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Abstract—Due to the multidisciplinary nature of cyber-

physical systems, it is impossible for an existing modeling 

language to be used effectively in all cases. For this reason, the 

development of domain-specific modeling languages is beginning 

to become an integral part of the modeling process. This 

diversification of modeling languages often implies the need to 

co-simulate subsystems in order to obtain the effect of a complete 

system. This paper presents how behavioral semantics of a 

diagrammatic DSML can be implemented by co-simulation. For 

the formal specification of the language we used mechanisms 

from the category theory. To specify behavioral semantics, we 

introduced the notion of behavioral rule as an aggregation 

between a graph transformation and a behavioral action. The 

paper also contains a relevant example and demonstrates that the 

implementation of behavioral semantics of a diagrammatic 

model can be achieved by co-simulating standalone FMUs 

associated to behavioral rules. 
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I. INTRODUCTION 

In the context of moving the effort from writing code to 
writing models, the development of modeling tools, 
appropriate to the domain of modeling, becomes an essential 
factor for increasing the efficiency of the modeling process. 
The diagrammatic syntax of domain-specific modeling 
languages (DSML) seems to be the most accessible for all 
parties involved in the model specification, because it is 
intuitive and can provide support in all phases of model 
development, starting with the informal model and ending 
with the executable model [1,2]. 

Models specified with these DSMLs must, in turn, interact 
with other models specified in other languages. Often the 
models specified with these DSMLs assemble heterogeneous 
components, which must be modeled with other languages. 
All these components can be specified in various modeling 
languages. But there is a need for a specific language to 
assemble the system components into a workflow [3] and 
coordinate the behavior of these components. In our opinion, 
these interaction problems can be solved elegantly by co-
simulation [4]. 

One of the main objectives of building a model is to study 
the behavior of a system in order to analyze and optimize the 
modeled system. Due to the complexity of the systems, 
classical optimization methods cannot be used and therefore 
must be replaced by methods based on simulation or genetic 
algorithms. To achieve these objectives the model will have to 

be executed by a simulator according to its behavioral rules to 
mimic the behavior of the system. 

Complex systems such as Cyber-Physical Production 
Systems (CPPS) also have a high degree of heterogeneity and 
therefore involve components with different behaviors that 
cannot be efficiently specified in the same formalism. In these 
cases, we need a co-simulation environment that combines 
several simulators into one and that reproduces the behavior of 
the global system [5]. 

In order for these heterogeneous models to be coupled in 
the co-simulation process, they need to provide a common 
standardized interface. This interface is called Functional 
Mock-up Interface (FMI) [6] introduced in the European 
MODELISAR project, carried out in the period 2008-2011. 

To achieve the goal of co-simulation, modeling tools must 
be able to generate co-simulation units with FMI interfaces, 
which are called Functional Mock-up Units (FMU). The 
orchestration of the components in order to obtain the 
behavior of the composite system is done by an orchestrator 
which is called master algorithm. 

We believe that for the efficient implementation of a 
DSML, co-simulation mechanisms must be an integral part in 
the process of specifying and implementing a modeling tool. 
In this paper we present the methodology for specifying and 
implementing a DSML with FMU generation facility. To 
formalize the model, we use mechanisms from category 
theory. For co-simulation we used the INTO-CPS [7] tool 
chain. INTO-CPS is an EU-funded project that integrates a 
chain of tools for model-based CPS design and 
implementation by co-simulating components with an FMI-
compatible interface. 

In Section 2, we briefly specify the static metamodel of a 
diagrammatic model. In Section 3, we specify the behavioral 
syntax of the model and in Section 4, we deal with the 
semantic mapping of a model. In Section 5, we briefly present 
the mechanism for generating FMU components. Section 6 
concludes the paper with original contributions and 
conclusions. All the mechanisms presented are exemplified 
with a simple model that was implemented on the ADOxx 
metamodeling platform. 

II. THE STATIC MODEL 

In essence, a visual model of a system first defines the 
syntax of the static and behavioral model that represents the 
virtual and physical entities of the model and then the 
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semantics of the model represented by the significance of 
static constructions and a set of behavioral rules that represent 
the behavior of these entities. 

