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Abstract—The topic of human activity recognition has gained
a lot of attention due to its usage for exercise monitoring,
smart health and assisted living. Even though the aforementioned
domains have received significant interest by researchers, activity
recognition for industrial settings has received little attention in
comparison. Industry 4.0 involves the assimilation of industrial
workers with robots and other equipment used in the industry
and necessitates the development of recognition methodologies for
activities being performed in industries. In this regard, this paper
presents a comparison in performance of various time/frequency
domain features and popular machine learning algorithms for use
in activity recognition in a logistics scenario. Experiments were
conducted on inertial measurement sensor data from the recently
released LARa dataset which involved three feature sets being
used with four machine learning algorithms; Support Vector
Machines, Decision Trees, Random Forests and Extreme Gradient
Boost (XGBoost). The best result achieved in the experiments was
an average accuracy of 78.61% using the XGBoost classifier while
using both time and frequency domain features. This work serves
as a baseline for activity recognition in logistics using IMU sensors
and enables the development of solutions to support fulfillment
of Industry 4.0 goals.

Keywords—Human Activity Recognition (HAR); inertial sen-
sors; LARa dataset; smart industry

I. INTRODUCTION

Human activity recognition (HAR) has been a very pop-
ular application target for the development of mobile smart
devices as it brings healthcare to the home. HAR involves the
determination of activities that a person performs in their daily
life such as walking, standing, sitting, jogging, etc. Wearable
sensors such as accelerometers, gyroscopes, magnetometers
can be worn on the body and collect movement data on a
person while they are performing activities. Although, there
are various modalities that can be used for activity recognition,
such as videos [1] or using environmental sensors (for e.g.
pyroelectric infrared sensors [2]), wearable sensors provide the
benefit of being nonrestrictive to movement, are cost effective
and easy to ‘carry’, thereby making them suitable for use in
human activity recognition tasks.

While human activity recognition has attracted wide in-
terest in the domains of smart health, ambient assisted living
and more [3], the area of activity recognition in an industrial
setting has received much less attention. This, even after
the fact that the Industry 4.0 vision involves workers in a
factory to be equipped with sensors and other smart devices

to work fully integrated with robots and other devices [4]. It
is therefore necessary to develop algorithms that are able to
perform activity recognition in such an environment that allows
seamless integration of workers with machines in the industry
and also facilitate optimization of processes and protocols.
Moreover, from a health perspective, activity recognition might
help in pointing to work related injuries or avoiding them
altogether if sensor signatures are not as expected.

This paper investigates the performance of four machine
learning algorithms, Support Vector Machines (SVM), Deci-
sion Trees (DT), Random Forests (RF) and Extreme Gradient
Boost (XGBoost) for the use of activity recognition in logistics
using inertial sensors. Different time and frequency domain
features are used in this work which have been utilized for ac-
tivity recognition previously and their performance is discussed
on the recently published LARa dataset [5]. It was found
that XGBoost performs the best among the chosen algorithms
using both time and frequency domain features. The paper is
organized as follows, section II provides a disussion of the
literature for activity recognition in the industry, section III
provides an introduction to the dataset, section IV elucidates
on the methodology used in this work, the way the experiments
have been set up, section V provides a discussion of the results
obtained for the experiments while a conclusion is presented
in section VI and future work is discussed in section VII.

II. LITERATURE REVIEW

One of the early works for activity recognition in the
industry was carried out by Ward. et al. in [6] who use a
combination of microphones and an accelerometer to iden-
tify different activities performed in assembly tasks in wood
shops as a component for augmented reality/computer guided
assembly jobs. Data is collected from subjects performing the
activities with two microphones attached to them, one on the
wrist and the other on the upper arm. The accelerometer is
also placed on the wrist. Data from the microphones and
accelerometer is segmented and they individually vote for the
activity being performed. For classification on the microphone
side, the authors compute the FFT, then use Linear Discrim-
inant Analysis for dimensionality reduction followed by the
computation of euclidean distance to samples in a training set
for determining the current activity. For the accelerometer, they
make use of Hidden Markov models to predict the activity
being performed. Activity recognition for construction was
presented in [7] who use data from five Inertial Measurement
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Units (IMUs) placed on a worker (thigh, back of head, calf,
upper arm and chest) to identify activities being performed on
a construction site targeting increased productivity and reduced
risk of injury. To do this, they compute various time and
frequency domain features on the accelerometer and gyroscope
measurements from the IMUs and after performing feature
selection, compare three different ML algorithms, SVM, KNN
and C4.5 decision trees for classification. They find that SVM
performed the best from the models considered. The authors
in [8] target behavioral modeling for assembly line workers
using accelerometer data to enable task performance analysis
as well as development of computer guided task instruction
systems. An accelerometer is placed on a workers wrist and
a two step recognition process is used, first windowed data
is classified using a KNN classifier which is then passed to
a state machine to identify completed tasks from the activity
sequences.

