
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 9, 2020 

60 | P a g e  
www.ijacsa.thesai.org 

Reward-Based DSM Program for Residential 

Electrical Loads in Smart Grid 

Muthuselvi G1 

Research Scholar 

School of Electrical Engineering 

Vellore Institute of Technology, Vellore, Tamilnadu, India 

Saravanan B2 

Associate Professor 

School of Electrical Engineering 

Vellore Institute of Technology, Vellore, Tamilnadu, India 

 

 
Abstract—There is a positive attitude towards the use of 

different strategies for engaging in demand response (DR) 

programs in energy markets through the innovation and trend of 

smart grid technologies. In this paper, a reward-based approach 

is proposed that enhances the involvement of customers in the 

DR program by assuring the customer’s comfort level. Most of 

the previous works considered limited controllable loads like 

thermal loads for demand side management (DSM). In this 

approach thermal and all active electrical loads are considered 

for the analysis. Comfort indicator is used for the analysis which 

is an important parameter for measuring comfort of each 

resident. This technique significantly reduces the utility reward 

cost and maximizes the user satisfaction level compared with 

existing approach. The numerical example considered in this 

work illustrates the fruitfulness of the proposed approach. This 

problem is formulated as mixed-integer linear programming 

(MILP) and solved by using CPLEX solver in General Algebraic 
Modelling Software (GAMS). 
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I. INTRODUCTION 

The solution to demand-supply problems in the power 
supply system is an efficient DR program. DSM is the 
customer based DR program in a smart electric grid by 
changing the regular use of electricity. Demand Side 
Management (DSM) programs enable load-serving entities 
(LSE) to manage the electric loads on the user side. Customer 
interaction and responsiveness are the two critical factors of 
the DR program. This program requires a collaborative 
relationship between LSE and consumers to achieve the 
customer load changes that benefit consumers, LSE and 
society as a whole. The categories of DSM programs are time-
based and incentive/penalty based program. The time-based 
program depends on electricity prices that vary over time. The 
incentive program is based on fixed rewards (or) time-varying 
incentives. These programs play a significant role in reducing 
demand in peak periods. With the introduction of the new 
reward-based DR program consumers are encouraged to 
reduce their loads during peak hours. 

The DR program classification is as shown in Fig. 1. The 
dynamic pricing schemes like Real Time Pricing (RTP), Time 
Block Pricing (TBP), Critical Peak Pricing (CPP), and Time 
of Use (ToU) are commonly used in the DR program to lower 
peak demand by encouraging the users. In [1], the author 
proposed a Home Energy Management System (HEMS) with 
price-based DR programs for reducing the consumer’s 

electricity cost by transferring the ON peak load usage to the 
OFF peak periods. During peak hours of the day, utilities have 
control over Direct Load Control (DLC) to shed the load of 
the consumer. The utility commonly control loads of the 
customer remotely in Interruptible / Curtailable Service (CS) 
to achieve the required load reduction level. Several 
researchers [2-9] suggested the implementation of optimal DR 
scheduling via incentives. Demand Bidding (DB) is a process 
that encourages consumers to involve actively in electricity 
usage trading. It offers incentives for accepting to reduce their 
electricity usage during peak load periods [10], [11]. 
Incentive-based DR programs is the most powerful tool for 
handling peak load and attract more consumers in the DR 
program. There are several methods and strategies explored to 
reduce peak demand, utility reward cost and consumer 
electricity costs. Existing methods have less concentration in 
the improvement of the participation factor of the consumer in 
the DR program. 

DR program reduces the electricity cost of consumers by 
motivating them to use less power consumption in high-priced 
periods [12] and more power consumption in low-priced 
periods. The author demonstrated the DR program of 
residential areas by encouraging customers to voluntarily 
minimize their daily energy use by scheduling available 
resources in [13]. 

Optimization approaches to modify the customer’s load 
curve in response to the changes in the electricity cost through 
incentive is analyzed in [14]. In this approach complexity 
faced on customer satisfaction level is analyzed at minimal 
percentile [15]. Previous studies focused mainly on the 
minimization cost at the consumer level and not dealt with the 
revenue cost of utility received from the grid operator [16], 
[17], and [19]. Smart Home Energy Management Systems 
(HEMS) uses real-time information under various schemes to 
manage loads of residential communities. Price based HEMS 
are discussed [23-25] under restricted controllable appliances. 
In [21], the author formulated an optimization approach as a 
Multi-Constrained Mixed-Integer Problem (MCMIP) that 
schedules the controllable appliances based on consumer 
preferences. A researcher proposed an Adaptive Differential 
Evolution Algorithm (ADEA) to find the optimal schedule of 
appliances in the sectors like residential, industrial, and 
commercial [22]. In this work, peak load minimization and 
reduction in consumer's electricity bills are considered as the 
objectives. 
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Fig. 1. Types of DR Programs. 

The impacts, as mentioned earlier in existing methods, are 
rectified in this proposed approach. In this approach, 
controllable (electric vehicle, clothes dryer, dish washer, pool 
pump, energy storage), thermal and all active electrical loads 
are considered for the analysis. LSE sends the preferred 
demand reduction request (PDRR) to all the Residential Load 
Aggregator (RLA). Then RLA generates the optimal 
scheduling of appliances based on preferred demand reduction 
limits (DRL) and the willingness to compromise the load 
demand of all the residents. Customers are granted a reward 
depending on the participation in the DR program. New 
reward rates and demand reduction requests are informed to 
each consumer through home energy communication network 
port. 

