
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

522 | P a g e

www.ijacsa.thesai.org

Trading Saudi Stock Market Shares using

Multivariate Recurrent Neural Network with a Long

Short-term Memory Layer

Fahd A. Alturki
1
, Abdullah M. Aldughaiyem

2

Electrical Engineering Department

King Saud University, Riyadh

Saudi Arabia

Abstract—This study tests the Saudi stock market weak form

using the weak form of an efficient market hypothesis and

proposes a recurrent neural network (RNN) to produce a trading

signal. To predict the next-day trading signal of several shares in

the Saudi stock market, we designed the RNN with a long short-

term memory architecture. The network input comprises several

time series features that contribute to the classification process.

The proposed RNN output is fed to a trading agent that buys or

sells shares based on the share current value, current available

balance, and the current number of shares owned. To evaluate

the proposed neural network, we used the historical oil price data

of Brent crude oil in combination with other stock features (e.g.,

previous day (opening and closing price of the evaluated share).

The results indicate that oil price variations affect the Saudi

stock market. Furthermore, with 55% accuracy, the proposed

RNN model produces the next-day trading signal. For the same

period, the proposed RNN trading method achieves an

investment gain of 23%, whereas the buy-and-hold method

obtained 1.2%.

Keywords—Time series; neural network; long short-term

memory; stock price; Tadawul

I. INTRODUCTION

Of all the presented works for forecasting stock markets,
only very few have targeted the Saudi stock market. In this
study, we presented a recurrent neural network (RNN) that
utilizes the long short-term memory (LTSM) architecture for a
multivariate time series prediction to generate a trading signal
(buy, sell, or do nothing) for several Saudi stock indices that
will be used in combination of a trading algorithm to buy and
sell shares based on three factors: share current value, current
available balance, and a current number of shares owned.

Neural networks have gained much attention in recent
years, especially in stock market prediction. The nature of the
randomness accosted with the stock market makes it hard to
achieve high confidence in predicting the index price using
normal statistical methods. By using neural networks with
several futures, we can achieve a high prediction value. To
study the effect of past historical prices on future prices and to
develop a trading agent using neural networks, we tested the
Saudi stock market for the weak form efficiency. In producing
a trading signal, the developed neural network is an RNN with
an LSTM architecture.

The remainder of the paper is organized as follows.
Section II gives a literature review on the works undertaken to
predict and forecast the stock market price. Section III tests
the weak form of the Saudi stock market efficiency. (The test
is useful for understanding the effect of the historical data of a
share on future values.) Discussion on the proposed method
and a brief neural network introduction is presented in
Section IV. Section V evaluates the proposed method and
compares it to a known trading method. Finally, we give the
conclusions of this study in Section VI.

II. LITERATURE REVIEW

Recently, the stock market prediction has been a hot topic
in the research field. To predict stock prices, many researchers
have developed methods, but only a few have developed a
trading strategy. Some of the reviews of the developed
methods are published [1, 2]. For example, Shah et al.
classified stock prediction methods into four categories:
statistical methods, pattern recognition, machine learning, and
sentiment analysis.

The autoregressive integrated moving average (ARIMA)
model, which is one of the well-known statistical methods,
uses a class of models to model the time series based on
historical values. The model is fitted to the historical values of
a stock price in predicting (forecasting) the stock's future
price. The model consists of three parts: (1) an autoregressive
(AR) model, in which the forecasted value is a linear
combination of past lagged values; (2) a moving average
(MA) model that forecasts the future value using the past
forecast errors; and (3) the difference operation of past and
future values. The model is denoted by ARIMA(p, d, q),
where p is the order (number of time lags) of the AR model, d
is the degree of differencing, and q is the order of the MA
model.

Pattern recognition is closely related to machine learning
but with a different implementation. Here, we focus on the
methods of finding patterns in the stock's historical values.
Then, by using computer algorithms, we predict future values
using these patterns. Previous studies show an example of a
pattern: the stock uptrend [3] and the open high–low close
price candlestick charts [4].

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 9, 2020

523 | P a g e

www.ijacsa.thesai.org

Machine learning prediction uses historical data and the
desired output as the training sets to build a mathematical
model through an iterative process until an objective function
is optimized. Previous studies have shown the usage of
classification and regression as examples of machine learning
in trading methods and the closing price of stock [5, 6, 7].

In sentiment analysis, it uses text information, such as
news articles or social media feeds on stock markets. In
predicting stock trends based on the feed provided, the
analysis employs machine learning algorithms [8].

