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Abstract—This study tests the Saudi stock market weak form 

using the weak form of an efficient market hypothesis and 

proposes a recurrent neural network (RNN) to produce a trading 

signal. To predict the next-day trading signal of several shares in 

the Saudi stock market, we designed the RNN with a long short-

term memory architecture. The network input comprises several 

time series features that contribute to the classification process. 

The proposed RNN output is fed to a trading agent that buys or 

sells shares based on the share current value, current available 

balance, and the current number of shares owned. To evaluate 

the proposed neural network, we used the historical oil price data 

of Brent crude oil in combination with other stock features (e.g., 

previous day  ( opening and closing price of the evaluated share). 

The results indicate that oil price variations affect the Saudi 

stock market. Furthermore, with 55% accuracy, the proposed 

RNN model produces the next-day trading signal. For the same 

period, the proposed RNN trading method achieves an 

investment gain of 23%, whereas the buy-and-hold method 

obtained 1.2%. 

Keywords—Time series; neural network; long short-term 

memory; stock price; Tadawul 

I. INTRODUCTION 

Of all the presented works for forecasting stock markets, 
only very few have targeted the Saudi stock market. In this 
study, we presented a recurrent neural network (RNN) that 
utilizes the long short-term memory (LTSM) architecture for a 
multivariate time series prediction to generate a trading signal 
(buy, sell, or do nothing) for several Saudi stock indices that 
will be used in combination of a trading algorithm to buy and 
sell shares based on three factors: share current value, current 
available balance, and a current number of shares owned. 

Neural networks have gained much attention in recent 
years, especially in stock market prediction. The nature of the 
randomness accosted with the stock market makes it hard to 
achieve high confidence in predicting the index price using 
normal statistical methods. By using neural networks with 
several futures, we can achieve a high prediction value. To 
study the effect of past historical prices on future prices and to 
develop a trading agent using neural networks, we tested the 
Saudi stock market for the weak form efficiency. In producing 
a trading signal, the developed neural network is an RNN with 
an LSTM architecture. 

The remainder of the paper is organized as follows. 
Section II gives a literature review on the works undertaken to 
predict and forecast the stock market price. Section III tests 
the weak form of the Saudi stock market efficiency. (The test 
is useful for understanding the effect of the historical data of a 
share on future values.) Discussion on the proposed method 
and a brief neural network introduction is presented in 
Section IV. Section V evaluates the proposed method and 
compares it to a known trading method. Finally, we give the 
conclusions of this study in Section VI. 

II. LITERATURE REVIEW 

Recently, the stock market prediction has been a hot topic 
in the research field. To predict stock prices, many researchers 
have developed methods, but only a few have developed a 
trading strategy. Some of the reviews of the developed 
methods are published [1, 2]. For example, Shah et al. 
classified stock prediction methods into four categories: 
statistical methods, pattern recognition, machine learning, and 
sentiment analysis. 

The autoregressive integrated moving average (ARIMA) 
model, which is one of the well-known statistical methods, 
uses a class of models to model the time series based on 
historical values. The model is fitted to the historical values of 
a stock price in predicting (forecasting) the stock's future 
price. The model consists of three parts: (1) an autoregressive 
(AR) model, in which the forecasted value is a linear 
combination of past lagged values; (2) a moving average 
(MA) model that forecasts the future value using the past 
forecast errors; and (3) the difference operation of past and 
future values. The model is denoted by ARIMA(p, d, q), 
where p is the order (number of time lags) of the AR model, d 
is the degree of differencing, and q is the order of the MA 
model. 

Pattern recognition is closely related to machine learning 
but with a different implementation. Here, we focus on the 
methods of finding patterns in the stock's historical values. 
Then, by using computer algorithms, we predict future values 
using these patterns. Previous studies show an example of a 
pattern: the stock uptrend [3] and the open high–low close 
price candlestick charts [4]. 
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Machine learning prediction uses historical data and the 
desired output as the training sets to build a mathematical 
model through an iterative process until an objective function 
is optimized. Previous studies have shown the usage of 
classification and regression as examples of machine learning 
in trading methods and the closing price of stock [5, 6, 7]. 

In sentiment analysis, it uses text information, such as 
news articles or social media feeds on stock markets. In 
predicting stock trends based on the feed provided, the 
analysis employs machine learning algorithms [8]. 

Idress et al. [9] built an ARIMA model to predict the 
Indian stock market, in which they found a deviation on a 5% 
mean percentage error. 