The remaining section of this article is structured as 
follows. Section 2 discusses the modelling structure of various 
appliances. Section 3 illustrates the reward structure used in 
the analysis. Section 4 with the problem formulation for the 
objectives and constraints. Section 5 deals with the case study 
considered in this approach. Finally, Sections 5 and 6 discuss 
the results and conclusion, respectively. 

II. OVERVIEW OF APPLIANCES MODELLING 

This section describes the modelling of residential loads. 
Modelling parameters for appliances are considered from [18] 
and [20]. Controllable/Shiftable and uncontrollable/non-
shiftable are the two classifications of appliances in the 
residential sector. Uncontrollable appliances have fixed power 
and time of operation. Controllable devices run within the 
desired working time based on their power consumption and 
time i.e. they may allow the operating schedule to be changed. 

A. Controllable Loads 

1) EWH Model: When the current temperature exceeds 

the setpoint value, the condition of EWH is OFF. If the current 

temperature is below the minimum temperature required by 

EWH, then the status is ON. If the temperature is between the 

minimum required temperature and the setpoint temperature, 

then the EWH state follows the status of the previous time are 

shown in (1). The power consumption is calculated using 

equation (2). 

𝑆𝐸𝑊𝐻,ℎ,𝑡 = {

0, 𝑇𝐸𝑊𝐻,ℎ,𝑡 > 𝑇𝐸𝑊𝐻,𝑠  

 1, 𝑇𝐸𝑊𝐻,ℎ,𝑡  <  𝑇𝐸𝑊𝐻,𝑟 

 𝑆𝐸𝑊𝐻,ℎ,𝑡−1, 𝑇𝐸𝑊𝐻,𝑟 ≤  𝑇𝐸𝑊𝐻,ℎ,,𝑡  ≤ 𝑇𝐸𝑊𝐻,𝑠  
       (1) 

𝑝𝐸𝑊𝐻,ℎ,𝑡 = 𝑃𝐸𝑊𝐻 . 𝑆𝐸𝑊𝐻,ℎ,𝑡              (2) 

2) AC Model: It is one of the significant thermal 

controlled residential appliances. When the room temperature 

is conquer ( 𝑇𝐴𝐶,𝑠𝑝 + 𝑇𝐴𝐶,𝐷𝐵  ), AC is ON. When the room 

temperature is below ( 𝑇𝐴𝐶,𝑠𝑝 − 𝑇𝐴𝐶,𝐷𝐵 ) the status of AC is 

OFF. Otherwise, it follows the previous status. If the state of 

AC is ON, the rated power is consumed. In the OFF state, no 

power will be consumed. The consumed power of AC for 

resident ‘h’ at time ‘t’ is illustrated as follows: 

𝑆𝐴𝐶,ℎ,𝑡 =

{

0, 𝑇𝐴𝐶,ℎ,𝑡 < 𝑇𝐴𝐶,𝑠𝑝 − 𝑇𝐴𝐶,𝐷𝐵  

 1, 𝑇𝐴𝐶,ℎ,𝑡  > 𝑇𝐴𝐶,𝑠𝑝 + 𝑇𝐴𝐶,𝐷𝐵

 𝑆𝐴𝐶,ℎ,𝑡−1, 𝑇𝐴𝐶,𝑠𝑝 − 𝑇𝐴𝐶,𝐷𝐵 ≤  𝑇𝐴𝐶,ℎ,𝑡  ≤ 𝑇𝐴𝐶,𝑠𝑝 + 𝑇𝐴𝐶,𝐷𝐵  
      (3) 

𝑝𝐴𝐶,ℎ,𝑡 = 𝑃𝐴𝐶 . 𝑆𝐴𝐶,ℎ,𝑡                (4) 

3) Clothes dryer model: Equation (5) details the ON/OFF 

status of the CD. The state is ON when the total accumulated 

time is lower than the needed time to complete the job. The 

state is OFF when the accumulated time higher than or equal 

to the time necessary to initiate the job. The expression for 

power consumption of CD is in equation (6). 

𝑆CD,h,𝑡 = {
0,  𝑇CD,𝑎𝑐𝑐 ≥ 𝑇CD,𝑟

1,  𝑇CD,𝑎𝑐𝑐 < 𝑇CD,𝑟
             (5) 

𝑝CD,ℎ,𝑡 = 𝑃CD . 𝑆CD,ℎ,𝑡             (6) 

4) Electric vehicle model: The State-of-Charging (SoC) of 

the battery at a time ‘t’ is the ratio of remaining 𝐸𝑉𝑟𝑒𝑚(𝑡) or 

residual capacity at that time to the maximum battery capacity, 

as shown in equation (7). ON/OFF status of EV is illustrated 

in equation (8). It is ON, when the SoC is less than the 

maximum capacity and is OFF, when the SoC is greater than 

or equal to the maximum state of charge. The power 

consumption of EV is calculated using equation (9). 
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𝑆𝑂𝐶(𝑡) =
𝐸𝑉𝑟𝑒𝑚(𝑡)

