent graphics
and details [44].

Furthermore, a less significant correlation between “Size”
and “Reviews” with a value 0.16 showed the importance of
the "Size" attribute along with the "reviews" which highlight
the user's need to optimize their storage use. Fig. 6 shows that
apps with small sizes are with more reviews, which therefore
more installs.

Fig. 4. Correlation between Installs and Reviews.

https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Correlation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

48 | P a g e

www.ijacsa.thesai.org

Fig. 5. Correlation between Size and Installs.

Fig. 6. Correlation between Size and Reviews.

To evaluate the developed recommender system; three
case studies are used for different categories.

Case study 1: From the Social category; the “Facebook”
application with id “8823”. By applying the “K-NN” to the
matrix of profiles of all applications, four apps are
recommended and sorted based on their K-NN metrics.
Table IV shows the recommended apps and their distances
from the Facebook app.

Case study 2: From the Game category, the “Candy Crush
Saga” application with id “7484” is used for testing. By
applying the “K-NN”, four recommended games are shown on
Table V along with their K-NN distances.

Case study 3: From the education category, the
"Wikipedia" application with id “8452” is used for testing.
Table VI shows the recommended apps and their
corresponding distance from the "Wikipedia" app.

TABLE IV. RECOMMENDED APPS FOR FACEBOOK CASE STUDY (ID=8823)

ID App Reviews Size Installs distance

8824 Instagram 6.66E+07 1.04E+08 1.00E+09
4.86E-

04

8827 SnapChat 1.70E+07 1.04E+08 5.00E+08
3.68E-

03

3325
Facebook
Lit

8.61E+06 1.04E+08 5.00E+08
4.81E-
03

8830 Google+ 4.83E+06 1.04E+08 1.00E+09
5.86E-

02

TABLE V. RECOMMENDED APPS FOR CANDY CRUSH SAGA CASE STUDY

(ID=7484)

ID App Reviews Size Installs Distance

7485
Dream
League

Soccer2018

9.88E+06 7.76E+07 1.00E+08
1.21E-

02

6947
Temple
Run 2

8.12E+06 6.50E+07 5.00E+08
2.55E-
02

8762
My Talking

Tom
1.49E+07 1.04E+08 5.00E+08

2.76E-

02

7508
Subway

Surfers
2.77E+07 7.97E+07 1.00E+09

5.93E-

02

TABLE VI. RECOMMENDED APPS FOR WIKIPEDIA CASE STUDY (ID=8452)

ID App Reviews Size Installs distance

9587
English

Hindi
Dictionary

3.84E+05 1.04E+08 1.00E+07 1.65E-02

8455
Dictionary-

Merriam-
Webster

4.54E+05 1.04E+08 1.00E+07 1.26E-01

9496 Dictionary 2.64E+05 1.04E+08 1.00E+07 1.76E-01

8463
Moon+

Reader
2.34E+05 1.04E+08 1.00E+07 1.87E-01

VI. CONCLUSIONS

Mobile app recommendation based on only application
installation records is a challenging task. In this paper, we
proposed a model that seamlessly combines content-based
filtering with application profiles. Thus, we used a real-world
app dataset from Google Play to analyze app information and
then utilized the most effective content to build a content-
based recommender system. Based on our results, the most
influential factors in choosing an app are the number of
installs, number of reviews, app size, and category. Finally,
we introduced some examples to prove that our system
achieved good and reasonable results.

VII. FUTURE WORK

Although our proposed recommender system was
originally designed for app recommendation from the Google
Play store, we believe it can also be applied to other stores as
well as other domains, such as book recommendation, music
recommendation, movie recommendation, and food
recommendation. Therefore, we believe that some possible
future studies using the same experimental set up are possible.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

49 | P a g e

www.ijacsa.thesai.org

Also, we aim to build a benchmark dataset from various
application stores which could be used by researchers for
building AI systems and recommender systems.

