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Abstract—This paper presents the development of a cascaded 

hybrid multi- lingual automatic translation system, by allowing a 

tight coupling between the two underlying research approach in 

machine translation, namely, the neuronal (deterministic 

approach) and statistical (probabilistic approach), while fully 

taking advantage of each method in order to improve translation 

performance. This architecture addresses two major problems 

frequently occurring when dealing with morphologically richer 

languages in MT, that is, the significant number unknown tokens 

generated due to the presence of out of vocabulary (OOV) words, 

and size of the output vocabulary. Additionally, we incorporated 

factors (additional word-level linguistic information) in order to 

alleviate data sparseness problem or potentially reduce language 

ambiguity, the factors we considered are lemmatization and 

Part-of-Speech tags (taking into consideration its various 

compounds). We combined a fully-factored transformer and a 

factored PB-SMT, where, the training data is pre-translated 

using the trained fully-factored transformer, and afterwards 

employed to build an PB-SMT system, parallelly using the pre-

translated development set to tune parameters. Finally, in order 

to produce the desired results, we operated the FPB-SMT system 

to re-decode the pre-translated test set in a post-processing step. 

Experiments performed on translations from Japanese to English 

and English to Japanese reveals that our proposed cascaded 

hybrid framework outperforms the strong HMT state-of-the-art 
by over 8.61% BLEU and 7.25% BLEU, respectively, for 

validation set, and over 8.70% BLEU and 7.70% BLEU, 

respectively, for test set. 

Keywords—Machine translation; transformer; statistical 

machine; morphologically rich; hybrid 

I. INTRODUCTION 

Machine translation has known an improvement in the 
state-of-the-art performance by the intervention of 
Transformers [1] which is a new paradigm in Neural Machine 
Translation (NMT) [2] [3] powered by frameworks of 
sequence to sequence learning, thus rivaling since then the 
factored statistical machine translation paradigm [4] which has 
achieved the state-of-the-art in SMT frameworks [5] [6]. 
However, the fundamental design of NMT models which 
imposes them to make reliable the input representation of a 
word by observing several instances of that word in multiple 
examples, and make them to eventually face coverage issues 
during the computational complexity control by limiting the 
input and output vocabulary sizes, greatly affects their 
translation performance when processing rare or OOV (out of 
vocabulary) words (which are those neither included in the 

vocabulary nor seen in the training data set, therefore mapped 
to an UNK token since being considered as unknown words) 
for languages that are morphologically rich and of low 
resources (such as Cameroon local languages and some 
national well known languages namely Arabic, Czech, 
German, Italian and Turkish). Though having fluent 
translations in most cases, NMT face challenges in modeling 
languages syntactic and semantic deeper aspects. 

As such, for low-resource (or small corpus) and 
morphologically rich language conditions, the necessity to 
incorporate for the surface level words various linguistic 
annotations was found to resolve semantic ambiguities and 
data sparseness, thus leading to better translation of rare words 
or OOVs and greater generalization capacity as illustrated [4] 
when addressing this issue for the traditional SMT architecture 
[7] by proposing the factored translation model. This linguistic 
annotations or factors include features such as lemmas, stems, 
morphological classes, roots, data-driven clusters, data-driven 
clusters, part-of-speeches, constituency parsing and 
compounds. With the vision of alleviating data sparseness and 
reducing language ambiguity, such extra features may be of 
enormous benefits when added to both NMT and Phrase-based 
SMT frameworks. 

However, the aim of improving translation performance 
has inspired much research works through the combination of 
NMT and SMT paradigms [8] [9] [10] [11] in order to fully 
take advantage of each system’s strength, and therefore 
overcoming the deficiencies of meaningless translations (those 
with meanings totally different compared to source sentences) 
and limited vocabulary size usually faced by pure NMT 
models, although its strong language modeling capacities. By 
contrast, the hard word alignment technic of PBSMT models 
reflects the source sentences adequacy extremely well, thus 
helping to some extend to restore the meaning of source 
sentence whenever wrong translations are produced. The 
framework proposed by [12] is very close to our work in the 
global context and overall all architecture but as compared to 
theirs, ours integrates outperforming paradigms in both the 
NMT and PBSMT frameworks, that is, Factored Transformers 
and Factored SMT, respectively. Also, we used linguistic 
features taking into consideration compounds bot at the NMT 
(augmenting its embedding layer so as to learn various 
compositional input representations at different granularity 
levels) and SMT levels and finally, we proposed a novel UNK 
replacement algorithm. Our experimental findings reveals that 
our hybrid model provide consistently and significantly better 
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translation quality for morphologically rich and low resourced 
languages when coming across rare and unknown words than 
the state-of-the-art of hybrid translation models. 