Idress et al. [9] built an ARIMA model to predict the
Indian stock market, in which they found a deviation on a 5%
mean percentage error.

Meanwhile, to predict the Saudi stock prices, Olatunji et
al. [10] proposed an artificial neural network (ANN) model,
applying on three major stock indices: Alrajhi bank, Saudi
Telecom Company, and Saudi Basic Industries Corporation
SABIC stocks. They only used the previous-day closing price
as the model input. Moreover, the proposed model was used as
an investment adviser, and it achieved a low root mean
squared error (RMSE) of 1.8174 and a mean absolute
percentage error of 1.6476.

Also, Jarrah and Salim [11] proposed an RNN and a
discrete wavelet transform (DWT) to predict the Saudi stock
price trends. The model consisted of two stages. The first
stage uses DWT to break the stock price into both frequency
and time domains to filter the noise associated with the
signals, and the second stage is an RNN that performs the
prediction. The model was tested to predict the next-seven
days closing price of the Saudi stock. The prediction result
was then compared with that obtained by a prediction process
performed using the ARIMA model. Consequently, the
proposed model (DWT + RNN) achieved an RMSE of 0.0522
when the RNN model used four batches and four neurons.

Alotaibi et al. [12] also used an ANN model to predict the
Saudi stock market. Their ANN model consisted of three
layers: input, hidden, and output layers. The input layer
contained the historical close and open prices of the Saudi
stock market and the historical close and open prices of oil.
Bayesian regularization backpropagation was used for
network training from 2003 to 2012. The test set training
spanned from 2013 to the end of 2015.

Hua et al. [13] gave an introduction to deep learning with
LSTM for time series prediction and proposed random
connectivity for LSTM to overcome the computation cost.

Tilakaratne et al. [5] developed a neural network for
predicting the trading signals of the Australian All Ordinary
Index. Then, they compared an ANN to a probabilistic neural
network (PNN), in which they found that the ANN
outperformed the PNN.

On the basis of the previous studies mentioned above,
many developed methods use historical information form the
share itself without the combination of other factors (e.g., oil
prices). These methods targeted different markets other than
the Saudi stock market.

III. WEAK FORM OF EFFICIENT MARKET TEST

The weak form of an efficient market hypothesis states
that the future prices of a stock market with a weak efficiency
cannot be predicted using historical information, such as
trading volume, closing price, and earnings. It means that one
cannot predict future values using the available information.
Fama [14] divided the efficient market hypothesis into three:
weak, semi-strong, and strong hypotheses.

Previous studies tested the Saudi stock market efficiency
in its weak form and concluded the same; however, the
presented studies are not up to date [15, 16].

To prove that the stock price under test can be predicted
using historical values, we will be testing the Saudi stock
indices used to evaluate the proposed RNN for the weak-form
efficiency hypothesis. The weak form of the market efficiency
for individual stocks is tested for randomness. If the stock
does not follow a random walk, the hypothesis fails. The stock
index can be predicted using historical data.

Several statistics tests are known for use in testing data
randomness. Here, we used the Kolmogorov–Smirnov test
(K–S test). The null hypotheses in the K–S test are that the
data (stock returns) under the test follow a random walk, and
the future value cannot be predicted. The alternative
hypotheses are that the data under test are not random and that
the data can be predicted using historical values.

Here, we used Alrajhi, Alinma, and SABIC stocks. The
historical values are dated from January 2010 to the end of
March 2020. The stocks' closing price was converted to the
stock returns, as shown in Eq. (1), where R is the logarithmic
stock return; l(i) is the day i closing price; and l(i − 1) is the
previous closing price of the day i:

 () (
 ()

 ()
) (1)

A. Kolmogorov–Smirnov Test

The K–S test is a nonparametric test for data randomness.
The null hypotheses of the test assume that the cumulative
distribution function (CDF) of the data under test is equal to
the hypothesized CDF. The CDF of the data was computed
herein and compared with the hypothesized CDF using Eq.
(2), where Dn is the maximum amount of the hypothesized
CDF (Fn(x)) exceeding the calculated CDF (Gn(x)). When both
CDFs are equal to some factors, the data are random, and the
test fails to reject the null hypothesis that the test statistics
converge to zero as n goes to infinity. Detailed mathematical
background on the K–S test is provided in [17].

 | () ()| (2)

B. Market Weak form Test Results

We performed the test on the three stocks used to evaluate
the proposed RNN. Table I shows the result of the K–S test
performed with a significance level of 0.05. (The p-value is
the probability value of the test.) Smaller values (typically
<0.05) indicate a strong rejection of the null hypothesis. The
test statistic is a random variable calculated from the data
under the test used in determining the null hypothesis
rejection, whereas the z-value is the critical value. The K–S

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 9, 2020

524 | P a g e

www.ijacsa.thesai.org

test rejected the null hypotheses by comparing the p-value
with the significance level. The null hypothesis is rejected if
the p-value is less than the significance level (i.e., the data
under test are not random).