Meanwhile, to predict the Saudi stock prices, Olatunji et 
al. [10] proposed an artificial neural network (ANN) model, 
applying on three major stock indices: Alrajhi bank, Saudi 
Telecom Company, and Saudi Basic Industries Corporation 
SABIC stocks. They only used the previous-day closing price 
as the model input. Moreover, the proposed model was used as 
an investment adviser, and it achieved a low root mean 
squared error (RMSE) of 1.8174 and a mean absolute 
percentage error of 1.6476. 

Also, Jarrah and Salim [11] proposed an RNN and a 
discrete wavelet transform (DWT) to predict the Saudi stock 
price trends. The model consisted of two stages. The first 
stage uses DWT to break the stock price into both frequency 
and time domains to filter the noise associated with the 
signals, and the second stage is an RNN that performs the 
prediction. The model was tested to predict the next-seven 
days closing price of the Saudi stock. The prediction result 
was then compared with that obtained by a prediction process 
performed using the ARIMA model. Consequently, the 
proposed model (DWT + RNN) achieved an RMSE of 0.0522 
when the RNN model used four batches and four neurons. 

Alotaibi et al. [12] also used an ANN model to predict the 
Saudi stock market. Their ANN model consisted of three 
layers: input, hidden, and output layers. The input layer 
contained the historical close and open prices of the Saudi 
stock market and the historical close and open prices of oil. 
Bayesian regularization backpropagation was used for 
network training from 2003 to 2012. The test set training 
spanned from 2013 to the end of 2015. 

Hua et al. [13] gave an introduction to deep learning with 
LSTM for time series prediction and proposed random 
connectivity for LSTM to overcome the computation cost. 

Tilakaratne et al. [5] developed a neural network for 
predicting the trading signals of the Australian All Ordinary 
Index. Then, they compared an ANN to a probabilistic neural 
network (PNN), in which they found that the ANN 
outperformed the PNN. 

On the basis of the previous studies mentioned above, 
many developed methods use historical information form the 
share itself without the combination of other factors (e.g., oil 
prices). These methods targeted different markets other than 
the Saudi stock market. 

III. WEAK FORM OF EFFICIENT MARKET TEST 

The weak form of an efficient market hypothesis states 
that the future prices of a stock market with a weak efficiency 
cannot be predicted using historical information, such as 
trading volume, closing price, and earnings. It means that one 
cannot predict future values using the available information. 
Fama [14] divided the efficient market hypothesis into three: 
weak, semi-strong, and strong hypotheses. 

Previous studies tested the Saudi stock market efficiency 
in its weak form and concluded the same; however, the 
presented studies are not up to date [15, 16]. 

To prove that the stock price under test can be predicted 
using historical values, we will be testing the Saudi stock 
indices used to evaluate the proposed RNN for the weak-form 
efficiency hypothesis. The weak form of the market efficiency 
for individual stocks is tested for randomness. If the stock 
does not follow a random walk, the hypothesis fails. The stock 
index can be predicted using historical data. 

Several statistics tests are known for use in testing data 
randomness. Here, we used the Kolmogorov–Smirnov test 
(K–S test). The null hypotheses in the K–S test are that the 
data (stock returns) under the test follow a random walk, and 
the future value cannot be predicted. The alternative 
hypotheses are that the data under test are not random and that 
the data can be predicted using historical values. 

Here, we used Alrajhi, Alinma, and SABIC stocks. The 
historical values are dated from January 2010 to the end of 
March 2020. The stocks' closing price was converted to the 
stock returns, as shown in Eq. (1), where R is the logarithmic 
stock return; l(i) is the day i closing price; and l(i − 1) is the 
previous closing price of the day i: 

 ( )     (
 ( )

 (   )
)             (1) 

A. Kolmogorov–Smirnov Test 

The K–S test is a nonparametric test for data randomness. 
The null hypotheses of the test assume that the cumulative 
distribution function (CDF) of the data under test is equal to 
the hypothesized CDF. The CDF of the data was computed 
herein and compared with the hypothesized CDF using Eq. 
(2), where Dn is the maximum amount of the hypothesized 
CDF (Fn(x)) exceeding the calculated CDF (Gn(x)). When both 
CDFs are equal to some factors, the data are random, and the 
test fails to reject the null hypothesis that the test statistics 
converge to zero as n goes to infinity. Detailed mathematical 
background on the K–S test is provided in [17]. 

         |  ( )    ( )|            (2) 

B. Market Weak form Test Results 

We performed the test on the three stocks used to evaluate 
the proposed RNN. Table I shows the result of the K–S test 
performed with a significance level of 0.05. (The p-value is 
the probability value of the test.) Smaller values (typically 
<0.05) indicate a strong rejection of the null hypothesis. The 
test statistic is a random variable calculated from the data 
under the test used in determining the null hypothesis 
rejection, whereas the z-value is the critical value. The K–S 
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test rejected the null hypotheses by comparing the p-value 
with the significance level. The null hypothesis is rejected if 
the p-value is less than the significance level (i.e., the data 
under test are not random). 