Syntactically, a diagrammatic model is a graph with 
several types of nodes that represent different concepts in the 
domain of modeling and several types of arcs that represent 
links between these concepts [8,9]. When we want to associate 
models with a spatial representation, we can use a second 
graph, as a spatial dimension of them and thus we reach the 
notion of bigraph [10]. The models discussed in this paper 
have as syntactic representation a single graph. 

Example 1. We consider a modeling language SML 
(Simple Modeling Language) that has the following concepts: 

A buffer concept, which can store a single type of material, 
which we denote by B1, and endow it with two attributes, 
namely: the stock attribute which represents the current 
quantity stored in the buffer and capacity which represents the 
maximum quantity that can be stored in the buffer. We 
associate to this concept the following graphic notation: 

 

A buffer concept, which can store two types of materials, 
which we denote by B2, and endow it with four attributes, 
namely: the attributes stock1, stock2 which represents the 
current quantity of each type stored in the buffer and 
capacity1, capacity2 which represents the maximum quantity 
of each type, which can be stored in the buffer. We associate 
to this concept the following graphic notation: 

 

A processing or transfer activity concept, which we denote 
by W1, and which can process or transfer materials from a 
type B1 buffer to a type B2 buffer, and endow it with three 
attributes, namely, the StockIn attribute which represents the 
quantity of material fed from buffer B1, and the attributes 
Stock1Out, Stock2Out which represent the quantities of 
material of each type deposited in buffer B2. We associate to 
this concept the following graphic notation: 

 

A processing or transfer activity concept, which we denote 
by W2, and which can process or transfer materials from a 
type B2 buffer to a type B1 buffer, and endow it with three 
attributes, namely: the attributes Stock1In, Stock2In which 
represents the quantities of material fed from each type and 
the StockOut attribute which represents the quantity of 
material deposited in buffer B1. We associate to this concept 
the following graphic notation: 

 

The SML model that we will specify is a graphical DSML 
for describing simple models in conformity with the 
requirements specified above. 

SML models, therefore, are graphs with a set of syntactic 
restrictions on their components [11]. In the categorical 
model, the SML metamodel is a sketch that is composed of a 
graph and a set of constraints on the graph nodes [2,12,13]. 

Example 2. We will define a SML model as a graph 

G=(X,,,), on the components of which we introduce four 
restrictions, namely: 

1) The nodes of the graph are of two types and these types 

determine a partition on X, i.e.: X=B1⊔B2; 

2) The arcs of the graph are of two types and these types 

determine a partition on , i.e.: =W1⊔W2; 

3) Graph G has to be a connected graph; 

4) There must be at most one arc between any two 

components. 

A categorical sketch is a tuple 𝓢=(𝓖,𝓒(𝓖)) where 𝓖 is a 
graph and 𝓒(𝓖) is a set of constraints on the set of nodes and 
arcs of the graph [2]. A model of the sketch 𝓢=(𝓖,𝓒(𝓖)) is the 
image of this sketch through a functor in the Set category. 

From the way of defining the SML model, from example 2 
it results that the graph 𝓖 of the corresponding sketch 
𝓢=(𝓖,𝓒(𝓖)) is the one from Fig. 1. 

The categorical sketches are based on the observation that 
a labeled diagram is an analogous construction of a logical 
formula that is mapped to the components of a graph, i.e. to 
the nodes and arcs of a graph [2,14]. 

We denote with Graph the category of graphs, i.e. the 
category that has graphs as objects and as arcs the 
homomorphisms between these graphs. We will also denote 
with Graph0 the set of objects of the Graph category and with 
Graph1 the set of arcs of the Graph category. 

Constraints on the models specified by the categorical 
sketch are defined by a predicate signature diagram, which is 

composed of a set of predicates , and an application are: 

Graph0, which maps the indeterminate predicates to the 
nodes of a graph in Graph0 [2]. This predicate signature 
diagram, allows the definition of constraints on the models 
specified by a categorical sketch at the metamodel level. 

 

Fig. 1. The Graph of the SMM Sketch. 
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For example, for the graph G to be connected we will put 

the condition that the pushout of  with  to be a terminal 
object in the Set category. 