Based on the test performed, Alinma, Alrajhi, and SABIC
stock returns did not follow a random walk and were not
independent of past values. This proved that the proposed
stock prediction method and the trading agent could facilitate
historical values to predict trading signals.

TABLE I. KOLMOGOROV–SMIRNOV TEST RESULTS

Stock
Hypothesis test

result
p-value Test statistic z-value

Alinma

The null hypothesis

is rejected.
0.00 0.1191 0.0268

Alrajhi
The null hypothesis
is rejected.

0.00 0.0904 0.0268

SABIC
The null hypothesis
is rejected.

0.00 0.1143 0.0268

IV. METHODOLOGY

Neural networks are a set of algorithms used to recognize
underlying relationships in data sets. The process of a neural
network is similar to the operation of a human brain. Here, we
used an RNN with an LSTM architecture to produce a trading
signal.

The input to the neural network is called a feature, which
is a measurable characteristic of the observed data or a
characteristic with an indirect effect on it. Accordingly, this
section provides a brief introduction to neural networks. The
introduction aims to familiarize the reader with the basics of
neural networks and provide them the ability to understand
some concepts. A detailed background regarding this matter is
reported in [18].

A. RNN

RNNs are a class of neural networks best used in
sequenced data sets, such as time series. An RNN has a one-
to-one connection between its internal layers and the exact
position in the time series [18]. An RNN can simulate any
algorithm given sufficient data. These networks are based on
the works by Rumelhart et al. [19], who described a new
method for teaching a network through backpropagation.
Unlike feedforward neural networks, RNNs have an advantage
in using their internal memory to process a sequence of data,
such as stock markets. Moreover, the network input (e.g., oil
prices and index price) in RNNs are interrelated. On the
contrary, an RNN suffers from exploding problems and
gradient vanishing. Gradient vanishing is a term associated
with neural network training, and a gradient is a vector of the
calculated error during the network training process. The
gradient is used to update the network weights to achieve a
small error, such as an error in predicted stock value when
compared with the actual value. The gradients in an RNN
accumulate during the update process, which causes it to
explode (i.e., it becomes large and goes to infinity).

Fig. 1 shows the basic building block of an RNN. The
input to the block is a vectored time series xt. In our case, we

used the stock price and associated features. ht is the output
from the block to be fed to the subsequent titration at time t +
1. ht − 1 is the output from the previous block. Both ht and ht − 1
are called the hidden layer vectors. wh and wx are the weight
vectors for the hidden connection and the input vector,
respectively. The weight vectors are chosen by network
training, which is achieved by comparing the output
(predicted) with the actual value and adjusting the weight
vectors to achieve the smallest error. F is an activation
function within the block. Activation functions are
mathematical equations that determine the block output based
on preset conditions. The most important activation function is
the tanh function. bt is a bias added to the block input.
Equation (3) shows the math behind RNNs.

ot = ht = F(wh ht – 1 + wx xt + bt) (3)

Fig. 1. The Basic Building Block of an RNN.

B. LSTM

Proposed by Hochreiter and Schmidhuber [20], LSTM is a
type of RNN architecture used to solve the exploding and
vanishing gradient problem that occurs in a normal RNN. The
constant error carousel (CEC) LSTM was used to overcome the
problems caused by the error back flow. The CEC controls the
error flow by units, called gates, which are implemented in the
memory block of the LMTS. The gates are categorized into the
input gate, output gate, and forget gate, in which each gate has
a function to achieve. The input gate controls the flow of the
new sequence value. The output gate controls the usage of the
value inside the cell using the activation function of the LSTM.
The forget gate controls how long a value remains inside the
memory cell.