𝐸𝑉𝑚𝑎𝑥
              (7) 

𝑆EV,ℎ,𝑡 = {
0, 𝑆𝑂𝐶ℎ,𝑡 ≥ 𝑆𝑂𝐶𝑚𝑎𝑥

1,  𝑆𝑂𝐶ℎ,𝑡 < 𝑆𝑂𝐶𝑚𝑎𝑥
            (8) 

𝑝EV,ℎ,𝑡 = 𝑃EV . 𝑆𝐸𝑉,ℎ,𝑡             (9) 

5) Dishwasher model: The representation of the state of 

Dish Washer (DW) is, as shown in equation (10). The status 

of DW is ON when the cumulative ON time is lower than the 

needed ON time to complete dishwashing. It is OFF when the 

overall ON time greater than or equal to the needed ON time 

to finish that cycle. Equation (11) represents the power 

consumption of DW. 

𝑆DW,ℎ,𝑡 = {
0,  𝑇DW,𝑎𝑐𝑐 ≥ 𝑇DW,𝑟

1,  𝑇DW,𝑎𝑐𝑐 < 𝑇DW,𝑟
          (10) 

𝑝𝐷𝑊,ℎ,𝑡 = 𝑃𝐷𝑊 . 𝑆DW,ℎ,𝑡           (11) 

6) Cloth washer model: Equation (12) illustrates the status 

of Cloth Washer (CW). The condition of CW is ON when the 

cumulative ON time is lower than the needed time to complete 

the washing job. The status is OFF when the overall ON time 

greater than or equal to the needed ON time. The power 

consumption of CW is calculated using equation (13). 

𝑆𝐶𝑊,ℎ,𝑡 = {
0,  𝑇𝐶𝑊,𝑎𝑐𝑐 ≥ 𝑇𝐶𝑊,𝑟

1,  𝑇𝐶𝑊,𝑎𝑐𝑐 < 𝑇𝐶𝑊,𝑟
          (12) 

𝑝𝐶𝑊,ℎ,𝑡 = 𝑃𝐶𝑊 . 𝑆𝐶𝑊,ℎ,𝑡            (13) 

7) Pool pump model: The status of Pool Pump (PP) is 

represented in equation (14). The state is ON when the time 

taken for the operation is less than the desired total operating 

time and is OFF when its operating time exceeds the expected 

total running time. Power consumption of PP is obtained using 

equation (15). 

𝑆𝑃𝑃,ℎ,𝑡 = {
0,  𝑇PP,𝑎𝑐𝑐 ≥ 𝑇𝑃𝑃,𝑟

1,  𝑇PP,𝑎𝑐𝑐 < 𝑇PP,𝑟
          (14) 

𝑝𝑃𝑃,ℎ,𝑡 = 𝑃PP . 𝑆PP,ℎ,𝑡           (15) 

B. Uncontrollable Loads 

Uncontrollable loads are loads that fix their mode 
operation in time and power consumption. The loads, 
including TV, computer, lighting loads, fan, and refrigerator, 
are examples considered in this category for the analysis. Each 
appliance's power ratings are regarded as of [19]. 

III. REWARD-BASED DR FRAMEWORK 

A. Reward Rate Structure 

In this proposed study, the reward-based DR model is 
formulated. In this framework, LSE sends the preferred 
demand reduction request to all RLA. Then RLA generates the 
optimal scheduling of appliances based on preferred demand 
reduction limits (DRL) and the willingness to compromise the 
load demand of all the residents are generated by RLA. 
Customers are granted a reward depending on the participation 
in the DR program. The reward rate Rw2 is given to the 
houses that are willing to compromise their demand during the 
PDRR event. Rw3 reward rate is awarded to the houses those 
who are not willing to compromise their demand during the 
PDRR event. But the Rw3 reward rate will be used only 
during the emergency (or) rare events. The choice between 
Rw1 and Rw2 plays a significant role in the optimization 
problem. 

Table I represents the different reward-based rate 
structures. Here is a simple example that explains the reward 
rate for the residents based on their willingness to compromise 
and preferred demand reduction limits. In this, rewards Rw1, 
Rw2, and Rw3 are considered as 20, 40, 60 cents / kW. 

Here this include three houses A, B, and C. The preferred 
Demand Reduction Limits (DRL) of each resident is as shown 
in Table I. The total demand for all the residents is 35.6 kW. 
Assume LSE expects 30% of load reduction from RLAs. So 
RLA makes the optimal strategies that satisfy the requisition, 
which is given by LSE. In this example, 11.7 kW is expecting 
to reduce during that particular period. Depending on the DRL 
desired by each house, the LSE specification that met with 8.3 
kW (total power minus DRL). Houses A and C are agreed to 
compromise their demands for the remaining kW. So the Rw2 
reward rate is given to houses A and C because of their 
comfort index, which is higher than 1.House B is getting Rw1 
reward rate because the willingness to compromise is ‘0’. An 
emergency is a rare occurrence case. Reward rate Rw3 is 
provided, if the compromise is equal to ‘0’ and CI value is 
higher than 1. In this case, house ‘B’ will handle the 
emergency case and get the Rw3 reward rate. 