This paper is organized as follows: A literature review is 
performed in Section 2. We discuss the factorization process 
with the integration of compounds in Section 3. In Section 4, 
we describe the transformer operation with the incorporation 
of linguistic factors in detail. Section 5 detail our proposed 
neural hybrid MT framework. In Section 6, the results of two 
sets of experiments on Japanese to English and English to 
Japanese tasks are reported measured by their BLEU score. 
Finally, in Section 7 we summarize our findings and outline 
future plans. 

II. ANALOGOUS RESEARCHES 

By using a combination of different modules, paradigms, 
resources and approaches, many researchers have explored 
Hybrid MT systems. In order to produce publishable quality 
translations, corrections of repetitive errors have to be 
implemented through the development of various automatic or 
semi-automatic post-processing techniques, human post-
edition usually still have to be operated on the overall 
resulting MT output [13] [14]. Although human post-editing 
(PE) is needed over MT outputs, MT output post-edition more 
often remains cheaper and faster as compared to performing 
human evaluation from scratch. The authors in [15] [16], and 
[17] revealed that in some cases productivity can be increased 
as well as the quality of human translations exceeded by the 
quality of MT plus PE. More to that, a further optimization of 
the PE process needs to be done aiming at a time saving and 
cost-effective use of MT [13]. 

The authors in [18] and [19] brought out the idea of 
exploiting machine translation systems combined linearly 
using different paradigms has been successfully operated over 
SMT and rule-based MT (RBMT). As such, the systematic 
errors produced by the RBMT system were corrected by this 
automatic PE (APE) system based on PB-SMT, hence leading 
to the reduction of post-editing effort. For translation into a 
morphologically rich language, a rule (20 hand-written rules)-
based approach for English-Czech MT outputs APE at the 
morphological level was applied by [20] and [21], based on 
the most frequent errors encountered in translation. Words 
morphosyntactic categories such as case, number, person, and 
gender as well as dependency labels are efficiently corrected 
by this approach. Intuitively, one useful way to improve the 
APE performance is by source-language information 
integration in APE. The author in [22] proposed a pipeline in 
order to overcome data sparsity issues, where through task-
specific dense features the best pruned phrase table and 
language model are selected. More to that, they found that 
consistent improvements in all language pairs can be obtained 
by including source language information into statistical APE. 
The author in [23] considered the potential links of individual 
alignments occurrences and used an arbitrary number of 
alignments generated by different models (including both a 
refine model and minimum Bayes risk based models) by 
constructing over the 1-best alignments from multiple 
alignments [24] [25] weighted alignment matrices, rather than 
performing the combination of exactly two bidirectional 

alignments as proposed [26] and [27]. The works presented by 
[28] were motivated based on the fact that word alignment 
quality is constraint by word alignment-based reordering of 
source words, with the principal objective of producing 
monotone source and target chunk alignments through the 
reordering of source chunks. We argue that the problem of 
long-range reordering can be reduced to only short-range, 
intra-chunk reordering by obtaining monotone chunk 
associations from monotone word alignments while some 
source language syntax is preserved. The assumption is 
founded on the reflection that translation is performed by 
human translators much preferably at chunk level rather than 
at the word level. 

Also, translation outputs produced by an SMT were either 
re-ranked in a post-processing step using NMT [29] [30] [31] 
[32] [33], or used to produce an NMT system [10]. Another 
scenario involves re-ranking the translation outputs produced 
by an NMT in a post-processing step by using an SMT [12], 
or guiding translation in NMT by integrating an SMT into an 
NMT, as they revealed significant translation quality 
improvement over the Chinese-English translation tasks 
during experiments [9] [34]. In the works of [34], an NMT 
architecture is trained in an end-to-end manner where at each 
NMT decoding step, based on decoding information additional 
recommendations scored by an auxiliary classifier are offered 
by the SMT in order to generate words, and the SMT 
recommendations are combined with NMT generations 
exploiting a gating function while jointly taking part in the 
training process. 

The several aforementioned attempts to improve MT 
system’s performance did not still properly handled the issues 
faced by morphologically rich and low resourced languages, 
and long-term dependency modelling. We argue that, in order 
to limit the vocabulary size words could equally be split into 
sub-word units as proposed [35]. Also, lexical probabilities 
could be integrated into the NMT as successfully investigated 
[36]. Another latitude to achieve more monotone translation 
could be to exploit pre-reordering as experimented [37], and 
finally but not the least, the NMT translation of rare words 
could be improved in a post-processing step as suggested [38]. 