Based on the test performed, Alinma, Alrajhi, and SABIC 
stock returns did not follow a random walk and were not 
independent of past values. This proved that the proposed 
stock prediction method and the trading agent could facilitate 
historical values to predict trading signals. 

TABLE I. KOLMOGOROV–SMIRNOV TEST RESULTS 

Stock 
Hypothesis test 

result 
p-value Test statistic z-value 

Alinma 

The null hypothesis 

is rejected. 
0.00 0.1191 0.0268 

Alrajhi 
The null hypothesis 
is rejected. 

0.00 0.0904 0.0268 

SABIC 
The null hypothesis 
is rejected. 

0.00 0.1143 0.0268 

IV. METHODOLOGY 

Neural networks are a set of algorithms used to recognize 
underlying relationships in data sets. The process of a neural 
network is similar to the operation of a human brain. Here, we 
used an RNN with an LSTM architecture to produce a trading 
signal. 

The input to the neural network is called a feature, which 
is a measurable characteristic of the observed data or a 
characteristic with an indirect effect on it. Accordingly, this 
section provides a brief introduction to neural networks. The 
introduction aims to familiarize the reader with the basics of 
neural networks and provide them the ability to understand 
some concepts. A detailed background regarding this matter is 
reported in [18]. 

A. RNN 

RNNs are a class of neural networks best used in 
sequenced data sets, such as time series. An RNN has a one-
to-one connection between its internal layers and the exact 
position in the time series [18]. An RNN can simulate any 
algorithm given sufficient data. These networks are based on 
the works by Rumelhart et al. [19], who described a new 
method for teaching a network through backpropagation. 
Unlike feedforward neural networks, RNNs have an advantage 
in using their internal memory to process a sequence of data, 
such as stock markets. Moreover, the network input (e.g., oil 
prices and index price) in RNNs are interrelated. On the 
contrary, an RNN suffers from exploding problems and 
gradient vanishing. Gradient vanishing is a term associated 
with neural network training, and a gradient is a vector of the 
calculated error during the network training process. The 
gradient is used to update the network weights to achieve a 
small error, such as an error in predicted stock value when 
compared with the actual value. The gradients in an RNN 
accumulate during the update process, which causes it to 
explode (i.e., it becomes large and goes to infinity). 

Fig. 1 shows the basic building block of an RNN. The 
input to the block is a vectored time series xt. In our case, we 

used the stock price and associated features. ht is the output 
from the block to be fed to the subsequent titration at time t + 
1. ht − 1 is the output from the previous block. Both ht and ht − 1 
are called the hidden layer vectors. wh and wx are the weight 
vectors for the hidden connection and the input vector, 
respectively. The weight vectors are chosen by network 
training, which is achieved by comparing the output 
(predicted) with the actual value and adjusting the weight 
vectors to achieve the smallest error. F is an activation 
function within the block. Activation functions are 
mathematical equations that determine the block output based 
on preset conditions. The most important activation function is 
the tanh function. bt is a bias added to the block input. 
Equation (3) shows the math behind RNNs. 

ot = ht = F(wh ht – 1 + wx xt + bt)            (3) 

 

Fig. 1. The Basic Building Block of an RNN. 

B. LSTM 

Proposed by Hochreiter and Schmidhuber [20], LSTM is a 
type of RNN architecture used to solve the exploding and 
vanishing gradient problem that occurs in a normal RNN. The 
constant error carousel (CEC) LSTM was used to overcome the 
problems caused by the error back flow. The CEC controls the 
error flow by units, called gates, which are implemented in the 
memory block of the LMTS. The gates are categorized into the 
input gate, output gate, and forget gate, in which each gate has 
a function to achieve. The input gate controls the flow of the 
new sequence value. The output gate controls the usage of the 
value inside the cell using the activation function of the LSTM. 
The forget gate controls how long a value remains inside the 
memory cell. 