B. Comfort Index 

The optimal scheduling of appliances of all the residents 
and the participation of customers depends upon the factor of 
CI. The design of the CI considers both thermal and other 
active appliances participating in the DR program. If the value 
of the CI is higher than ‘1’, the residents are in an 
uncomfortable zone. When the CI is less than or equal to ‘1’, 
the residents are in a comfortable area. 

TABLE I. EXAMPLE OF REWARD RATE STRUCTURE 

House Power(kW) Demand reduction limit (kW) Compromise (1-yes,0-No) 
Reward ($) 

Normal Occasional Emergency 

A 14.3 10.6 1 Rw1 Rw2 - 

B 12.8 9.5 0 Rw1 - Rw3 

C 8.5 7.2 1 Rw1 Rw2 - 
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The normalized value of CI is calculated using the 
equation (16). 

𝐶𝐼𝑛 = 𝑛1 𝐶𝐼𝐻,ℎ,𝑡 + 𝑛2 𝐶𝐼𝑅,ℎ,𝑡    (16) 

Where, 𝐶𝐼𝐻,ℎ,𝑡 =  𝐶𝐼𝐴𝐶,ℎ,𝑡 + 𝐶𝐼𝑊𝐻,ℎ,𝑡, CI of thermal appliances. 

𝐶𝐼𝑅,ℎ,𝑡 = CI of remaining active appliances 

Where 𝑛1 and 𝑛2 are weight factors and (𝑛1 + 𝑛2) = 1. 

The CI of AC is calculated as in equation (17), 

𝐶𝐼𝐴𝐶,ℎ,𝑡 = |
2𝑇𝐴𝐶,ℎ,𝑡−𝑇𝐴𝐶,𝐿𝑜,ℎ−𝑇𝐴𝐶,𝐻𝑖,ℎ

𝑇𝐴𝐶,𝐻𝑖,ℎ−𝑇𝐴𝐶,𝐿𝑜,ℎ
|          (17) 

The CI of EWH is illustrated as in equation (18), 

𝐶𝐼𝑊𝐻,ℎ,𝑡 = |
2𝑇𝑊𝐻,ℎ,𝑡−𝑇𝑊𝐻,𝐿𝑜,ℎ−𝑇𝑊𝐻,𝐻𝑖,ℎ

𝑇𝑊𝐻,𝐻𝑖,ℎ−𝑇𝑊𝐻,𝐿𝑜,ℎ
|         (18) 

The CI of all the remaining active controllable appliances 
is as shown below, 

𝐶𝐼𝑅,ℎ,𝑡 = |
𝑇𝑁𝐴ℎ−𝑇𝐴𝐴ℎ

𝑇𝑁𝐴ℎ −𝑇𝑅𝐴ℎ 
|           (19) 

Where, 𝑇𝑁𝐴ℎ= Number of active appliances in resident 
‘h’. 

𝑇𝐴𝐴ℎ= Number of allowed appliances to ON in resident 
‘h’.  𝑇𝑅𝐴ℎ = Total number of requested appliances to ON in 
resident ‘h’. 

IV. PROBLEM FORMULATION 

The relation between reward rate and CI is as follows: 

𝑅𝑊𝑅ℎ,𝑡 = { 

Rw1, 𝑖𝑓 𝐶𝐼 ≤ 1
 Rw2, 𝑖𝑓 𝐶𝐼 > 1 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 = 1
 Rw3, 𝑖𝑓 𝐶𝐼 > 1 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 = 0

        (20) 

From equation (20), if the CI value is less than or equal to 
‘1’ (i.e. Customer Satisfaction), reward ‘Rw1’ will be given. If 
the CI is more than ‘1’ (i.e. Customer Dissatisfaction) and is 
willing to reduce demand, consumers are rewarded with 
‘Rw2’. If the consumer is not ready to compromise, the 
demand and the reward rate is ‘Rw3’ is provided to encourage 
them for active participation. It is a rate which is given during 
emergency but it is a rare case. These reward structures are 
used to attract the non-participant and not compromised 
customers to involve in the DR program. 

𝑅𝑊𝑅ℎ,𝑡 = Rw1𝑏ℎ,𝑡 + Rw2(1 − 𝑏ℎ,𝑡)𝑐𝑜𝑚𝑝ℎ + Rw3(1 −

 𝑏ℎ,𝑡)(1 − 𝑐𝑜𝑚𝑝ℎ)            (21) 

Where,  𝑏ℎ,𝑡  is a binary variable and 𝑐𝑜𝑚𝑝ℎ  is a 
compromise for the house ‘h’. 

By considering the following objective function and 
constraints, the optimization problem is formulated. The 
primary objective of this proposed approach is to reduce the 
utility reward costs and CI. While reducing CI, the satisfaction 
level of the user's comfort will increase. The objective 
function is as shown in equation (22). 