If we denote Span(x,y,z,rzx,rzy)=(x
           
←     z 

         
→   y) then the 

pushout of  with , in the Set category, is the colimit of the 

diagram d:Span(1,2,3,r31,r32)Set where d(1)=x, d(2)=x, 

d(3)=, d(r31)=, d(a32)=.  This constrains are imposed by the 
predicate P(n1,n2,n3,r31,r32) with the shape graph arity of P3,  
ar(P(n1,n2,n3,a31,a32))=Span(1,2,3,r31,r32) defined as:  ar(n1)=1, 
ar(n2)=2, ar(n3)=3, ar(a31)=r31, ar(a32)=r32.  In these conditions 
the predicate P(n1,n2,n3,a31,a32) is defined as follows: 
P(n1,n2,n3,a31,a32)=|CoLim(d)|=1 where CoLim(d) is the 
colimit of diagram d in the Set category. 

Therefore, the categorical sketch of the SML model has 
the following components: the graph of the sketch is the one 

from Fig. 1, and the set of constraints 𝓢() is obtained by 
mapping the shape graphs corresponding to the predicates 

from  to the components of the sketch graph by means of 

diagrams, i.e. 𝓢()={𝓢(Pi) | Pi, i1}. The categorical 

sketch 𝓢 = (𝓖, ()) represents the abstract syntax of the SML 
models and at the same time the SML metamodel. 

Each model specified by the categorical sketch 𝓢, is the 
image of the graph 𝓖 of the sketch 𝓢 through a functor M, in 
the Set category, which respects the constraints imposed by 

the predicates (). The predicates in the set () will be 
mapped, at the level of each model M, from the Set category 
to a set of predicates as follows: Set(Pi)={(Pi;M◦d◦ar(Pi)) | d is 
a diagram}. 

Thus, if we have the model M:𝓢Sets, where M(b1)=B1, 
M(b2)=B2, M(w1)=W1 and M(w2)=W2, then the set of 
instances B1, B2, W1, W2, will respect the constraints defined 
by the set of predicates Set(Pi). We notice that the graph of the 
categorical sketch contains besides the concepts from the 
modeling domain, also auxiliary nodes useful for imposing 
constraints. 

If in the above model we have: B1={B11,B12,B13}; 
B2={B21,B22}; W1={W11,W12};  W2={W21, W22,W23} and 

(W11)=B11; (W12)=B12; (W11) =B22; (W12) =B22; (W21) 

=B21; (W22) =B21; (W23) =B22; (W21) =B11; (W22) =B12; 

(W23) =B13 , then the SML model is like in Fig. 2. 

We will consider that the nodes of the graph of the sketch 
𝓢 are classes endowed with attributes. The graph nodes will be 
mapped by the functor M to sets of objects of the 
corresponding class type in the Set category, and the graph 
arcs will be mapped to functions between these sets. The 
semantics of such a static model is given by the significance 
of the attributes, the significance of the values of these 
attributes and the significance of the graph structure of the 
model. 

A class defines a concrete modeling concept that can be 
used to specify a model in the modeling language. Therefore, 
each concrete concept of a model created with a tool 
implemented on the ADOxx platform is an instance of a class. 
Each concrete class has a distinct name. 

 

Fig. 2. Model Example. 

III. BEHAVIORAL SYNTAX OF THE MODELING LANGUAGE 

Model transformation is one of the key techniques in MDE 
used especially for automating model management operations, 
such as code generation, model optimization, translation from 
one DSML to another, simulation, etc. 

The transformation of diagrammatic models is based on, 
most often, the graph transformations defined by graph rules, 
also called productions. Such a production is a tuple p=(L, R), 
consisting of two graphs; a left graph L, a right graph R and a 
mechanism that specifies the conditions and how to replace L 
with R. 

In this paper we will use graph transformations to model 
the behavior of a diagrammatic model. Graph transformation 
rules are mechanisms that can express the local changes of a 
graph in successive transformation steps ordered by a 
relationship of causal dependence of actions and therefore can 
accurately define the behavior of a diagrammatic model. 

In the approaches of implementing the transformations, of 
the left graph to the right graph, two distinct mechanisms are 
distinguished, namely, the double pushout (DPO) and single 
pushout (SPO) [15,16]. Graph transformations allow the 
simultaneous transformation of the structure of the 
diagrammatic model and of the attributes of the components. 
In this paper we will use the DPO variant to specify the 
behavioral dimension of a model. 