In [9], human activity recognition has been performed
using convolutional neural networks (CNN) on accelerometer
data from the Skoda dataset[10]. Their network consists of one
convolutional and pooling layer for each accelerometer signal
axis followed by two fully connected layers and a softmax
layer for classification. They are able to achieve an accuracy
of 88.19% using their CNN. Targeting process optimization,
the authors in [11] present a dataset which consists of triaxial
accelerometer, gyroscope and magnetometer data from three
IMU sensors of subjects performing activities in a picking
process. One IMU is placed on the upper chest while the other
two are placed on the right and the left wrist respectively. The
authors also use this data to perform classification between
activities using statistical features and three different ML
algorithms, SVM, Naive Bayes and Random Forest from which
Random Forest performed the best. In [12], the authors use a
convolutional neural network on inertial measurement sensor
data on the dataset in [11] to enable optimization in regard
to Industry 4.0. Due to class imbalance, the authors use data
augmentation and then pass the IMU data for each activity to a
CNN with four convolutional layers, two pooling layers, one
fully connected layer and a softmax layer for classification.
They compare the performance of their CNN with a baseline
determined using statistical features and three ML algorithms,
SVM, Naive Bayes and Random Forests. The CNN outper-
forms the other methods by achieving an accuracy of 73.9%
as the best result. Another approach which employs deep
learning for human activity recognition in an industrial context
is proposed in [4] who use CNNs with accelerometer data
to differentiate between different activities from the dataset
provided in [13]. They compare the performance of multiple
preprocessing methods (raw data, spectogram and its variants)
for use with a CNN for classification. They achieve the best
results when using raw values.

The authors in [14] make use of semantic representations
from motion data collected in a manual picking scenario to
perform human activity recognition. They use the MoCAP
dataset which consits of a multichannel time series of pose
information recorded by 38 cameras. This data is labeled
with three different attribute representations, two by experts
and one by a nonexpert, and is passed to the convolutional
neural network architecture described in [15]. The attribute
representations differ in the granularity of the sequences used
to describe the picking process, for e.g. representation 1 uses

less attributes described for the picking process compared to
representation 2. The CNN achieves a higher accuracy for
representation 1 compared to the other two representations at
75%. The authors do note that the representation process is
subjective as annotations are expert dependent.

As observed from the literature discussed, activity recog-
nition in the industry is important for achieving Industry 4.0
goals of optimization, computer guided worker instruction,
increased productivity and also to enable a safer work en-
vironment. However research in this direction has not been
up to speed with activity recognition for other domains (smart
health, assisted living etc) due to the absence of a large publicly
available dataset. Fortunately, the recent introduction of the
publicly available LARa dataset which contains recordings of
activities performed in a logistics scenario opens up various
opportunities for research in this domain. This paper uses the
LARa dataset to perform activity recognition in logistics using
IMU data in this work.

III. DATASET

The LARa dataset is a novel dataset that presents multi-
modal data for developing algorithms for activity recognition
for logistics activity recognition. The dataset has been provided
by the ‘Innovationlab Hybrid Services in Logistics’ at TU
Dortmund and follows up from their previous research in this
area [16]. The dataset consists of 14 individuals performing
three different tasks in a logistics scenario, two related to
picking and one related to packing. Each of these activities
were recorded using an Optical Marker-based Motion Capture
(OMoCap) system which measures movements of the par-
ticipants as markers, RGB camera to capture videos of the
participants and inertial measurement units to track participant
movements while performing their activities. There are a total
of 758 minutes of data in the LARa dataset which have been
annotated for eight intra-activities which in certain sequences
constitute the three tasks performed. In addition to this, they
also provide 19 binary semantic annotations called attributes
for the three scenarios which describe intra-activities in a
different manner too. The activities annotated include standing,
walking, cart (participant is walking with the cart), handling
upwards (participant has atleast one hand raised upward to
shoulder height), handling centered (participant can handle
things without bending, lifting their arms or needing to kneel),
handling downwards (participant has hands below his knees
while kneeling or otherwise), synchronization (waving motion
before each recording) and a set of samples which were
unrecognizable by the annotators and have been marked as
None.