Fig. 2 shows the building block of an LSTM unit, where Ct
is the cell state, xt is a vector input to the cell, ft is the output
from the sigmoid function that represents what cell state can
be passed from adjacent cells, and it is the output from the
sigmoid function that represents the output from the tanh
function of the input gate to the cell. This updates the cell state
with new values. Ot is multiplied by tanh of the cell state to
choose what part to output to the adjacent cell.

Fig. 3 shows three hidden units for a vector input in an
LSTM network. This number can be more than three,
depending on the design. Equations (4)–(8) are the compact
forms of the forward pass of an LSTM unit that contains a
forget gate developed in [21]. In the equations, W, U, and b
denote the weights and biases determined by network training.
Each layer produces a single output, called ht, which is
connected to a neuron at the final layer. The function of the
neuron is to multiply each input by weight and sum them up to

F

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 9, 2020

525 | P a g e

www.ijacsa.thesai.org

produce an output ̂ with length n, where n is the number of
classifications produced (Fig. 4).

ft = g Wf xt + Ufht − 1 + bf) (4)

it = g Wi xt + Uiht − 1 + bi) (5)

gt = c Wgxt + Ught – 1 + bg) (6)

ot = g Woxt + Uoht − + bo) (7)

ft = g Wfxt + Ufht – 1 + bf) (8)

ht = th (9)

The output ̂ is connected to a softmax layer, which
functions to convert the input vector ̂ of n elements to a
normalized probability distribution with n probabilities. The
element with the highest probability is the network output.
The produced classifications are two training signals: buy and
sell. An in-depth discussion on pattern recognition and
classification is shown in [22].

Fig. 2. LSTM basic Building Cell Called a Neuron or a Hidden Unit.

Fig. 3. The Network of the LSTM Units Known as Hidden Layers.

Fig. 4. Final Network Stage. The Output from each Cell is Added to

Produce the Prediction.

C. Trading

The proposed design was constructed using LSTM layers
connected in series. The RNN input comprised a set of time
series data representing the features associated with the stock
and oil closing price. The network setup consisted of the
training method, the number of hidden elements (LSTM
units), and the number of training titrations. Fig. 5 shows a
history of three stock prices in Saudi Riyals that was used in
this study. The data will be divided into two sets. The first set
will be used to train the classifier, and the other data will be
used to evaluate the proposed classifier. Fig. 6 shows the
history of the oil prices that will be used as an input to the
proposed network. Table II lists the options used in
constricting the network.

1) Input features: Table III lists the features used for the

buy and sell classification network. Several methods can be

used for feature selection. However, in this study, we used a

trial-and-error method to find the best feature combination

because some feature selection methods fail when chart

technical indicators are used in the stock price.

Fig. 5. Historical Data of Three Stocks from March 21, 2012, to April 24,

2020.

Fig. 6. Historical Data on Oil Prices in USD that are used in the Study. The

Data are from March 21, 2012, to April 24, 2020.

tanh

tanh

 ̂

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 9, 2020

526 | P a g e

www.ijacsa.thesai.org

TABLE II. LSTM NETWORK SETTINGS

Option Description Value

Solver Training algorithm ADAM

Epoch Number of full training data passes 750

Hidden layers Number of LTMS cell per time series 200

Gradient
threshold

The gradient is clipped to the threshold
if the gradient of the error passes the

value

1

Initial learn rate

Specifying the rate of learning higher

values will cause the learning to be

faster, but could diverge the network

125

TABLE III. FEATURE DESCRIPTION

Features Description

Stock closing price The previous-day closing price of the stock

WTI daily price West Texas Intermediate oil price

Brent daily price Brent crude oil price

No. of trades
Number of trades placed on a stock for the

previous day

Open price The opening price of the same day

Highest price The highest price of the previous day

Lowest price The lowest price of the previous day

Month number Current month in numerical form

Number of days
Since the last trading session

Until the upcoming trading session

Relative strength index
Relative strength index for 7 days

Relative strength index for 21 days

Accumulation/distribution

(A/D) oscillator

Momentum indicator for detecting the changes
in the A/D line by measuring the momentum of

the first signal of change of trend

Moving average

convergence/divergence

A trend-following momentum indicator that

shows the relationship between two moving
averages of a security's price

Stochastic oscillator

An indicator comparing a closing price of a

stock to a range of its prices over a certain
period

Logarithmic return
The logarithm of the closing price divided by

the previous closing price shown in Eq. (3)

2) Network training: To obtain the required gains and

biases in the hidden network layers, we must train the neural

network. A data set must be prepared to perform the training

and evaluation processes of the RNN. The required data were

divided into two sets: a training set and an evaluation set. The

data set comprised the historical values of the proposed

futures from March 21, 2012, to April 24, 2020, and the

required response (trading signal) of that interval. The trading

agent responses were obtained from the stock returns, in

which a buy signal was generated from a positive return, and a

sell signal was entreated from a zero or negative return. The

data were normalized using Eq. (9).