The correct application of a production p is made under the 
conditions in which the squares in Fig. 3 are pushout squares. 
A set of productions related to each other form a graph 
transformation system and can be used in the process of 
transforming models without being integrated into a graph 
grammar [15,17,18]. 

The behavior of SML models is not based on structural 
transformations of the graph but only on changing attribute 
values and therefore we will use graph transformations only to 
specify the context necessary to locate the components 
involved in a behavioral rule and to locate critical regions in 
the simulation process. 

We will define the graph transformations at the metamodel 
level and they will be applied for any static model specified by 
the sketch in the Set category. 

In the case of our SML model we have two 
transformations at the level of the sketch 𝓢 from Fig. 1, 
namely, p1 (Fig. 4) and p2 (Fig. 5). 

W21 W11 B11 

B12 

B13 B
21

 

W
22

 W
12

 

B
22

 W
23

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 9, 2020 

532 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. A Double-Pushout Production. 

 

Fig. 4. Graph Transformation p1. 

 

Fig. 5. Graph Transformation p2. 

IV. SEMANTICS OF THE MODELING LANGUAGE 

A diagrammatic model is characterized by two 
dimensions: a static dimension, specified syntactically by the 
categorical sketch, and a behavioral dimension, specified 
syntactically by behavioral signatures. The two dimensions 
have dependent but still distinct semantics. Defining the 
semantics of the static dimension involves mapping the 
attributes with which the components of the graph of the 
categorical sketch are endowed to data domains and the graph 
structures of the model to well defined semantically structures, 
and defining behavioral semantics involves mapping the 
behavioral signature to mathematical functions. 

The semantics of a model involves mapping attributes to 
their set of values, interpreting the graph structure of the 
model, while behavioral semantics highlights the structural 
and value transformations of the model. 

The behavioral dimension of a SML model is defined by 
states and transitions. The states of the model are represented, 
in our approach, by the static models of the categorical sketch, 
and the transitions are represented by a set of mathematical 
functions associated with the behavioral rules. A behavioral 
rule can be applied only in the context in which a set of 
conditions are realized, represented by logical predicates that 
verify the state of the model. Therefore, a behavioral rule is 
defined as an association between a graph transformation and 
an action. 

We will define the behavioral rules at the metamodel level 
by behavioral signatures represented by predefined actions 

with formal parameters, which will be evaluated at the 
moment of execution of a model, when they will receive 
current parameters corresponding to the respective concrete 
model. 

Let the sets Y1,...,Yn, U1,...,Um. Then an action is an 

application Act:U1...UmY1…Yn defined as follows: 

(y1,...,ym):=Act(u1,...,un)=(1(u1,...,un), …,m(u1,...,un))  where 

i is an operation that calculates the value of yi, i=1,m 
depending on the values of the variables u1,...,un. 

We denote with AGraph the category of graphs with 
attributes, i.e. the category that has as objects graphs with 
attributes and as arcs the homomophisms between these 

graphs. Also, if GAGraph0, we will denote with attr(G) the 
set of attributes associated with the nodes and arcs of the 
graph G. 

A diagram actions signature is a tuple =(𝓐, ar) where 𝓐 

is a set of actions and ar is a function ar:𝓐Graph0 which 

maps each action Act𝓐 to two objects in the AGraph 
category as follows: if (y1,...,ym ):=Act(u1,...,un) then the 
outputs y1,...,ym will be mapped to the attributes of the graph R 
and the inputs u1, ...,un will be mapped to the attributes of the 
graph L. The pair (L, R) of graphs is called shape graph arity 
of Act, ar(Act)=(L, R). We will sometimes denote the image 
of Act through ar in the category AGraph with Act(L, R). 

The behavioral signature is a tuple =( 𝓣,CL,,CR) where 

𝓣 is a set of graph transformation rules; CL=(L,arL) is a 

diagram predicate signature such that arL:LAGraph0, 

which we call the precondition signature; CR=(R,arR) is a 

diagram predicate signature such that arR:RAGraph0, 

which we call the postcondition signature and  is a diagram 

actions signature, with the property that for any Act there 

is p𝓣, p=L
 
←K

 
→R  with ar(Act)=(L, R), that specifies how 

to transform the attributes of graph L which is the domain of 
action into the components of graph R which composes the 
codomain of the action. 