ACKNOWLEDGMENT

This research project was supported by a grant from the
“Research Center of the Female Scientific and Medical
Colleges”, Deanship of Scientific Research, King Saud
University. The authors thank the Deanship of Scientific
Research and RSSU at King Saud University for their
technical support.

REFERENCES

[1] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” IEEE Trans. Softw. Eng., vol.
43, no. 9, pp. 817–847, 2017, doi: 10.1109/TSE.2016.2630689.

[2] “Google Play Store: number of apps 2018 | Statista.” [Online]. Available:
https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/. [Accessed: 30-Mar-2019].

[3] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749,
Jun. 2005, doi: 10.1109/TKDE.2005.99.

[4] Y. Mu, X. Liu, and L. Wang, “A Pearson’s correlation coefficient based
decision tree and its parallel implementation,” Inf. Sci. (Ny)., vol. 435,
pp. 40–58, Apr. 2018, doi: 10.1016/j.ins.2017.12.059.

[5] M.-A. Amal and B.-A. Ahmed, “Survey of Nearest Neighbor
Condensing Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 2, no. 11,
2011, doi: 10.14569/ijacsa.2011.021110.

[6] S. Bafandeh, I. And, and M. Bolandraftar, “Application of K-Nearest
Neighbor (KNN) Approach for Predicting Economic Events: Theoretical
Background.”

[7] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender
Systems Handbook. 2011, doi: 10.1007/978-0-387-85820-3.

[8] V. Viljanac, “RECOMMENDER SYSTEM FOR MOBILE
APPLICATIONS,” Multimed. Tools Appl., vol. 77, no. 4, pp. 4133–
4153, Feb. 2018, doi: 10.1007/s11042-017-4527-y.

[9] R. G. De Souza, R. Chiky, and Z. K. Aoul, “Open source
recommendation systems for mobile application,” CEUR Workshop
Proc., vol. 676, pp. 55–58, 2010.

[10] A. Finkelstein, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “Mining App
Stores: Extracting Technical, Business and Customer Rating Information
for Analysis and Prediction,” UCL Res. Notes, vol. 13, p. 21, 2013.

[11] S. Mokarizadeh and M. Matskin, “Mining and Analysis of Apps in
Google Play,” no. January 2013, pp. 527–535, 2013, doi:
10.5220/0004502005270535.

[12] A. Mahmood, “Identifying the influence of various factor of apps on
google play apps ratings,” J. Data, Inf. Manag., vol. 2, no. 1, pp. 15–23,
2020, doi: 10.1007/s42488-019-00015-w.

[13] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the
characteristics of high-rated apps? A case study on free Android
Applications BT - IEEE International Conference on Software
Maintenance and Evolution,” pp. 301–310, 2015.

[14] M. Ali, M. E. Joorabchi, and A. Mesbah, “Same App, Different App
Stores: A Comparative Study,” Proc. - 2017 IEEE/ACM 4th Int. Conf.
Mob. Softw. Eng. Syst. MOBILESoft 2017, pp. 79–90, 2017, doi:
10.1109/MOBILESoft.2017.3.

[15] W. Martin, F. Sarro, and M. Harman, “Causal impact analysis for app
releases in google play,” pp. 435–446, 2016, doi:
10.1145/2950290.2950320.

[16] H. Zhu, E. Chen, H. Xiong, H. Cao, and J. Tian, “Mobile app
classification with enriched contextual information,” IEEE Trans. Mob.
Comput., vol. 13, no. 7, pp. 1550–1563, 2014, doi:
10.1109/TMC.2013.113.

[17] H. Zhu, H. Cao, E. Chen, H. Xiong, and J. Tian, “Exploiting Enriched
Contextual Information for Mobile App Classification,” pp. 1617–1621,
9781450311564.