Fig. 2 shows the building block of an LSTM unit, where Ct 
is the cell state, xt is a vector input to the cell, ft is the output 
from the sigmoid function that represents what cell state can 
be passed from adjacent cells, and it is the output from the 
sigmoid function that represents the output from the tanh 
function of the input gate to the cell. This updates the cell state 
with new values. Ot is multiplied by tanh of the cell state to 
choose what part to output to the adjacent cell. 

Fig. 3 shows three hidden units for a vector input in an 
LSTM network. This number can be more than three, 
depending on the design. Equations (4)–(8) are the compact 
forms of the forward pass of an LSTM unit that contains a 
forget gate developed in [21]. In the equations, W, U, and b 
denote the weights and biases determined by network training. 
Each layer produces a single output, called ht, which is 
connected to a neuron at the final layer. The function of the 
neuron is to multiply each input by weight and sum them up to 

F
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produce an output  ̂  with length n, where n is the number of 
classifications produced (Fig. 4). 

ft = g Wf xt + Ufht − 1 + bf)             (4) 

it = g Wi xt + Uiht − 1 + bi)             (5) 

gt = c Wgxt + Ught – 1 + bg)            (6) 

ot = g Woxt + Uoht − + bo)             (7) 

ft = g Wfxt + Ufht – 1 + bf)             (8) 

ht = th               (9) 

The output  ̂  is connected to a softmax layer, which 
functions to convert the input vector  ̂  of n elements to a 
normalized probability distribution with n probabilities. The 
element with the highest probability is the network output. 
The produced classifications are two training signals: buy and 
sell. An in-depth discussion on pattern recognition and 
classification is shown in [22]. 

 

Fig. 2. LSTM basic Building Cell Called a Neuron or a Hidden Unit. 

 

Fig. 3. The Network of the LSTM Units Known as Hidden Layers. 

 

Fig. 4. Final Network Stage. The Output from each Cell is Added to 

Produce the Prediction. 

C. Trading 

The proposed design was constructed using LSTM layers 
connected in series. The RNN input comprised a set of time 
series data representing the features associated with the stock 
and oil closing price. The network setup consisted of the 
training method, the number of hidden elements (LSTM 
units), and the number of training titrations. Fig. 5 shows a 
history of three stock prices in Saudi Riyals that was used in 
this study. The data will be divided into two sets. The first set 
will be used to train the classifier, and the other data will be 
used to evaluate the proposed classifier. Fig. 6 shows the 
history of the oil prices that will be used as an input to the 
proposed network. Table II lists the options used in 
constricting the network. 

1) Input features: Table III lists the features used for the 

buy and sell classification network. Several methods can be 

used for feature selection. However, in this study, we used a 

trial-and-error method to find the best feature combination 

because some feature selection methods fail when chart 

technical indicators are used in the stock price. 

 

Fig. 5. Historical Data of Three Stocks from March 21, 2012, to April 24, 

2020. 

 

Fig. 6. Historical Data on Oil Prices in USD that are used in the Study. The 

Data are from March 21, 2012, to April 24, 2020. 
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TABLE II. LSTM NETWORK SETTINGS 

Option Description Value 

Solver Training algorithm ADAM 

Epoch Number of full training data passes 750 

Hidden layers Number of LTMS cell per time series 200 

Gradient 
threshold 

The gradient is clipped to the threshold 
if the gradient of the error passes the 

value 

1 

Initial learn rate 

Specifying the rate of learning higher 

values will cause the learning to be 

faster, but could diverge the network 

125 

TABLE III. FEATURE DESCRIPTION 

Features Description 

Stock closing price The previous-day closing price of the stock 

WTI daily price West Texas Intermediate oil price 

Brent daily price Brent crude oil price 

No. of trades 
Number of trades placed on a stock for the 

previous day 

Open price The opening price of the same day 

Highest price The highest price of the previous day 

Lowest price The lowest price of the previous day 

Month number Current month in numerical form 

Number of days 
Since the last trading session 

Until the upcoming trading session 

Relative strength index 
Relative strength index for 7 days 

Relative strength index for 21 days 

Accumulation/distribution 

(A/D) oscillator 

Momentum indicator for detecting the changes 
in the A/D line by measuring the momentum of 

the first signal of change of trend 

Moving average 

convergence/divergence 

A trend-following momentum indicator that 

shows the relationship between two moving 
averages of a security's price 

Stochastic oscillator 

An indicator comparing a closing price of a 

stock to a range of its prices over a certain 
period 

Logarithmic return 
The logarithm of the closing price divided by 

the previous closing price shown in Eq. (3) 