 ()

 () ()
 (9)

Each training run computes the generated responses with
the required ones. An error is produced if the response is
different, and the weights are updated in each training
iteration. Adaptive moment estimation (ADAM), developed
by Diederik Kingma and Jimmy Ba [23], was used as a solver
to optimize the weights and biases of the neural network. The
following lists the process undertaken to train the LSTM
network.

 Initialize the LSTM network weights and biases
randomly.

 Input the historical data to the network as a normalized
time series.

 Compare the trading signal output with the required
signal (buy and sell signal).

 Update the weights and biases using the ADAM solver
and the computed error.

 Repeat the training process until the classification
accuracy is higher than that in the previous run or stop
when the required number of iterations has been
satisfied.

 The evaluation data set was used to test the network
after network training. This process is called the
classification process.

3) Trading agent: The output of the neural network

classification is connected to a trading agent. The presented

trading agent strategy involves buying or selling a pre-defined

number of shares in a trading session based on the number of

shares and money currently owned. Fig. 7 depicts the trading

process. The agent relies on the initial investment budget and

the required shares to be bought and sold per trading session.

These values are fixed in the current version of the trading

agent.

Fig. 7. Trading Agent Flow Chart.

Predicted

trading signal

buy

signal ?

Money >
share
price?

Owned

shares >

0

noyes

Sell

Share

Buy

Share

Do

nothing

En d

yes

nono

yes

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 9, 2020

527 | P a g e

www.ijacsa.thesai.org

V. RESULTS

The proposed neural network and trading agent were
evaluated using three stock shares from the Saudi stock market
(i.e., Alinma Bank, Alrajhi Bank, and SABIC). The evaluation
data set comprised of historical values from June 2018 to
August 2019. The performance of the proposed agent was
compared with that of the buy-and-hold trading strategy. Table
IV shows the accuracy of the trading signal, trading agent
initial values, and investment gain. The trading gain was
affected by the initial values used, which were optimized to
achieve the highest gain.

Fig. 8 and 9 denote the output of the trading agent for the
Alinma and Alrajhi stocks, respectively. The trading agent
was effective for both the Alinma and Alrajhi shares, as
shown by the output. The agent bought shares in an upward
trend and sold them at the local maximum in several instances.

TABLE IV. TRADING OUTPUT RESULTS

Stock
Trading accuracy Investment

gain

Buy-and-

hold gain Buy Sell Overall

Alinma 53.3% 50.3% 57.3 28.24% 6.9%

Alrajhi 51.9% 60.4% 57.3% 18.087 % 10.1 %

SABIC 47.8% 61.4% 57.3% 0.01% −23%

Fig. 8. Trading Agent Signal when used in the Alinma Stock Trading.

Fig. 9. Trading Agent Signal when used in the Alrajhi Stock Trading.

Fig. 10. Trading Agent Signal when used in the SABIC Stock Trading.

Fig. 10 shows the trading signal of the SABIC shares. The
agent predicted the correct trading signals when trading the
SABIC shares, but the gain was not high compared with that
of the other two shares because of the fixed amounts of shares
that can be bought per trading session. This low gain can be
fixed if the number of shares is dynamic and linked to the
classification layer output score.

VI. DISCUSSION AND CONCLUSION

To predict the Saudi stock trading signals, we proposed the
usage of a multivariate RNN with an LSTM architecture. The
model used historical stock information, such as closing
prices, the volume of trades, number of trades, current-day
opening prices, and oil price. The model result was satisfying
compared with that obtained using the buy-and-hold trading
method.

In future studies, we must consider more factors, such as
the Fibonacci retracement, and develop a feature selection
method to select the best feature among the presented features.
Other financial trading methods may also be considered to
train a neural network and develop a trading agent instead of
relying on the prediction of future returns.

ACKNOWLEDGMENT

The authors would like to thank Deanship of scientific
research in King Saud University for funding and supporting
this research through the initiative of DSR Graduate Students

Research Support (GSR).