[18] G. Berardi, A. Esuli, T. Fagni, and F. Sebastiani, “Multi-store metadata-
based supervised mobile app classification,” Proc. 30th Annu. ACM
Symp. Appl. Comput. - SAC ’15, pp. 585–588, 2015, doi:
10.1145/2695664.2695997.

[19] A. A. Al-Subaihin et al., “Clustering Mobile Apps Based on Mined
Textual Features,” Proc. 10th ACM/IEEE Int. Symp. Empir. Softw. Eng.
Meas. - ESEM ’16, pp. 1–10, 2016, doi: 10.1145/2961111.2962600.

[20] V. Radosavljevic et al., “Smartphone App Categorization for Interest
Targeting in Advertising Marketplace,” 2017, pp. 93–94, doi:
10.1145/2872518.2889411.

[21] K. Ochiai, F. Putri, and Y. Fukazawa, “Local app classification using
deep neural network based on mobile app market data,” 2019 IEEE Int.
Conf. Pervasive Comput. Commun. PerCom 2019, pp. 186–191, 2019,
doi: 10.1109/PERCOM.2019.8767416.

[22] D. Surian, S. Seneviratne, A. Seneviratne, and S. Chawla, “App
Miscategorization Detection: A Case Study on Google Play,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 8, pp. 1591–1604, 2017, doi:
10.1109/TKDE.2017.2686851.

[23] A. Arampatzis and G. Kalamatianos, “Suggesting Points-of-Interest via
Content-Based, Collaborative, and Hybrid Fusion Methods in Mobile
Devices,” ACM Trans. Inf. Syst., vol. 36, no. 3, pp. 1–28, 2017, doi:
10.1145/3125620.

[24] H. Cao and M. Lin, “Mining smartphone data for app usage prediction
and recommendations: A survey,” Pervasive Mob. Comput., vol. 37, pp.
1–22, 2017, doi: 10.1016/j.pmcj.2017.01.007.

[25] W. Woerndl, C. Schueller, and R. Wojtech, “A Hybrid Recommender
System for Context-aware Recommendations of Mobile Applications,”
in 2007 IEEE 23rd International Conference on Data Engineering
Workshop, 2007, pp. 871–878, doi: 10.1109/ICDEW.2007.4401078.

[26] N. Chen, S. C. H. Hoi, S. Li, and X. Xiao, “SimApp: A Framework for
Detecting Similar Mobile Applications by Online Kernel Learning,”
Proc. Eighth ACM Int. Conf. Web Search Data Min., pp. 305–314, 2015,
doi: 10.1145/2684822.2685305.

[27] J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua, “New and Improved:
Modeling Versions to Improve App Recommendation,” Proc. 37th Int.
ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 647–656, 2014, doi:
10.1145/2600428.2609560.

[28] E. Costa-Montenegro, A. B. Barragáns-Martínez, and M. Rey-López,
“Which App? A recommender system of applications in markets:
Implementation of the service for monitoring users’ interaction,” Expert
Syst. Appl., vol. 39, no. 10, pp. 9367–9375, Aug. 2012, doi:
10.1016/j.eswa.2012.02.131.

[29] U. Bhandari, K. Sugiyama, A. Datta, and R. Jindal, “Serendipitous
recommendation for mobile apps using item-item similarity graph,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 8281 LNCS, pp. 440–451, 2013, doi:
10.1007/978-3-642-45068-6_38.

[30] A. Yasin, L. Liu, R. Fatima, and W. Jianmin, “Designing the Next
Mobile App Recommender System for the Globe,” 2017 14th
International Symposium on Pervasive Systems, Algorithms and
Networks & 2017 11th International Conference on Frontier of
Computer Science and Technology & 2017 Third International
Symposium of Creative Computing (ISPAN-FCST-ISCC), 2017, pp.
491–500, doi: 10.1109/ISPAN-FCST-ISCC.2017.44.