This dataset is the first of its kind in that it provides an
opportunity for researchers to develop automated algorithms
for recognizing activities in the context of logistics operations
as a public dataset. This work focuses on utilizing data from
inertial measurement units for logistics activity recognition.
Three types of inertial measurement units were used for
recording this data and recordings from seven subjects is
contained within the dataset. These units are used to measure
accelerometer and gyroscope sensor readings on both the legs,
arms and the chest/mid-body. Table I presents a summary of
IMU measurements in the dataset. There are a total of 14 trials
of scenario 1, 99 trials of scenario 2 and 95 trials of scenario
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3. For a detail on the sequences of each activity that form the
three tasks the reader is referred to [5].

TABLE I. SUMMARY OF IMU MEASUREMENTS IN THE LARA DATASET

Subject ID Gender Age Scenario 1 Scenario 2 Scenario 3
S07 M 23 2 13 14
S08 F 51 2 13 14
S09 M 35 2 14 13
S10 M 49 2 13 12
S11 F 47 2 12 0
S12 F 23 0 6 14
S13 F 25 2 14 14
S14 M 54 2 14 14
Total 14 99 95

IV. METHODOLOGY

The methodology for this study follows a typical ML
pipeline as shown in Fig. 1 where the first stage is preprocess-
ing (windowing in this case), followed by feature extraction
and then the use of ML to perform classification. Each of
these steps are discussed in detail in subsequent sections. Three
different tests were performed with the four machine learning
algorithms, first using both frequency and time domain fea-
tures, the second using time domain features only, and the
third using only frequency domain features.

A. Preprocessing Stage

The sensor measurements from the inertial measurement
units in the dataset are recorded with a sampling frequency
of 100 Hz. Data collection takes place as the participants
carry out each of the three scenarios. Moreover, each triaxial
accelerometer and gyroscope reading has been annotated as
belonging to one of the eight activity classes described in
section III.

Since the data consists of tasks determined by the per-
formance of a number of sequential activities, during prepro-
cessing contiguous segments are extracted from accelerometer
and gyroscope measurements having the same label. For e.g.
for scenario 1, Fig. 2 depicts the sequence of events in the
carrying out of this task by subject seven (trial number 1) as
extracted from the labeled activities of IMU data. The figure
also shows the business model of the activity performed [5]
for context. The windowing process extracts the contiguous
samples for each of these activities, in this case there were 28
windows extracted for the intra-activities that constitute the
task in scenario 1 in terms of activities: standing (0), walking
(1), cart (2), handling upwards (3), handling centered (4),
handling downwards (5), synchronization (6) and None (7).
After performing ‘windowing’ for all samples, segments from
annotations belonging to the categories None and synchroniza-
tion were removed as they are not intended to be taken in to
account [5]. The remaining segments for six activities were
passed on to the feature extraction stage.

B. Feature Computation

Feature extraction is the process of representing data in a
meaningful format so as to make it more adaptable for use in
computational processes such as regression, classification or
other forms of decision making. The field of human activity
recognition using wearable sensor data has utilized various

types of feature extraction mechanisms such as wavelets [17],
time and frequency domain computations [18] and also CNNs
[19]. In this work, different time and frequency domain fea-
tures have been used to represent the information contained
in the extracted windows of the accelerometer and gyroscope
sensors. This choice is motivated by the works of [20], [21]
who achieve very good results for human activity recognition,
we compute twelve time domain and four frequency domain
features in the feature extraction process. These are listed
in Table II. These parameters are computed for each of the
segments extracted in the preprocessing stage. Moreover, for
each sensor in each segment, feature values are normalized
across the three axes to ensure that different scales/units of
the sensors do not affect classification performance.