We now denote the graph in Fig. 7 with G1(x1, x2, x3) and 
the graph with a single node in Fig. 8 we denote it with G2(x1). 
The shape graphs represent the local structures of a model and 
represent the areas of action of the behavioral rules in the 
context of a concrete model. 

These shape graphs represent the local structure of the 
model, and the context in which a behavioral rule evolves. 
Behavioral signatures defined on the components of these 
shape graphs are mapped to behavioral transformations on the 
component elements of a model. 

The behavior of the SML model can be specified by a 
behavioral signature that contains two behavioral rule 

signatures 1 and 2. Since the set of behavioral rule 
signatures is equivalent to the behavioral signature, we will 

use the same notation  for the set of behavioral rule 
signatures. 

So ={1,2} where: 

1=(L
1
  
←K

1
  
→R

1
,  

 ,Act
1
,  

 ); 2=(L
2
  
←K

2
  
→R

2
,  

 ,Act
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,   

 ); 
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L1= R1= L2= R2= G1(1,2,3) ;  K1 = K2 = G2(1); 

  
 =( 

     
  ; 

 ={  
 (u1,…,un)};   

 (ui)=ai, i=1,n and 

aiattr(L
1
); 

  
 =( 

 ,   
 ); 

 ={  
 (y1,…,ym)};   

 (ui)=bi, i=1,m and 

biattr(R
1
); 

L2= R2=G1(1,2,3) ; K2 = G2(1); 

  
 =( 

  ,    
 );  

 ={  
 (u1,…,un)};   

 (ui)=ai, i=1,n and 

aiattr(L
2
); 

  
 =( 

 ,    
 );  

  ={   
 (y1,…,ym)};   

 (ui)=bi, i=1,m and 

biattr(R
2
); 

The behavioral signatures thus defined will be transformed 
into behavioral rules at the level of the metamodel, by 
mapping them to the components of the sketch 𝓢, and will 
represent the behavioral model at the level of the metamodel, 
i.e. the abstract behavioral semantics of the models. The 
behavioral rules at the level of the sketch 𝓢 will then be 
mapped by matches at the level of the models. 

The behavioral rule signatures must be mapped to the 
components of the graph 𝓖 of the sketch 𝓢 by sets of three 
diagrams, one for each of the graph forms L, R and K. These 
will be defined by three functors dL, dK and dR, where dK is the 
restriction of the functors dL and dR at domain K; 
dk=dl/K=dr/K, ls and rs are monomorphisms that inject the 
graph K into L and R, respectively. 

We will therefore define the diagrams corresponding to the 

signature of the behavioral rule 1: 

  
 :G1(1,2,3)G1(12, w1, w2) defined as   

 (1)=12;   
 (2)=w1; 

  
 (3)=w2 ; 

  
 =  

 ; and   
 :G2(1)G2(12) defined as restriction   

 =  
 /K

1
; 

  
 (1)=12. 

And for the signature of rule p2 we have the diagrams: 

  
 :G1(1,2,3)G1(21, w2, w1) defined as   

 (1)=21;   
 (2)=w2; 

  
 (3)=w1; 

  
 =  

 ; and   
 :G2(1)G2(21) defined as restriction  

  
 =  

 /K
2
;   

 (1)= 21. 

Diagrams are functors that map the formal parameters 
defined by graph shapes to the concepts specified by the nodes 
of the sketch graph. The same graph shapes are, on the other 
hand, mapped to the components of a concrete model through 
matching applications. 

A behavioral rule of the sketch 𝓢 is a tuple t=(L
 
←K

 
→R, 

dL(CL),Act(dL(L);dR(R)),dR(CR)) where =(L
 
← K

 
→ R,CL, 

Act(L;R),CR) is a signature of a behavioral rule. We used the 

following notations: dL(CL)=(L,dL(arL)); 

dR(CR)=(R,dR(arR)). 

Thus, starting from a behavioral signature, we generate a 
set of behavioral rules at the level of the metamodel, i.e. at the 
level of the components of the graph of the sketch. 