III. WORD COMPOUNDING AND FACTORIZATION 

In order to reduce the rate Out-Of-Vocabulary (OOV) 
occurrences and the amount of bilingual data when processing 
morphologically rich languages, factored models are majorly 
used. Factorization consists of splitting and retrieving from a 
given word linguistic information/factors such as dependency 
information, syntactic information, part-of-speech tags and 
lemma, using Tree-Tagger [39] and integrating it as a vector 
into a translation system. Machine translation from one 
morphological rich language to another has been a tedious 
task especially when not having enough required 
morphological information on the source side, since to have an 
exact target language word-form, word compounding is 
pronounced useful and highly productive [27] [40] [41] since 
it leads to sparse data problems and increases the vocabulary 
size. As such, integrating word compounding in the pre-
processing phase has proven to be useful to add extra 
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morphological information to the linguistic/morphological 
factors of the source and target languages. 

Compounding is operated at the level of POS Tag, where 
minimized part-of-speech tag are produced by refining POS-
tags from the Tree-Tagger using a dependency parser to add 
morphological information including gender, number, case, 
verbs, person for nouns, definiteness, pronouns, determiners 
and adjectives, provided that both tools agreed on the POS-tag. 
And in case of disagreement the Tree-Tagger POS-tags were 
chosen. Morphologically rich language compound are formed 
by joining words, inserting filler letters (example: -s, -en, -er, -
ien) or from the end of all but the last word remove letters 
(example: -en, -n) of the compound [42]. 

A. Compound Splitting 

The morphologically rich data language model is POS 
tagged and employed to compute the adverbs, adjectives, 
negative particles, verbs and nouns frequencies. Then making 
use of the adjusted version of the corpus-based method 
proposed by [27], each adjective and noun splits into known 
words from the corpus also proper names are not split since it 
would give rise to errors if translated in parts, while permitting 
filler additions and truncations. Also, due to the fact that 
compound parts often contain the base form, lemmas are 
equally used to calculate word frequencies in addition to 
surface form. As hint, more splits are gotten when using the 
arithmetic mean of the frequencies of its parts rather than the 
geometric mean, where the highest arithmetic value is 
validated. Each compound parts length was limited to 4 
characters and the number of parts for adjectives particularly 
was restricted to ≤ 2  with minimum words length to be  
split ≥ 7. 

All compound parts but the last were marked with the 
symbol # so as to be handled as separate words. 

Special POS-tag are assigned to split words parts based on 
the compounds last word’s POS, with both the full word and 
the last part receiving the same POS. Finally, words 
containing hyphens are split based on this same algorithm, and 
different POS-tags are assigned to their parts, with hyphens 
left at the end of all but last part. Factorization with compound 
splitting is integrated in a pre-processing step for training and 
translation of both the Transformer framework and the Phrase-
based statistical machine framework. 

B. Compound Merging 

For translation into the morphologically rich language, the 
split compounds are merged based on POS through a post-
processing step at the outputs of both the Transformer 
framework and the Phrase-based statistical machine 
framework. As such, if a compound-POS is possessed by a 
word and a matching POS possessed by the following word, 
they are merged. Alternatively, a hyphen is added to the word 
in case the next POS does not match, thus allowing for 
coordinated compounds. 

We used the merging algorithm proposed by [41] based on 
[40], with this algorithm the advantage is that unseen 
compounds can be merged and coordinated compounds 
handled. 

IV. INCORPORATING LINGUISTIC FACTORS INTO THE 

TRANSFORMER 

Our principal innovation over the standard encoder 
decoder based Transformer architecture is that we express the 
encoder input and decoder output as a combination of features 
such as [43] [44] [45]. Our generalized model supports an 
arbitrary number of input features. 

It is on a number of well-known linguistic features that we 
focused in this paper, having as empirical question of knowing 
to which extend does providing linguistic features to both 
encoder and decoder improves the translation quality more 
specially in morphologically richer languages when using the 
transformer paradigm. 