C = 𝑚𝑖𝑛 ∑ 𝑅𝑊ℎ,𝑡 + 𝑘. ∑ 𝐶𝐼ℎ 𝐻
ℎ=1

𝐻
ℎ=1          (22) 

With the following constraints: 

∑ 𝐶𝐷𝑅ℎ,𝑡 ≥ 𝑃𝐷𝑅𝑅𝑡
𝐻
ℎ=1            (23) 

−𝐵𝑏ℎ,𝑡 <  (𝐷𝑅𝐿 − 𝑃𝑎,ℎ,𝑡) ≤  𝐵(1 − 𝑏ℎ,𝑡)         (24) 

𝑃𝑎,ℎ,𝑡 = ∑ 𝑃ℎ,𝑛,𝑡
𝑁
𝑛=1 . 𝑆ℎ,𝑛,𝑡           (25) 

𝑅𝑊ℎ,𝑡 = (𝑃𝑇,ℎ,𝑡 − 𝑃𝑎,ℎ,𝑡) . 𝑅𝑊𝑅ℎ,𝑡            (26) 

Where, k is the CI weight factor, 𝐶𝐷𝑅ℎ,𝑡  is the Consumer 

Demand Reduction of the resident ‘h’ (kW) at time‘t’ and B is 
a positive constant, 𝑆ℎ,𝑛,𝑡  is the status of the appliance (1 or 0). 

Equation (23) represents the total demand reduction of all the 
residents should be higher than or equal to PDRR. It is not 
possible to achieve a reduction in demand beyond the 
resident's total power consumption and is expressed in 
equation (24). The overall power consumption is 
corresponding to the sum of power consumption of active 
appliances in all the residents, as shown in equation (25). The 
reward rate for each resident is calculated using equation (26). 
Hence, this problem is formulated as mixed-integer linear 
programming (MILP). 

V. OPTIMAL SOLUTION APPROACH 

A. Conventional Approach 

In [2], the concept of CI is used for measuring consumer 
comfort level by considering the thermal appliances like AC 
and EWH alone. BONMIN solver in GAMS is used to verify 
the performance of the approach. Two DRR schemes such as 
30% and 60% are performed and validation is done only for 
AC. 

B. Proposed Approach 

The above problem statement is the mixed of continuous 

variable 𝑃𝑎,ℎ,𝑡 , discrete variable (reward rate) and binary 

variable 𝑏ℎ,𝑡 . Therefore it can be modeled as MILP. 

By substituting equation (21) and (26) in (22), the new 
objective function is obtained as follows in equation (27). 

C𝑁𝑒𝑤 = min
𝑃𝑎,ℎ,𝑡

{

𝑃𝑇,ℎ,𝑡[(𝐑𝐰1 − 𝐑𝐰3)𝑏ℎ,𝑡 + 𝐑𝐰3] −

𝐵𝑛𝑒𝑤,𝑖,𝑡(𝐑𝐰1 − 𝐑𝐰3) − 𝑃𝑎,ℎ,𝑡𝐑𝐰3 + 𝑘 𝐶𝐼 +

(𝑃𝑇,ℎ,𝑡 − 𝑃𝑎,ℎ,𝑡)[(𝐑𝐰2 − 𝐑𝐰3)(1 − 𝑏ℎ,𝑡)𝑐𝑜𝑚𝑝ℎ]

} 

(27) 

Subject to the following constraint (28) along with the 
constraints (23), (24), (25) and (26). 

0 ≤ 𝐵𝑛𝑒𝑤,𝑖,𝑡 ≤  𝑃𝑇,ℎ,𝑡𝑏ℎ,𝑡            (28) 

Where, 𝐵𝑛𝑒𝑤,𝑖,𝑡 = 𝑃𝑎,ℎ,𝑡𝑏ℎ,𝑡  .In this approach, as 𝑏ℎ,𝑡  is 

considered as binary variable 𝐵𝑛𝑒𝑤,𝑖,𝑡  is zero if 𝑏ℎ,𝑡 = 0 

otherwise 𝐵𝑛𝑒𝑤,𝑖,𝑡 = 𝑃𝑎,ℎ,𝑡 (𝑏ℎ,𝑡 = 1). 

Then the utility reward cost and average comfort for each 
house are calculated. This MILP for reducing the utility 
reward costs and CI, which is guaranteed the finding global 
optimum operation work has been solved by using CPLEX 
solver in General Algebraic Modelling Software(GAMS). 
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C. Case Studies 

The proposed DSM strategy for the residential consumer is 
performed on 10, and 500 residents and input data are taken 
from [2]. The test system considers thermal, controllable and 
other active appliances that are participated during the DR 
program. The load data of the 10 residents are recognized for 
this analysis as given in Table II. The total demand of 10 
residents is 157.8 kW. Table III shows the total demand 
reduction of 10 residents for various CDR during peak hours. 
DR program of each resident is done based on user-preferred 
load and DRL. DRL is the threshold value for demand 
reduction and decided by each user. Compromise ‘1’ 
represents the resident is willing to compromise their demand 
during the peak hours. Compromise ‘0’ represents the resident 
is not ready to reduce their demand. 

Table IV shows the average percentage of comfort and 
reward for various PDRR. In this case study Rw1, Rw2, and 
Rw3 are considered as 20, 40, 60 cents / kW (5 min). The 
comfort percentage is the measure of the number of times the 
power consumption of the residents is within the user 
preferred power range. The time duration taken for 
implementing each PDRR is 5 minutes. The reward rate and 
comfort percentage of each PDRR for 10 residents are 
explained below. In this analysis, six PDRR are discussed like 
10%, 20%, 30%, 40%, 50% and 60%. 