[31] B. Liu, Y. Wu, N. Z. Gong, J. Wu, H. Xiong, and M. Ester, “Structural
Analysis of User Choices for Mobile App Recommendation,” ACM
Trans. Knowl. Discov. Data, vol. 11, no. 2, pp. 1–23, Nov. 2016, doi:
10.1145/2983533.

[32] G. Ling, M. R. Lyu, and I. King, “Ratings meet reviews, a combined
approach to recommend,” in Proceedings of the 8th ACM Conference
on Recommender systems - RecSys ’14, 2014, pp. 105–112, doi:
10.1145/2645710.2645728.

[33] Y. Yao, W. X. Zhao, Y. Wang, H. Tong, F. Xu, and J. Lu, “Version-
Aware Rating Prediction for Mobile App Recommendation,” ACM
Trans. Inf. Syst., vol. 35, no. 4, pp. 1–33, Jun. 2017, doi:
10.1145/3015458.

[34] H. Zhu, C. Liu, Y. Ge, H. Xiong, and E. Chen, “Popularity Modeling for
Mobile Apps :,” vol. 45, no. 7, pp. 1303–1314, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

50 | P a g e

www.ijacsa.thesai.org

[35] V. C. Cheng, L. Chen, W. K. Cheung, and C. kuen Fok, “A
heterogeneous hidden Markov model for mobile app recommendation,”
Knowl. Inf. Syst., vol. 57, no. 1, pp. 207–228, 2018, doi:
10.1007/s10115-017-1124-3.

[36] T.-S. Chua et al., “Cross-Platform App Recommendation by Jointly
Modeling Ratings and Texts,” ACM Trans. Inf. Syst., vol. 35, no. 4, pp.
1–27, 2017, doi: 10.1145/3017429.

[37] R. M. Frey, R. Xu, C. Ammendola, O. Moling, G. Giglio, and A. Ilic,
“Mobile recommendations based on interest prediction from consumer’s
installed apps–insights from a large-scale field study,” Inf. Syst., vol. 71,
pp. 152–163, 2017, doi: 10.1016/j.is.2017.08.006.

[38] D. F. Chamorro-Vela et al., “Recommendation of Mobile Applications
based on social and contextual user information,” Procedia Comput. Sci.,
vol. 110, pp. 236–241, 2017, doi: 10.1016/j.procs.2017.06.090.

[39] T. Liang et al., “CAMAR: a broad learning based context-aware
recommender for mobile applications,” Knowl. Inf. Syst., vol. 62, no. 8,
pp. 3291–3319, 2020, doi: 10.1007/s10115-020-01440-9.

[40] K. P. Lin, Y. W. Chang, C. Y. Shen, and M. C. Lin, “Leveraging Online
Word of Mouth for Personalized App Recommendation,” IEEE Trans.
Comput. Soc. Syst., vol. 5, no. 4, pp. 1061–1070, 2018, doi:
10.1109/TCSS.2018.2878866.

[41] H. Yin, W. Wang, L. Chen, X. Du, Q. V. Hung Nguyen, and Z. Huang,
“Mobi-SAGE-RS: A sparse additive generative model-based mobile
application recommender system,” Knowledge-Based Syst., vol. 157, pp.
68–80, 2018, doi: 10.1016/j.knosys.2018.05.028.

[42] “Google Play Store Apps | Kaggle.” [Online]. Available:
https://www.kaggle.com/lava18/google-play-store-apps/. [Accessed: 16-
Mar-2019].

[43] “Global app stores mobile games downloads 2018 | Statistic.” [Online].
Available: https://www.statista.com/statistics/661553/ global-app-stores-
mobile-game-downloads/. [Accessed: 30-Mar-2019].

[44] “PUBG most downloaded mobile game last quarter, but revenue flags
|GamesIndustry.biz.” [Online]. Available: https://www.gamesindustry.
biz/articles/2018-05-04-pubg-most-downloaded-mobile-game-last-
quarter-but-fails-to-make-an-impact-with-revenue. [Accessed: 08-Sep-
2020].