In order to better integrate linguistic factors in our NMT 
framework, we extended the Transformer architecture propose 
by [1] which employs multiple stacked layers of an encoder-
decoder structure. Two sub-layers constitute the encoder layer, 
which are a self-attention sub-layer succeeded by a position-
wise feed-forward sub-layer. Similarly to the encoder, the 
decoder has an additional sub-layer which serves at preventing 
information about future output positions to be incorporated 
by a given output position during training through masking in 
its self-attention. For all positions in a sequence, the 
transformer model computes attention scores using as query 
each position’s input representation. The input representations 
weighted average are computed then using the previously 
obtained attention scores. More generally, the attention is 
identified as query and key/value vector pairs mapping to an 
output. As such, our work is an extension of [1] by the 
integration of additional linguistic factors. Considering that we 
have 𝐿  layers of annotations for linguistic factors, and 𝑁 
training parallel sentences from the training data 

{{𝑥(𝑛,𝑙), 𝑦(𝑛,𝑙)}
𝑙=0

𝐿
}
𝑛=1

𝑁

 where the 𝑛 -th sentence pair word 

sequence is denoted in layer zero as  𝑥(𝑛,0)  and its length 
denoted as |𝑥𝑛|, the annotations of its 𝐿  layers are denoted 

by {𝑥(𝑛,𝑙)}
𝑙=1

𝐿
, with the target sentence denoted as 𝑦(𝑛,𝑙) . In 

other words, for each feature we look up separate embedding 
vectors, and concatenate them. The total embedding size is 
matched by the concatenated vectors length, and the internal 
structure of the transformer’s encoder and decoder is 
maintained. According to this setting we extended our 
standard encoder-decoder based Transformer architecture, 
operating as follows: 

Given the input sequence  𝑥 = (𝑥1, … , 𝑥𝑛)  of 𝑛 elements 
where 𝑥𝑖 ∈ ℝ𝑑𝑥  on which each attention head operates, and 
from which a new representation  𝑧 = (𝑧1, … , 𝑧𝑛)  of same 

length is computed where 𝑧𝑖 ∈ ℝ𝑑𝑧. The weighted sum of a 
linearly transformed input elements will be computed from 
each output representations as [46]: 

𝑧𝑖 = ∑ 𝛼𝑖𝑗(𝑥𝑗𝑊
𝑉)𝑛

𝑗=1              (1) 

Equally, a softmax function is used to compute each 
weight coefficient, 𝛼𝑖𝑗 as: 

𝛼𝑖𝑗 =
𝑒𝑥𝑝 𝑒𝑖𝑗

∑ 𝑒𝑥𝑝 𝑒𝑖𝑘
𝑛
𝑘=1
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And compatibility function which compares two input 

elements is used computed from 𝑒𝑖𝑗: 

𝑒𝑖𝑗 =
(𝑥𝑖𝑊

𝑄)(𝑥𝑗𝑊
𝐾)

𝑇

√𝑑𝑧
             

To enable efficient computation, a scaled dot product was 
chosen for compatibility function. Where we have as unique 
parameter matrices per layer 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ ℝ𝑑𝑥×𝑑𝑧. 

Input representations in multi-headed self-attention are 
linearly mapped to lower-dimensional spaces firstly, and one 
multi-headed self-attention layer’s output is formed by the 
concatenation of several attention mechanisms output vectors 
(provided that each attention mechanism is identified as a 
head). Thus in the first self-attention layer the vector for 

position 𝑖 for a single attention head ℎ⃗  is computed as: 

ℎ⃗ 𝑖 = Attention(𝑄𝑊𝑖
𝑄
, 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉)           (4)

And multi-head attention computed as: 

𝑀𝑢𝑙𝑡𝑖ℎ⃗ (𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ⃗  1, … , ℎ⃗  ℎ)𝑊
𝑂          (5)

given the function computing the resulting vector as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉           (6)

Adding sinusoids of various wave-lengths enables the self-
attention paradigm to encode positional information.1 

A. Beam Search Integration with Factors 

We extended our beam search procedure in order to find 
the best sequences by dealing with multiple word features 
(outputs), for simplicity reasons we have one beam 
responsible for generating lemmas and another beam 
responsible for generating the concatenation of the different 
factors. With the help of a toolkit such as MACAON [47] or 
even the more specialized KyTea [48], we performed the 
grammatical and morphological analysis. While taking into 
consideration the context, the lemma and factors for each 
word is output using the MACAON/KyTea POS-tagger [49]. 
In the various outputs, the generation of the lemmas and 
factors are made in a synchronous stream thus leading to 
sequences with different length sizes, ending each after the 
generation of the  < 𝑒𝑜𝑠 >  (end-of-sequence) symbol, and 
creating by such, multiple representations of the  < 𝑒𝑜𝑠 > 
symbol in an output word. Due to the fact that lemmas carry 
most of the meaning and   are closer to the final objective, we 
constricted the length size of the factors sequence to be equal 
to that of the lemma sequence. This implies that when the 
lemma sequence generation has ended we stop the generation 
of factors while ignoring their  < 𝑒𝑜𝑠 >  symbol, therefore 
avoiding both longer and shorter factors sequences. 