If we denote with (), the set of behavioral rules induced 

by the behavioral signature , then a behavioral metamodel is 

a tuple (𝓖, 𝓢()) where 𝓖 is the graph of the sketch 𝓢=(𝓖, 
𝓒(𝓖)). 

In our approach each of these behavioral rules will be 
implemented as an FMU component. The behavioral 
metamodel corresponding to the SML language is defined by 

two behavioral rules ()={𝓢(1), 𝓢(2)} where: 

(1)=(L
1
  
←K

1
 
→R

1
,{  

 (  
 (L

1
))},Act

1
(  

 (L
1
);  

 (R
1
)), 

  
 (  

 (R
1
))); 

(2)=(L
2
  
←K

2
  
→R

2
,{  

 (  
 (L

2
))},Act

2
(  

 (L
2
);  

 (R
2
)), 

  
 (  

 (R
2
))); 

Thus, for our SML metamodel we will implement two 
FMU components corresponding to the two behavioral rules 

(1) and (2). 

In order for the behavioral rules specified in the 

metamodel () to be applied at the level of a concrete model 
we will have to find the matches of each behavioral rule from 

() in a model from Mod(𝓢,Set). 

A match of a graph 𝓖=(N, A, s, t) in the image of a functor 

:𝓖Set is a total monomorphism of graphs m:𝓖(𝓖) 
which maps the graph 𝓖 to the graph 𝓖m=(m(N), m(A), m(s), 

m(t)) so that yim(N) xiN with yi(xi) and 

aim(A) riN with ai(ri) respecting the conditions of 
homomorphism m(s(ri))=m(s)(m(ri)) and m(t(ri))=m(t)(m(ri)) 

for all riA. We will denote the set of graph matches 𝓖 in 

(𝓖) with m(,𝓖). 

In this way the graph transformations and the actions on 
the attributes will be executed on a concrete model. 

Under these conditions, a behavioral model, in the Set 
category, contains all the behavioral rules induced by the 

behavioral signature , in the Set category. We notice that the 
set of behavioral rules is specific to each concrete model, but 
they can be implemented generically at the metamodel level. 

As we can see each behavioral rule  in Set, defines an 

application :MLMR, where  ML,MR:𝓢Set are functors 

which represents the domain and codomain of the rule  and 

all these behavioral applications together, maps the set 𝓢() of 
behavioral rules of the sketch into a set of behavioral rules 

Set() in Set. 

In the case of the SML language the atomic behavioral 

rules in Set,  are of the form =(t, , ML, MR)𝓢() where  

t𝓢() is a behavioral rule t=(L
 
←K

  
→R, dL(CL),Act(dL(L); 

dR(R)), dR(CR)), ML, MR:𝓢Mod(𝓢, Set) there are two 

functors, and  is a tuple of match =(mL,mK,mR), 

mLm(ML,L), mRm(MR,R), and mK is the restriction of mL 
to K,  so that the diagram in Fig. 6 is a double pushout. 

For the model from Fig. 2 we have 5 behavioral rules in 

Set(), two for 𝓢(1) and three for 𝓢(2): Set()={11, 12, 21, 

22, 23}. 
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Fig. 6. A Double-Pushout Diagram. 

 

Fig. 7. Graph G1(x1, x2, x3). 

 

Fig. 8. Graph G2(x1
). 

In our approach, behavioral rules are approached in two 
distinct phases. In the first phase, these rules are defined, at 
the metamodel level, by behavioral signatures, and in the 
second phase, these rules are applied at the level of each 
concrete model. If the behavioral rules of the model are 
faithful to the modeled system, then their successive 
application mimics the behavior of the modeled system. 

V. IMPLEMENTATION OF THE FMU GENERATOR 

From the formalization presented in this paper results the 
fact that a diagrammatic metamodel has two dimensions, a 
static dimension represented by the categorical sketch and a 
behavioral dimension represented by the behavioral rules. A 
behavioral rule, as we have defined it, is an aggregation 
between a graph transformation on the structure of a model 
and a local action on the attributes of the model. If the 
functionalities of a metamodeling platform are designed to 
specify the graph structure of a metamodel and can be 
endowed with graph transformation facilities, behavioral 
actions are often performed by complex systems with a high 
degree of heterogeneity which implies the need for modeling 
on various modeling platforms. A solution to this problem is 
the assembly through co-simulation of n+1 independent 
components where n is the number of behavioral rules. In 
other words, you can build an FMU component that manages 
the static dimension of the model together with the graph 
transformations on it and an FMU component for each 
behavioral rule that models the action corresponding to the 
behavioral rule. 