REFERENCES

[1] Shah, H. Isah and F. Zulkernine, "Stock Market Analysis: A Review and
Taxonomy of Prediction Techniques," International Journal of Financial
Studies, vol. 7, p. 26, 5 2019.

[2] N. Singh, N. Khalfay, V. Soni and D. Vora, "Stock Prediction using
Machine Learning a Review Paper," International Journal of Computer
Applications, vol. 163, p. 36–43, 4 2017.

[3] P. Parracho, R. Neves and N. Horta, "Trading in financial markets using
pattern recognition optimized by genetic algorithms," in Proceedings of
the 12th annual conference comp on Genetic and evolutionary
computation - GECCO, Portland, 2010.

[4] M. Velay and F. Daniel, "Stock Chart Pattern recognition with Deep
Learning," 1 8 2018.

[5] C. D. Tilakaratne, M. A. Mammadov and S. A. Morris, "Predicting
Trading Signals of Stock Market Indices Using Neural Networks," in AI
2008: Advances in Artificial Intelligence, Springer Berlin Heidelberg,
2008, p. 522–531.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 9, 2020

528 | P a g e

www.ijacsa.thesai.org

[6] R. Dash and P. K. Dash, "A hybrid stock trading framework integrating
technical analysis with machine learning techniques," The Journal of
Finance and Data Science, vol. 2, p. 42–57, 3 2016.

[7] A. H. Moghaddam, M. H. Moghaddam and M. Esfandyari, "Stock
market index prediction using artificial neural network," Journal of
Economics, Finance and Administrative Science, vol. 21, p. 89–93, 12
2016.

[8] J.-L. Seng and H.-F. Yang, "The association between stock price
volatility and financial news – a sentiment analysis approach,"
Kybernetes, vol. 46, p. 1341–1365, 9 2017.

[9] S. M. Idrees, M. A. Alam and P. Agarwal, "A Prediction Approach for
Stock Market Volatility Based on Time Series Data," IEEE Access, vol.
7, p. 17287–17298, 2019.

[10] S. O. Olatunji, M. S. Al-Ahmadi, M. Elshafe and Y. A. Fallatah,
"Forecasting the Saudi Arabia Stock Prices Based on Artificial Neural
Networks Model," International Journal of Intelligent Information
Systems, vol. 2, p. 77, 2013.

[11] M. Jarrah and N. Salim, "A Recurrent Neural Network and a Discrete
Wavelet Transform to Predict the Saudi Stock Price Trends,"
International Journal of Advanced Computer Science and Applications,
vol. 10, 2019.

[12] T. Alotaibi, A. Nazir, R. Alroobaea, M. Alotibi, F. Alsubeai, A.
Alghamdi and T. Alsulimani, "Saudi Arabia Stock Market Prediction
Using Neural Network," International Journal on Computer Science and
Engineering, vol. 9, p. 62–70, 2 2018.

[13] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu and H. Zhang, "Deep Learning
with Long Short-Term Memory for Time Series Prediction," IEEE
Communications Magazine, vol. 57, p. 114–119, 6 2019.

[14] E. F. Fama, "Efficient Capital Markets: A Review of Theory and
Empirical Work," The Journal of Finance, vol. 25, p. 383, 5 1970.

[15] U. Awan and M. Subayyal, "Weak Form Efficient Market Hypothesis
Study: Evidence from Gulf Stock Markets," SSRN Electronic Journal,
2016.

[16] B. Asiri and H. Alzeera, "Is the Saudi stock market efficient? A case of
weak-form efficiency," Research Journal of Finance and Accounting,
vol. 4, no. 6, pp. 35-48, 2013.

[17] F. J. Massey Jr, "The Kolmogorov-Smirnov test for goodness of fit,"
Journal of the American statistical Association, vol. 46, p. 68–78, 1951.

[18] C. C. Aggarwal, Neural Networks and Deep Learning, Springer-Verlag
GmbH, 2018.

[19] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning
representations by back-propagating errors," Nature, vol. 323, p. 533–
536, 10 1986.

[20] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural
Computation, vol. 9, p. 1735–1780, 11 1997.

[21] F. A. Gers, J. Schmidhuber and F. Cummins, "Learning to Forget:
Continual Prediction with LSTM," Neural Computation, vol. 12, p.
2451–2471, 10 2000.

[22] C. Bishop, Pattern recognition and machine learning, New York:
Springer, 2006.

[23] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic
Optimization," 22 12 2014.