In order to generate the next word in the sequence, the 
feedback (previous word) is employed taking into 
consideration its various features (outputs), in this case, in 
order to obtain full benefit of both feedback outputs we 

                                                        
1We exploited relative positional encoding as emphasized [46] [60] so as 

to improve performance with respect to machine translation and relation 

classification, respectively. 

performed the tanh (non-linear) transformation of both 
embedding concatenation, thus having more information and 
learning better by their combination. Given as: 

𝑃𝑟𝑒𝑣𝑤(𝑦𝑡−1) = 𝑡𝑎𝑛ℎ([𝑦𝑡−1
𝐿 ; 𝑦𝑡−1

𝐹 ] ∙ 𝑊𝑃𝑟𝑒𝑣𝑤
)          (7)

Where, the previous output 𝑦𝑡−1 feedback is computed 

by 𝑃𝑟𝑒𝑣𝑤, 𝑊𝑃𝑟𝑒𝑣𝑤
 are trained weights, with 𝑦𝑡−1

𝐿  and 𝑦𝑡−1
𝐹  the 

embedding of the lemma and factors generated at previous 
time step, respectively. 

Finally, for each partial hypothesis we did the cross 
product of the output spaces of the best generated lemma and 
factors hypotheses, thus associating each factor hypothesis to 
each lemma hypothesis. Also, having 𝑘 as beam size, the 𝑘 − 
best combinations was kept for each sample. Equally, in order 
to get the word candidate when having the lemma and some 
factors, the MACAON toolkit was used. In situations where 
name entities are processed therefore having no factors found, 
the lemma was outputted by the system. 

V. HYBRID MACHINE TRANSLATION SUCCESSION 

Although the translations produced by NMT are more 
fluent than those of SMT, it still does not fully and explicitly 
exploit the source information as compared to SMT. Thus, 
sometimes generating translations that are quite different from 
the source sentence original meaning [50] and some other 
times may mistakenly ignore some words during source 
sentence translations causing other words to be repeatedly 
translated [51]. 

If we consider as “intermediate language (another 
language)” the translation produced by the output of the NMT, 
to some extend we may amend the duplicated and meaningless 
translations, by building a translation model and operating a 
word alignment using an SMT. 

Therefore we propose a factored multi-engine hybrid MT 
system consisting of an NMT and SMT framework, illustrated 
in Fig. 1. 

Firstly, a preprocessing phase in this pipeline is performed 
by the transformer, which consist of training the transformer 
system using the initial factored training data, translating the 
training data, development set and test set into factored pre-
translations; secondly, a target-target SMT system is built 
using the factored pre-translated training data, with parameters 
tuned using the pre-translated development set; and finally, 
the desired output is produced by decoding the pre-translated 
test set using the tuned SMT system. 

When using the transformer to perform the pre-translations, 
if there is an occurrence of OOV in the source sentence, an 
‘UNK’ token is generated by the transformer when translating 
the training data, development set and test set. We therefore 
propose a simpler and efficient technique to replace in the 
translation sentence, the “UNK” token by the corresponding 
source word. This method is known as the “labeled UNK 
replacement algorithm”, which alleviates the weaknesses 
faced by the UNK replacement algorithm inspired from [52] 
proposed by [12]. The technic is presented in Algorithm 1. 
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Fig. 1. The Factored Hybrid Transformer-PBSMT Framework. 

As such, our algorithm will simply traverse the translation 
and replace the UNK token they encounter with their 
corresponding source word (the key at that position), if in the 
vocabulary there is no existence of the source word. Reference 
[12] proposed a naïve algorithm to do the UNK replacement, 
facing the weakness of eventually having between the source 
sentence and the target sentence different word order, thus 
creating wrong replacements. 

Algorithm 1 Labelled UNK replacement by source words 

Require: The translation 𝑒1
𝑚 with UNK tokens from the 

Transformer. 

With e as an array of key and value pairs where each key is 

a source word, and the value the corresponding translation or 
UNK token. 

e.g. for the French sentence: “un chat noir” to translate in 

English, we may have the corresponding e below. 

Considering that we have the following sentence, the 

replacement will thus be done as: 

1: procedure LABELLED UNK REPLACEMENT 

2:       for i = 1 to m do 

3:             if ei•value == UNK then 

4:                   ei•value = ei•key 

5:             end if 
6:       end for 

7: end procedure 

{un:a} {noir:black} {chat:UNK} {eos:eos} 

Finally, to post-process these unknown words, instead of 
using a back-off dictionary [53], we engage by considering 
more context a factored phrase based SMT system to perform 
the desired translation. In the factored PB-SMT, for decoding 
and training we applied the Moses toolkit [7], for sequence 
models we used SRILM [46] to train a 5-gram language model, 
and for word alignments creation we employed Giza++ [54], 
using for feature weights tuning the MERT (Minimum Error 
Rate Training) [26]. 