 PDRR#1 with 16kW/20min (10%): RLA receives a 
request of 16 kW for the time length of 20 minutes from 
LSE. Ten residents' total demand is 157.8 kW. 
Approximately 10% of the load from the total demand 
is decreased. All residents are within their reduction 
limit of preferred demand. Therefore, for all residents, 
the percentage of comfort is 100% and with the Rw1 
reward. According to their lower power utilization and 
a wide range of demand reduction limits, Resident 3 
gets more reward. Resident 2 does not earn any reward 
because of their lower comfortable power range. 

 PDRR#2 with 32kW/20min (20%): RLA receives a 
request of 32 kW from LSE for 20 minutes. 
Approximately 20% of the load from the total demand 
is reduced. All residents are within their preferred 
demand reduction limits. Therefore the percentage of 
comfort is 100% for all the residents and with the 

reward of Rw1. Resident 7 procured more rewards due 
to their less power utilization and a wide range of 
demand reduction limits. 

 PDRR#3 with 47kW/20min (30%): RLA receives a 
request of 47 kW for 20 minutes from LSE. 
Approximately 30 percent of the load is decreased from 
total demand. All residents are within their required 
demand reduction limit. The rate of comfort for all 
residents is therefore 100%, and the rate of reward is 
Rw1. Resident 7 received more rewards because of 
their lower power consumption and a wide range of 
reduction in demand. 

 PDRR#4 with 63kW/20min (40%): RLA receives a 
request of 63 kW for the time length of 20 minutes from 
LSE. The total demand reduction of 10 residents is 
approximately 40% of total demand. All the residents 
are within their preferred demand reduction limits. 
Therefore the percentage of comfort is 100% for all the 
residents and with the reward of Rw1. Resident 5 has 
earned more reward because of their reduced power use 
and a wide range of reduced demand. 

 PDRR#5 with 75kW/20min (50%): RLA receives a 
request of 79 kW for the time length of 20 minutes from 
LSE. Approximately 50% of the load is reduced from 
total demand. All the residents are within their preferred 
demand reduction limits. Therefore the percentage of 
comfort is 100% for all the residents excludes and with 
the reward of Rw1 and Rw2. Resident 7 procured more 
reward due to their less power utilization and a wide 
range of demand reduction limits. 

 PDRR#6 with 95kW/20min (60%): RLA receives a 
request for the time length of 20 minutes from LSE of 
95 kW. The demand reduction of 60% is achieved from 
total demand. Some of the residents are within their 
preferred demand reduction limits. The level of comfort 
for all residents is therefore 100%, except residents 1, 5, 
and 9 with a reward rate of Rw1 and Rw2. Resident 1 
procured more rewards due to their less power 
utilization and a wide range of demand reduction limits. 
The reward cost of utilities will also be increased while 
the PDRR is increasing. During an emergency, the 
affected houses can receive reward rate Rw3. 

TABLE II. TOTAL LOAD DATA OF THE 10 RESIDENTS 

Resident 
Controllable devices (kW) Uncontrollable 

Devices (kW) 
Total power (kW) 

AC EWH CD DW EV CW PP 

1 1.4 4.0 3.4 2.9 4.0 1.3 1.2 1.1 19.3 

2 1.2 3.9 3.7 2.7 0 0.9 1.3 1.3 15.0 

3 1.5 3.5 3.8 3.0 3.8 1.1 1.4 1.3 19.4 

4 1.6 3.8 0 2.6 0 1.2 1.5 1.1 11.8 

5 1.3 3.1 3.1 0 3.6 1.0 1.1 1.4 14.6 

6 1.2 3.4 3.5 2.8 0 1.3 1.2 1.2 14.6 

7 1.1 3.9 3.7 0 3.8 1.2 1.3 1.5 16.5 

8 1.5 3.8 0 2.9 4.0 0.9 1.4 1.7 16.2 

9 1.5 4.0 3.3 2.6 0 1.1 1.5 1.1 15.1 

10 1.3 3.2 3.2 0 3.6 1.2 1.6 1.2 15.3 
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TABLE III. TOTAL CDR OF 10 RESIDENTS 

Resident Total power (kW) DRL (kW) 
Compromise 

(Yes=1, No=0) 

CDR (kW) 

10% 20% 30% 40% 50% 60% 

1 19.3 11.4 1 18.3 16.2 14.1 11.4 7.9 5.6 

2 15 7.9 0 14.5 12.4 10.7 7.9 7.9 7.9 

3 19.4 12.8 1 16.1 15.7 14.5 12.8 8.1 7.1 

4 11.8 7 0 11.1 9.5 8.4 7 7 4.5 

5 14.6 7.1 1 13.5 12.8 9.7 7.1 8.6 5.1 

6 14.6 10.8 0 12.4 11.5 11 10.8 10.8 6.5 

7 16.5 10.6 1 14.8 12.8 10.9 10.6 4.5 7.1 

8 16.2 9.2 0 14.1 10.9 11.2 9.2 9.2 9.2 

9 15.1 9.7 1 13.7 12.1 9.9 9.7 6.4 5.4 

10 15.3 6 0 13.5 12.3 10.1 8.5 8.5 4.7 

TABLE IV. PERCENTAGE OF COMFORT AND REWARD FOR VARIOUS PDRR 

Resident 

10% 20% 30% 40% 50% 60% 

Avg. 

Comfort 

(%) 

Reward 

($) 

Avg. 

Comfort 

(%) 

Reward 

($) 

Avg. 