TABLE II. FEATURES COMPUTED FROM IMU DATA

Domain Feature set

Time

Variance
Mean
Median
Standard Deviation
Maximum
Minimum
Delta
25th Percentile
75th Percentile
Interquartile range
Kurtosis
Skew

Frequency

Power Spectral Density Mean
Power Spectral Density Median
Power Spectral Density RMS
Power Spectral Entropy

C. Classification

For classification, five different algorithms have been cho-
sen to test their efficacy for HAR in the logistics scenario. The
algorithms chosen are SVM, XGBoost, Random Forests and
Decision Tree. Tree based ensemble schemes have been chosen
as they have been useful in [22] for fall detection purposes.
Moreover, SVM has been successfully used in [23] to perform
human activity recognition using inertial sensors. Each of the
chosen algorithms were tuned by performing a grid parameter
search. The details of the grid search for each of the tested
algorithm is given in Table III.

TABLE III. PARAMETER VALUES FOR TUNING ML CLASSIFIERS

Algorithm Parameter Grid Search values

SVM Kernel Linear, RBF, Sigmoid, Poly
C 0.1,0.2,0.4,0.5,1.0,1.5,1.8,2.0,2.5,3.0,10

Random Forest
Number of estimators 20, 50, 100
Criterion Gini, Entropy
Max Depth 4,5,6,7,8

Decision Tree
Number of estimators 20, 50, 100, 200
Max Depth 4,5,6,7,8
Criterion Gini, Entropy

XGBoost

Min Child Weight 1,5,10
Gamma 0.5,1,1.5,2,5
Max Depth 4,5,6,7,8
Number of estimators 20, 50, 100

V. EXPERIMENTATION, RESULTS, AND DISCUSSION

In order to test the efficacy of the features used to represent
IMU data for logistics activity recognition, we perform three
different experiments. These experiments were conducted to
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Fig. 1. Methodology for HAR Recognition in Logistics

6 -> 0 -> 1 -> 4 -> 3 -> 4 -> 0 -> 4 -> 5 -> 4 -> 2 -> 4 -> 5 -> 4 -> 3 -> 4 -> 0 -> 4 -> 3 -> 4 -> 0 -> 4 -> 0 -> 4 -> 2 -> 5 -> 4 -> 5

Fig. 2. Translation of Scenario 1 (LARa Dataset) to a Sequence of Activities for Recognition

ascertain the most appropriate algorithm to be used for the
targeted task as well as the most appropriate feature set to
be used. It is important to note that sensor data from all
five locations on the body were utilized in these experiments.
The implementations of support vector machine (SVM), and
random forest (RF), decision tree (DT) and Extreme Gradient
Boost (XGBoost) present in the scikit-learn toolkit 1 have been
used. Training is performed with a train-test split of 75-25
using five fold cross validation.

1https://scikit-learn.org

A. Experiment with Time and Frequency Features

In this experiment both frequency and time domain features
were used as input to the classification algorithms. Tests were
conducted using both accelerometer and gyroscope values. For
the case of using features from both the time and frequency
domains, a total of sixteen parameters were computed for each
sensor modality present as given in Table II. The length of the
feature vector for this experiment was 480.

Table IV presents the results from this experiment. This
work reports on the accuracies achieved for activity classes.
From the table, it can be observed that the best performing
algorithm is XGBoost with a mean accuracy of 78.61%,
followed by 76.67% for SVM. The mean accuracy achieved by
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TABLE IV. SUMMARY OF RESULTS: TIME AND FREQUENCY DOMAIN
FEATURES

Activity Algorithm (Accuracy %)
SVM RF DT XGB

Stand 78 74 60 80
Walk 83.33 66.66 50 75
Cart 66.66 50 50 83.33
Hand Up 75 56.25 37.5 75
Hand Center 73.07 80.76 66.66 74.35
Hand Down 84 84 68 84
Average Accuracy 76.67667 68.61167 55.36 78.61333

using RF and DT are 68.61% and 55.36% respectively which
are significantly less than the best performing results. This
result is in agreement with the works of [22] who also find
gradient boosted trees to work well for use in human activity
recognition applications.