VI. EXPERIMENTS 

In order to verify our proposed framework, we selected 
translations between Japanese and English languages, noting 
than Japanese is drastically different in terms of word order 

and has a far richer grammatical structure as compared to 
English language. 

For fair comparison we re-implemented the hybrid 
frameworks proposed by [10], training our models using a 
machine with 8 NVIDIA P100 GPUs. 

A. Datasets and Setup  

We used as training data Part-1 of the JP–EN Scientific 
Paper Abstract Corpus (ASPEC-JE) for JP-EN translation task 
which contains 1M sentence pairs, with the 1,790 sentence 
pairs contained in the development/validation set, and the 
1,812 sentence pairs contained in the test set [55], provided 
that for the validation and test sets each sentence at the source 
side has only one reference. 

For factorization at both the Transformer and the PBSMT 
level, we used Lemma and POS tags with compounds (as 
explained in Section 2 above) as input and output features, 
which can be produced either by using the MACAON toolkit 
[47] or the more specialized KyTea [48] especially for the 
Japanese data. 

Due to the fact that unknown words cannot be generated 
when using Byte-Pair Encoding (BPE) [56] since they are all 
encoded as BPE units, we thus keep words as translation units. 
Besides this, incorrect words are sometimes produced by BPE 
units generation during the final word level processing, thus 
does not lead to any noticeable improvement in terms 
of %𝐵𝐿𝐸U [57]. We used the PB-SMT system described in 
section 4 above. Also, we used as NMT system the 
transformer [1] default settings with some variants, setting 
mini batches of size 80, and having as 60 the maximum length 
of a sentence, with a size of 600 for word embeddings. 
Parallelly, we have as input and output vocabulary size set to 
45K. We reshuffled the training corpus between epochs, and 
trained the models with the AMSGrad optimizer [58], while at 
every 5,000 mini batches on the validation set, we validated 
the model through BLEU (BiLingual Evaluation Understudy) 
scores, and at every 30,000 performed model safeguard. 

We only utilize the baseline transformer system pre-
translated training data and devset as input to the SMT engine 
for its training and tuning. For tuning, the optimized 
configuration file settings for our translation model is found 
using Batch MIRA (equally known as k-best MIRA) [59] [60], 
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which is a version of MIRA (a margin-based classification 
algorithm) working within a batch tuning framework when we 
have sparse features OR using Minimum error rate training 
(MERT), but the use of more than about 20-30 features cannot 
be supported. After which the pre-translated test set is re-
decoded utilizing the tuned SMT system. 

B. Evaluation and Results 

Through bootstrap re-sampling significance test we 
calculated the statistical significance [61], and also, case-
insensitive BLEU scores were used to report all results. 

Table I shows the BLEU score based translation results for 
𝐽𝑃 ↔ 𝐸𝑁 with non-reordered data, considering as baseline 
systems a standard PB-SMT [62] for statistical based 
translations and a NMT proposed by [3] for neuronal based 
translations. Thus, we observe that: 

 The hybrid translation system where the SMT system is 
used to pre-translate data which serves as input to the 
NMT, performs significantly gets worse than both the 
baseline NMT systems and the FNMT system, when 
operating on 𝑱𝑷 → 𝑬𝑵  and 𝑬𝑵 → 𝑱𝑷  languages. The 
baseline SMT systems has been outperformed in 
%𝑩𝑳𝑬𝑼  points by all the SMT

 
⇒NMT systems on 

𝑱𝑷 → 𝑬𝑵  and 𝑬𝑵 → 𝑱𝑷,  except for the  𝑱𝑷 → 𝑬𝑵 
validation set which reports a decrease in result of 
− 𝟎. 𝟏𝟖 𝐵𝐿𝐸𝑈 points. 