Comfort 

(%) 

Reward 

($) 

Avg. 

Comfort 

(%) 

Reward 

($) 

Avg. 

Comfort 

(%) 

Reward 

($) 

Avg. 

Comfort 

(%) 

Reward 

($) 

1 100 0.2 100 0.92 100 2.07 100 3.16 100 9.12 75 13.97 

2 100 0 100 0.78 100 1.73 100 2.84 100 5.68 100 7.24 

3 100 0.67 100 1.11 100 1.94 100 2.64 100 9.04 100 12.54 

4 100 0.14 100 0.69 100 1.38 100 1.92 100 3.84 100 7.45 

5 100 0.22 100 0.54 100 1.96 100 4.50 100 4.80 75 9.69 

6 100 0.44 100 0.93 100 1.44 100 1.52 100 3.04 100 8.26 

7 100 0.34 100 1.71 100 2.24 100 2.36 75 12.24 100 9.58 

8 100 0.42 100 0.99 100 2.0 100 2.80 100 5.60 100 7.14 

9 100 0.28 100 0.90 100 3.12 100 2.16 100 6.96 75 9.89 

10 100 0.36 100 0.89 100 2.08 100 2.72 100 5.44 100 10.81 

VI. RESULT AND DISCUSSION 

A. 10 Resident System 

In the current framework, thermal controlled devices EWH 
and AC are considered to determine the level of comfort. In 
this method, all the device status in residents is taken into 
account. The simulation result shows the Percentage Average 
Comfort (PAC) and Utility Reward Cost (URC). Fig. 2(a, b) 
demonstrates the effect of URC when considering different 
amounts of reduction in demand and time for a 10 resident 
system for existing and proposed method. Compared to the 
existing method [2], the simulation shows reduced URC for 
various PDRR during the time length. Fig. 3(a, b) shows PAC 
for existing and proposed method .PAC is same in both the 
methods up to 40% of PDRR for different time length. Some 
residents may be less comfortable while increasing the PDRR 
above 40%. The affected residents may get the reward rate 
Rw2. This method provides a higher level of comfort above 
40% of PDRR. For the existing and proposed method, the 
PAC and average URC for 10 resident systems are as shown 
in Table V. 

It is observed that the performance for 60% DRL, the 
average reward cost URC for existing, and these proposed 
methods are $346.44 and $207.82. PAC for existing and the 
proposed method are 52.5% and 88%. 

B. 500 Resident System 

The data of large systems are taken from [2]. In this 
analysis 500 resident system is considered. Fig. 4(a, b) 
compares the behaviour of PAC of proposed method along 
with existing method for different time length and PDRR. 
While increasing the PDRR for an increasing time length there 
is a significant reduction of PAC. But when compared to the 
existing method the PAC is 60% higher. This leads to the 
reduction of overall utility reward cost for performing the 
entire PDRR program. Fig. 5(a, b) shows the effect of URC 
for different percentage of reduction in demand and time 
length for 500 resident system. For the current and proposed 
method, the PAC and URC for 500 resident systems are 
obtained as in Table VI. It is observed that for 80% PDRR, the 
reward cost URC for existing, and these proposed methods are 
$13500 and $10700. PAC for existing and the proposed 
method are 18.5% and 78.5%. The simulation result shows 
that this approach minimizes the utility reward cost 
significantly and increases the percentage of average comfort 
compared to the existing method. 

TABLE V. RESULT COMPARISON FOR 10 RESIDENTS 

Approach 
Percentage of average Comfort 

(PAC) ( %) 

Utility reward cost 

(URC) ($) 

Existing[2] 52.5 346.44 

Proposed 88 207.82 
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(a) Existing Method. 

 
(b) Proposed Reward Method. 

Fig. 2. Result of utility Reward Cost for 10 Residents System. 

 
(a) Existing Method. 

 
(b) Proposed Reward Method. 

Fig. 3. Result of the Percentage of Average Comfortableness for 10 

Residents System. 

 
(a) Existing Method. 

 
(b) Proposed Reward Method. 

Fig. 4. Result of the Percentage of Average Comfortableness for 500 

Resident Systems. 
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(a) Existing Method. 

 
(b) Proposed Reward Method. 

Fig. 5. Result of Utility Reward Cost for 500 Residents System. 

TABLE VI. RESULT COMPARISON FOR 500 RESIDENTS 

Approach 
Percentage of average Comfort 

(PAC) ( %) 

Utility reward cost 

(URC) ($) 

Existing[2] 19.5 13500 

Proposed 78.5 10700 

VII. CONCLUSIONS 

An efficient demand response program based on rewards is 
introduced in this paper. It takes into account all active 
electrical equipment involved in DR. In this analysis, the CI is 
the essential factor that defines the resident's level of comfort. 
This valid reward-based scheduling method minimizes utility 
reward cost and increases the PAC. It is identified that the 
proposed approach maintain the average comfort of consumer 
while increasing the residents from 10 to 500. Result of case 
studies inferred that the reward-based demand response 
program provides a better cost solution to utility and 
consumers compared to state of art work. In future, the 
proposed approach should be improved for meeting the 
realistic constraints that can be evaluated using large scale 
system with real time data. 
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APPENDIX (NOMENCLATURE) 

H - Number of residents. 