B. Experiment with Time Domain Features Only

The second experiment consisted of using only time do-
main features for logistics activity recognition. A total of
twelve time domain features were computed from the sensor
readings. This resulted in a total of 360 features being used
for the classification stage. The results for each classifier
are shown in Table V. Taking from average accuracy, SVM,
RF and XGBoost provide similar performances with mean
accuracies of around 72% with DT performing very poorly (a
mean accuracy of only 39.61%). Another point to note from
Table V is that all classifiers have performed poorly for the
activity Cart. This indicates that the time domain features used
in this work are unable to represent this activity well.

TABLE V. SUMMARY OF RESULTS: TIME DOMAIN FEATURES ONLY

Activity Algorithm (Accuracy %)
SVM RF DT XGB

Stand 66 74 52 76
Walk 91.66 83.3 16.66 75
Cart 50 50 0 50
Hand Up 75 56.25 37.5 75
Hand Center 70.51 80.76 61.53 73.07
Hand Down 80 88 68 88
Average Accuracy 72.195 72.05167 39.28167 72.845

C. Experiment with Frequency Domain Features Only

In this experiment, only frequency domain features were
used for activity recognition. This resulted in a total of four
features being computed for each sensor modality present. This
resulted in a feature vector size of 90 for the classifiers. The
results of the experiment are depicted in Table VI. The results
indicate that the XGBoost performs the best among all the
classifiers tested with a mean accuracy of 56.11% with the
SVM achieving a mean accuracy of 54.495%. These results
are a significant reduction from the results of experiments 1
and 2. Another point to note here is that the activity Hand up
has the least individual performance followed by the activity
Cart. This indicates that the frequency domain based features
used here might not be enough to appropriately represent these
activities for logistics activity recognition.

From the three experiments conducted, the most suitable
combination of feature set and classifier is a combination of
time and frequency domain features along with an XGBoost

TABLE VI. SUMMARY OF RESULTS: FREQUENCY DOMAIN FEATURES
ONLY

Activity Algorithm (Accuracy %)
SVM RF DT XGB

Stand 54 46 70 48
Walk 75 66.66 58.33 75
Cart 33.33 6.66 16.66 50
Hand Up 25 0 6.25 18.75
Hand Center 75.64 76.92 48 76.923
Hand Down 64 68 28 68
Average Accuracy 54.495 44.04 37.87333 56.11217

classifier. Table VII lists the precision, recall and F1 scores
for the individual activities when using the best performing
combination for activity recognition in a logistics scenario.
It can be observed that the best scores are achieved for the
activities Cart and Hand Down and the least scores are for the
activities Walk and Hand Center.

TABLE VII. SUMMARY OF BEST RESULTS: TIME + FREQUENCY DOMAIN
FEATURES AND XGBOOST CLASSIFIER

Activity Accuracy Precision Recall F1
Stand 80 0.8 0.645161 0.714286
Walk 75 0.75 0.9 0.818182
Cart 83.33 0.833333 1 0.909091
Hand up 75 0.75 0.666667 0.705882
Hand Center 74.35 0.74359 0.816901 0.778523
Hand Down 84 0.84 1 0.913043

VI. CONCLUSION

In this study the problem of activity recognition in a logistic
scenario is addressed. In this regard, this research makes use of
IMU sensor data from the novel LARa dataset which contains
OMOCap, video and IMU sensor recordings for individuals
performing three different scenarios in an industrial setting.
The experiments conducted in this work make use of several
time and frequency domain based features which have been
used in activity recognition/fall detection using wearable sen-
sors along with popular machine learning frameworks which
have also proved to perform well in such applications. From
the conducted experiments, the XGBoost algorithm performed
the best when used with the considered time and frequency
domain features and the highest mean accuracy achieved was
78.61%.

VII. FUTURE WORK

This work establishes a baseline for logistics human activ-
ity recognition using inertial sensors on a novel dataset and
can be used for optimization of logistics operations. Future
work in this area will include using Deep Learning algorithms
such as Convolutional Neural Networks and Recurrent Neural
Networks which are able to capture information in sensor
readings more intricately. Another scope of research is the use
of sensor fusion of OMOCap and/or Video data with wearable
sensor data for classification between the different activities
for such logistics applications.
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