Applying a transformation rule specified by a behavioral 

signature =(L
 
←K

 
→R,CL,Act,CR) is done as follows: 

1) We first consider the diagrams dL and dR which maps 

the behavioral signature  to the model sketch. In this way the 

components of the diagrams receive the types of components 

of the sketch. 

When we are going to apply a behavioral rule =(t, 

,M
L
,M

R
)𝓢() we have the first component ML, which 

represents the current state of the behavioral model, and we 
are going to determine the MR component which represents 
the state in which the transition is made. Therefore we can 

find the matches mLm(ML,L) and mKm(MK,K)=m(ML,L) 
which are the first two components of a match.  

=(mL,mK,mR) (Fig. 11). 

2) The preconditions are verified, i.e. the fulfillment of 

the predicates defined by the CL signatures, among which is 

the gluing condition. If the CL conditions are met the graph 

transformation defined by the cospan L
 
←K

 
→R is executed in 

two steps, 1 and 2. 

a) We calculate the complement ML(𝓢)\((mL(L)\mK(k)) 

of the pushout of ls with mk, from Fig. 9. 

b) Now we can calculate the pushout of r with mk, from 

Fig. 10 and therefore the functor MR and the component 

mRm(MR,R) of the match . 

All these transformations are executed temporarily, i.e. 
with the possibility of being canceled. 

3) In this phase, the Act action is temporarily executed. 

4) If the postconditions are also verified then the 

transformations described at points 2 and 3 are permanently 

executed, otherwise they are canceled by a rollback operation. 

Obviously, independent behavioral rules can be applied 
simultaneously, and also the same behavioral rule can be 
applied simultaneously to several areas of the model if these 
areas do not contain common elements. 

The model was implemented on the ADOxx metamodeling 
platform (see Fig. 12). In the case of the SML metamodel we 
defined, as it results from the analysis of the graph 𝓖 of the 
sketch 𝓢, two classes, corresponding to nodes b1 and b2 and 
two classes’ relations corresponding to nodes w1 and w2. 
Defining classes in ADOxx is done visually, but the 
metamodel can be exported in ADL language or XML format. 
We used the ADL language to generate from classes, C 
structure types for standalone FMU. 

 

Fig. 9. The Complement of a Pushout. 

 

Fig. 10. A Pushout Diagram. 
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Fig. 11. Matching Three Diagrams. 

The ADOxx metamodeling platform does not include 
behavior in classes and therefore we generated these classes as 
types of C structures. If the metamodeling platform would also 
include behavior this problem can be solved by function 
pointers. These structures were generated in a 
<ModelName>_fmu_types.h file, in our case 
SML_fmu_types.h. This type file is easy to write even 
manually, because it is written once and can then be used for 
all models specified with the implemented modeling tool. 

We exported from ADOxx the model in ADL format from 
which we generated the FMU component corresponding to the 
static model, i.e. a graph structure corresponding to the 
specified model and with nodes that have corresponding types 
from the file <ModelName>_fmu_types.h and the name 
specified in the model. We put this graph structure in a file 
named <ModelName>_fmu_structure.h, in the case of the 
SML metamodel, SML_FMU_structure.h. Generating this 
graph structure is important because it is used in all specified 
models with the implemented modeling tool. 

The behavioral part of the FMU component that manages 
the static dimension of the model was implemented manually 
in the C language. This is acceptable because it does not have 
a high complexity and is written only once for a modeling 
tool. The generation of this C code is possible but a translator 
from the ADOScript language to C should be implemented. 
To write this code we used FMU SDK [19] which can also be 
used in the case of generation from ADOScript. 

FMU components corresponding to behavioral rules are 
usually written in another modeling tool. In the case of our 
SML metamodel, we specified the two components 
corresponding to the behavioral rules T1 and T2 in the VDM-
RT language and exported them as standalone FMU. 