N - Number of appliances in a resident. 

𝑆𝐸𝑊𝐻,ℎ,𝑡- Current state (ON/ OFF) of Electric Water Heater 

(EWH) in resident ‘h’ at time t. 

𝑆𝐸𝑊𝐻,ℎ,𝑡−1 Previous state of EWH in resident ‘h’ 

𝑃𝐸𝑊𝐻  -  Rated Power of EWH (kW) 

𝑝𝐸𝑊𝐻,ℎ,𝑡 -  Power usage of EWH at resident ‘h’ at time t (kW) 

𝑇𝐸𝑊𝐻,ℎ,𝑡 -  Current temperature of EWH (oF) 

 

𝑇𝐸𝑊𝐻,𝑟 -  Minimum required temperature of EWH (oF) 

𝑆𝐴𝐶,ℎ,𝑡 -  

 

Current state (ON / OFF) of Air Conditioner (AC) at 

resident ‘h’ at time t. 

 𝑆𝐴𝐶,ℎ,𝑡−1 -  Previous State of Air Conditioner (AC) at resident ‘h’ 

𝑃𝐴𝐶 -  Power rating of AC (kW) 

𝑝𝐴𝐶,ℎ,𝑡 -  Power usage of AC in resident ‘h’ at time‘t’ (kW) 

𝑇𝐴𝐶,ℎ,𝑡 -  Current temperature of AC in resident ‘h’ at time‘t’ (oF). 

𝑇𝐴𝐶,𝐷𝐵 -  Dead band temperature of AC (oF). 

𝑇𝐴𝐶,𝑠𝑝 -  Setpoint temperature of AC (oF). 

𝑆𝐶𝐷,ℎ,𝑡 -  

 

Current state (ON / OFF) of Clothes Dryer (CD) in 

resident ‘h’ at time t. 

 𝑇CD,𝑎𝑐𝑐 -  Accumulated ON time temperature of CD (oF). 

𝑇CD,𝑟 -  Required ON time temperature of CD (oF). 

𝑝CD,ℎ,𝑡 -  Power consumption of CD at resident ‘h’ at time t (kW). 

𝑃𝐶𝐷 -  Power rating of CD (kW). 

𝑃EV -  Power rating of EV (kW). 

𝑆𝐸𝑉,ℎ,𝑡 -  ON-OFF status of Electric Vehicle (EV) in resident ‘h’ at 

time t. 

𝑝EV,ℎ,𝑡 -  Power charge of EV in resident ‘h’ at time t (kW). 

𝑅𝑊𝑅ℎ,𝑡 -  Reward rate of resident ‘h’ at time t. 

𝑆𝑂𝐶ℎ,𝑡 - Battery charging state of resident ‘h’ during time period t 

(%). 

𝑆𝑂𝐶𝑚𝑎𝑥 - EV-Maximum charging rate of the battery (%). 

𝑆𝐷𝑊,ℎ,𝑡 -  ON-OFF status of Dish Washer (DW) in resident ‘h’ at 

time t. 

𝑃𝐷𝑤 -  Power rating of DW (kW). 

𝑝𝐷𝑊,ℎ,𝑡 -  Power usage of DW in resident ‘h’ at time t (kW). 

𝑇𝐷𝑊,𝑖,𝑡 - Current temperature of DW (oF). 

𝑇𝐷𝑊,𝑠 - Setpoint temperature of DW (oF). 

𝑆𝐶𝑊,ℎ,𝑡 - ON-OFF status of Cloth Washer (CW) heater in resident 

‘h’ at time‘t.’ 

𝑃𝐶𝑊 - Power rating of CW (kW). 

𝑝𝐶𝑊,ℎ,𝑡 -  Power usage of CW in resident ‘h’ at time‘t’ (kW). 

𝑇𝐶𝑊,ℎ,𝑡 -  Current temperature of CW (oF). 

𝑇𝐶𝑊,𝑠 - Setpoint temperature of CW (oF). 

𝑆𝑃𝑃,ℎ,𝑡 - ON-OFF status of Pool Pump (PP) at resident ‘h’ at 

time‘t’. 

𝑃𝑃𝑃  - Power rating of PP (kW). 

𝑝𝑃𝑃,ℎ,𝑡 -  Power usage of PP in resident ‘h’ at time t (kW). 

𝑇𝑃𝑃,ℎ,𝑡 - Current temperature of PP (oF) of resident ‘h’ at time t. 

𝑇𝑃𝑃,𝑠 - Setpoint temperature of PP (oF). 

𝑇𝐿𝑜,ℎ - Minimum temperature of the room in resident ‘h’ (oF). 

𝑇𝐻𝑖,ℎ - Maximum temperature of the room in resident ‘h’ (oF). 

𝑇𝑅𝑀,ℎ -  Room temperature of resident ‘h’ (oF). 

𝑃𝑇,ℎ,𝑡 - Overall power usage of resident ‘h’ at the time‘t’. 

𝑃ℎ,𝑛,𝑡 - Power usage of appliance ‘n’ of resident ‘h’ at the time‘t’. 

𝑃𝑎,ℎ,𝑡 - Actual Power consumption of resident ‘h’ at time‘t’. 

𝑃𝐷𝑅𝑅 - Preferred Demand Reduction Request 

 

 