2) Network training: To obtain the required gains and 

biases in the hidden network layers, we must train the neural 

network. A data set must be prepared to perform the training 

and evaluation processes of the RNN. The required data were 

divided into two sets: a training set and an evaluation set. The 

data set comprised the historical values of the proposed 

futures from March 21, 2012, to April 24, 2020, and the 

required response (trading signal) of that interval. The trading 

agent responses were obtained from the stock returns, in 

which a buy signal was generated from a positive return, and a 

sell signal was entreated from a zero or negative return. The 

data were normalized using Eq. (9). 

   
     ( )

   ( )     ( )
             (9) 

Each training run computes the generated responses with 
the required ones. An error is produced if the response is 
different, and the weights are updated in each training 
iteration. Adaptive moment estimation (ADAM), developed 
by Diederik Kingma and Jimmy Ba [23], was used as a solver 
to optimize the weights and biases of the neural network. The 
following lists the process undertaken to train the LSTM 
network. 

 Initialize the LSTM network weights and biases 
randomly. 

 Input the historical data to the network as a normalized 
time series. 

 Compare the trading signal output with the required 
signal (buy and sell signal). 

 Update the weights and biases using the ADAM solver 
and the computed error. 

 Repeat the training process until the classification 
accuracy is higher than that in the previous run or stop 
when the required number of iterations has been 
satisfied. 

 The evaluation data set was used to test the network 
after network training. This process is called the 
classification process. 

3) Trading agent: The output of the neural network 

classification is connected to a trading agent. The presented 

trading agent strategy involves buying or selling a pre-defined 

number of shares in a trading session based on the number of 

shares and money currently owned. Fig. 7 depicts the trading 

process. The agent relies on the initial investment budget and 

the required shares to be bought and sold per trading session. 

These values are fixed in the current version of the trading 

agent. 

 

Fig. 7. Trading Agent Flow Chart. 
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V. RESULTS 

The proposed neural network and trading agent were 
evaluated using three stock shares from the Saudi stock market 
(i.e., Alinma Bank, Alrajhi Bank, and SABIC). The evaluation 
data set comprised of historical values from June 2018 to 
August 2019. The performance of the proposed agent was 
compared with that of the buy-and-hold trading strategy. Table 
IV shows the accuracy of the trading signal, trading agent 
initial values, and investment gain. The trading gain was 
affected by the initial values used, which were optimized to 
achieve the highest gain. 

Fig. 8 and 9 denote the output of the trading agent for the 
Alinma and Alrajhi stocks, respectively. The trading agent 
was effective for both the Alinma and Alrajhi shares, as 
shown by the output. The agent bought shares in an upward 
trend and sold them at the local maximum in several instances. 

TABLE IV. TRADING OUTPUT RESULTS 

Stock 
Trading accuracy Investment 

gain 

Buy-and-

hold gain Buy Sell Overall 

Alinma 53.3% 50.3% 57.3 28.24% 6.9% 

Alrajhi 51.9% 60.4% 57.3% 18.087 % 10.1 % 

SABIC 47.8% 61.4% 57.3% 0.01% −23% 

 

Fig. 8. Trading Agent Signal when used in the Alinma Stock Trading. 

 

Fig. 9. Trading Agent Signal when used in the Alrajhi Stock Trading. 

 

Fig. 10. Trading Agent Signal when used in the SABIC Stock Trading. 

Fig. 10 shows the trading signal of the SABIC shares. The 
agent predicted the correct trading signals when trading the 
SABIC shares, but the gain was not high compared with that 
of the other two shares because of the fixed amounts of shares 
that can be bought per trading session. This low gain can be 
fixed if the number of shares is dynamic and linked to the 
classification layer output score. 

VI. DISCUSSION AND CONCLUSION 

To predict the Saudi stock trading signals, we proposed the 
usage of a multivariate RNN with an LSTM architecture. The 
model used historical stock information, such as closing 
prices, the volume of trades, number of trades, current-day 
opening prices, and oil price. The model result was satisfying 
compared with that obtained using the buy-and-hold trading 
method. 

In future studies, we must consider more factors, such as 
the Fibonacci retracement, and develop a feature selection 
method to select the best feature among the presented features. 
Other financial trading methods may also be considered to 
train a neural network and develop a trading agent instead of 
relying on the prediction of future returns. 
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