 The hybrid NMT
 
⇒SMT model results indicates that the 

translations produced by the baseline NMT system are 
re-decoded by the NMT

 
⇒SMT pipeline, leading to a 

significant improvement of + 𝟏. 𝟐𝟓 𝐵𝐿𝐸𝑈  points and 
+ 𝟏. 𝟏𝟑 𝐵𝐿𝐸𝑈  points on the 𝑱𝑷 → 𝑬𝑵  validation and 
test sets translation performance, respectively, and also, 
a significant improvement of + 𝟏. 𝟒𝟏 𝐵𝐿𝐸𝑈 points and 
+ 𝟏. 𝟗𝟔 𝐵𝐿𝐸𝑈  points on the 𝑬𝑵 → 𝑱𝑷  validation and 
test sets translation performance, respectively, 
compared to the baseline NMT system. As compared to 
the factored NMT system, the hybrid Factored 
NMT

 
⇒ SMT model results indicates a slight but 

noticeable improvement of + 𝟎. 𝟒𝟏 𝐵𝐿𝐸𝑈  points and 
+ 𝟎. 𝟒𝟐 𝐵𝐿𝐸𝑈  points on the 𝑱𝑷 → 𝑬𝑵  validation and 
test sets translation performance, respectively, and also, 
a significant improvement of + 𝟏. 𝟐𝟓 𝐵𝐿𝐸𝑈 points and 
+ 𝟏. 𝟔𝟓 𝐵𝐿𝐸𝑈  points on the 𝑬𝑵 → 𝑱𝑷  validation and 
test sets translation performance, respectively. 

 Finally, we observe that the hybrid model where 
translations produced by the factored transformer at 
both its input and output (fully-factored transformer), 
and which are further re-decoded by the factored SMT, 
outperforms the translations on the   𝑱𝑷 → 𝑬𝑵 
validation set generated by the fully-factored 
transformer, and the transformer, by + 𝟎. 𝟖𝟔 𝐵𝐿𝐸𝑈 
points and + 𝟐. 𝟕𝟒 𝐵𝐿𝐸𝑈 points, respectively, and also, 
translations on the  𝑱𝑷 → 𝑬𝑵 test set generated by the 
fully-factored transformer, and the transformer, by 
+ 𝟏. 𝟎𝟒 𝐵𝐿𝐸𝑈  points and + 𝟐. 𝟖𝟔 𝐵𝐿𝐸𝑈  points, 
respectively. Similarly, both the translations on 
the   𝑬𝑵 → 𝑱𝑷  validation set generated by the fully-

factored transformer, and the transformer, by 
+ 𝟏. 𝟎𝟔 𝐵𝐿𝐸𝑈  points and + 𝟐. 𝟔𝟔 𝐵𝐿𝐸𝑈  points, 
respectively, and those on the 𝑬𝑵 → 𝑱𝑷  test set 
generated by the fully-factored transformer, and the 
transformer, by + 𝟏. 𝟐𝟕 𝐵𝐿𝐸𝑈  points and 
+ 𝟑. 𝟐𝟓 𝐵𝐿𝐸𝑈  points, respectively, are as such 
outperformed by our proposed hybrid system. 

C. Discussion 

From the above results with reference to the state of the art, 
we analyze that: 

As compared exceptionally to [10] framework consisting 
of an SMT

 
⇒NMT pipeline which has a higher computational 

complexity due to the integration of the source information 
into both the SMT and NMT (concatenating at this level the 
pre-translated and source sentences as input), and other state 
of the art hybrid frameworks particularly [12] consisting of an 
NMT

 
⇒SMT pipeline, our hybrid MT pipeline is more simpler, 

viable and efficient, by employing source-side information 
only during the transformer training and exceptionally during 
OOVs processing, thus favoring its faster computation. 
Analytical studies for rare/OOV word impact on the 
translation quality were operated over the Scientific Paper 
Abstract Corpus (ASPEC-JE) for Japanese-to-English, sorted 
by the words average inverse frequency and validation 
sentences were split into groups with comparable numbers of 
rare words independently evaluated. All target words which 
occur in the training data for each number of sentence 
occurrence less than N times were replaced by the UNK token, 
for all analyzed systems. Given  𝑁 ∈
 {0𝐾, 0.5𝐾, 1𝐾, 1.5𝐾, 2𝐾, 2.5𝐾, 3𝐾}.  Thus, a higher 
occurrence of rare words is obtained for large N, hence in the 
reference only the most frequent words are exploited. 
Meanwhile a lesser occurrence of rare words is obtained for 
lower N, using hence more words. We observed that our best 
performing model (FF-Transformer

 
⇒ FSMT) considerably 

outperforms the state of the art both stand-alone and hybrid 
MT systems on sentences with many OOV words, as a greater 
occurrence of OOV words implies an increased amount of 
data size. This boost in performance can be justified by the 
fact that attention mechanisms which makes up the 
Transformer operates better on lager data sizes. 