Therefore, for the SML metamodel, we have 3 FMU 
components (Fig. 13) Which we briefly describe using the 

notations from [20]. In this sense an FMU is defined as a tuple 
T1=<Sc,Uc,Yc,setc,getc,doStepc>; where: Sc is the space of 
states; Uc is the set of input variables; Yc, is the set of output 

variables; setc:ScUcSc and getc:ScYc are the input 

and output functions and doStepc:ScR+Sc is a function that 
calculates the state after a given step. 

T1=<S1 ,U1 ,Y1 ,set1 ,get1 ,doStep1> ; 

S1=Nx|xN,0xcapacity1}{(x,y)|x,yN,0xcapacity

1 and 0ycapacity2};  U1=T1u={ initial_id, initial_stock, 
initial_stock1, initial_stock2}; Y1=T1y={ final_id, 
final_stock, final_stock1, final_stock2}; The parameters PT1 
of the component T1 are: PT1 ={ capacity, capacity1, 
capacity2, stockIn, stock1Out, stock2Out }. 

The doStep1 function implements only the action Act
1 

because we do not have structural transformations of the 
model. The precondition for the execution of the action Act

1
 

is: initial_stockstockIn and capacity1-

initial_stock1stock1Out and capacity2-stock2stock2Out. 

The action (final_stock, final_stock1, final_stock2)= 
Act1(final_stock, final_stock1, final_stock2) defines the 
operations; final_stock=initial_stock-stockIn; final_stock1= 
initial_stock1+stock1Out; final_Stock=initial_Stock2+ 
stock2Out. We will consider that we do not have 
postconditions in the case of the SML model. 

T2=<S2 ,U2 ,Y2 ,set2 ,get2 ,doStep2> ; 

In the case of SML: S2=S1, U2=U1, Y2=Y1 and PT2=PT1. 

The doStep2 function implements the Act
2
 action as 

follows: The precondition for the execution of the Act
2
 action 

is initial_stock1stock1In AND initial_stock2stock2In AND 

capacity-initial_stockstockOut. The action (final_stock, 
final_stock1, final_stock2)=Act

2
(final_stock, final_stock1, 

final_stock2) defines the operations: final_stock1= 
initial_stock1-initial_stock1In; final_stock2=initial_stock2-
initial_stock2In; final_stock=initial_stock+initial_stockOut. 
Even in the case of this behavioral rule we do not have a 
postcondition. 

For component M we have the inputs and outputs identical 
to the inputs and outputs of the other two components in the 
case of the SML model. The doStepM function finds the 
matches in the model and implements the distribution of 
activities to the T1 and T2 components. Of course, for the T1 
and T2 components there will be several instances, one for 
each match. In the case of the example in Fig. 2 we have 2 
instances of the T1 component and three instances of the T2 
component. The distinction between the two types of instances 
is made by the value of the variables initial_id and final_id. 
For the co-simulation of the three components we used INTO-
CPS. We performed the co-simulation on an example of data 
and we obtained the output from Fig. 14. The graphs show the 
stocks resulting from the two instances of the T1 component 
and three instances of the T2 component. 
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Fig. 12. SML Tool. 

 

Fig. 13. FMU Components. 

 

Fig. 14. Screenshot of the Output from INTO-CPS. 

VI. ORIGINAL CONTRIBUTIONS AND CONCLUSIONS 

In this paper we used the mechanisms of category theory 
to specify diagrammatic models with co-simulation facilities. 
We introduced the concept of behavioral rule as an 
aggregation between a graph transformation and a behavioral 
action. We defined these behavioral rules by graph signatures 
at the metamodel level. We also implemented a simple 
example of diagrammatic language using the ADOxx [21] 
metamodeling platform. In all the phases of specification and 
implementation we highlighted the implementation of the 
constituent components of such an FMU. We performed the 
co-simulation of a concrete model specified with the SML 
language on the INTO-CPS platform. 

Model transformations, if any, must be implemented in 
component M (Fig. 13), otherwise they could not be executed 
in parallel. As a result, the preconditions and postconditions 
should also be executed in component M. In principle, this is 
acceptable. 

As it results from the previous observations, there are 
some important problems to be solved that we will deal with 
in future work such as: the implementation of a more complex 
model containing graphical transformations or the 
implementation of the export facility of a tool-wrapper for 
DSMLs implemented with ADOxx. 
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