We point out that, attention mechanisms are used by neural 
networks to encode each position while relating two distant 
words of both the inputs and outputs with respect to itself, by 
which the training can be accelerated through parallelization. 
An attention mechanism is a technique created for paying 
attention to specific words, which have proven to be useful to 
address the bottleneck issues that arise when handling long 
sentences with complicated dependencies between words, as it 
is harder for the context vector to capture all the information 
contained in the sentence due to the sequential order of word 
processing. More precisely, the Attention technique focuses 
on part of a subset of the information it is given, provided that 
for each input word one hidden state vector is produced. These 
vectors can then be concatenated, averaged or (even better!) 
weighted in order to give higher importance to words from the 
input sentence, most relevant to decode the next word of the 
output sentence. 
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TABLE I. RESULTS OF VARIOUS HYBRID (NMT-SMT) MACHINE TRANSLATION EXPERIMENTS PERFORMED ON JP→EN AND EN→JP WHERE, “♠” INDICATES 

THE BEST TRANSLATION PERFORMANCE 

SYSTEM 
JP-EN EN-JP 

Validation Test Validation Test 

SMT [62] 18.46 17.79 27.71 26.54 

NMT [3] 24.66♠ 24.94♠ 35.72♠ 35.48♠ 

FACTORED SMT 18.87 17.91 27.84 26.80 

FACTORED NMT 25.70♠ 25.83♠ 36.57♠ 36.31♠ 

SMT
 
⇒NMT [10] 18.28 17.92 27.82 27.98 

T
 
⇒SMT 25.91 26.07 37.13 37.44 

FACTORED NMT
 
⇒SMT [12] 26.11♠ 26.25♠ 37.82♠ 37.96♠ 

TRANSFORMER [1] 31.98 32.09 42.16 42.41 

FULLY-FACTORED TRANSFORMER 33.86 33.91 44.01 44.39 

FULLY-FACTORED TRANSFORMER 
 
⇒ FSMT 34.72♠ 34.95♠ 45.07♠ 45.66♠ 

Also, due to the larger vocabulary of the test set by the 
integration of factors during the PB-SMT post-processing 
translation, we experienced in our proposed framework a 
significant decrease in rate of OOVs as compared to the NMT 
system, of 1.06% and 5.37%, respectively. 

We emphasize that, the results on the ASPEC Japanese-to-
English corpus should be interpreted with caution. It is the 
expectation that the attention based HMT when used on longer 
sentences will show their true potential. In order to investigate 
on the effect of translating long sentences, sentences of similar 
lengths having unknown words to the models included were 
grouped together and the BLEU score was computed per 
group. The results are delineated in Fig. 2, analyzed over the 
full validation set. 

We observe on Fig. 2 that the buckets of longer sentences 
are more effectively handled by our Transformer based HMT 

(purple curve) due to its integrated Attention mechanism at 
both the encoder and decoder levels as compared to the 
winning entry recurrent based HMT (green curve) in which 
the Attention mechanism is integrated only at the level of the 
decoder, hence as sentences become longer the quality does 
not degrade. While at shorter sentence lengths, it is observed 
that our outperforming model performs worse, indicating that 
although the attention mechanism speeds up training, it is 
likely not very important and may potentially be redundant. 
More to that, higher perplexities are produced when operating 
Attention mechanisms over short sentences, as the model 
becomes less certain about its predictions than without it. 

And we believe that, translations performance will be 
improved if phrases corrected and reordered are considered. 
We shall dive deeper by considering this fact in future work. 

 

Fig. 2. Length Analysis – Impact of Attention Mechanism on Translation Qualities as Sentences become Longer Performed on ASPEC-JE Data. 
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VII. CONCLUSION 

We have proposed a novel HMT framework cascaded as a 
Fully-Factored Transformer

 
⇒ Factored SMT pipeline 

consisting of integrated linguistic factors at both the source 
language and target language of the transformer model, and 
linguistic factors at source language (pre-translated language) 
of the SMT model. The considered linguistic factors where 
lemmatization, part-of-speech tagging (taking into 
consideration its various compounds). Our experimental 
results on 𝐽𝑃 ↔ 𝐸𝑁 language pairs clearly revealed that our 
proposed HMT framework with integrated linguistic factors 
outperforms the state-of-the-art HMT frameworks, in terms of 
both perplexity and BLEU points. More to that, we observed 
an OOV rate reduction, due to the generation of new word 
forms derived from the integrated additional linguistic 
resources. 

As future work, we aim to explore whether the integration 
of a grammatical error detection and correction (GEC) process 
[34] will further help in reducing the rate of OOVs. Also, use 
compositional learned word representations from smaller 
orthographic symbols inside the words such as character n-
grams, which can easily fit in the model vocabulary. 
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