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Abstract—Arequipa region holds the largest extension of the
Peruvian littoral at the Pacific sea, has also fresh water resources
composed of rivers and lagoons from the coast to the Andes
highland. The ALBA vehicle is a low-cost autonomous surface
vessel with open source architecture that is being developed to
support water monitoring tasks in the region. This article deals
with the nonlinear identification problem for an autonomous
surface craft and the maximum likelihood estimation approach is
used to estimate its parameters. The parametric nonlinear model
is considered with simulated and experimental data. The results
shows good fitting values when two, three and a maximum four
parameters are estimated.
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I. INTRODUCTION

Water, the most precious resource for human being, is
being vulnerable to contamination at present since there is
enough evidence [1]. The Mar de Grau is the Peruvian sea
with abundant marine species, presents a littoral of 3079.50
km and a breadth extension of 370.4 km (200 nmi). Arequipa
is the south region of Peru with the largest littoral, more than
500 km. There is an open area for a sustainable exploration
and monitoring these resources and the fresh waters that feed
them.

The monitoring of sea conditions is commonly carried out
using manned vessels, following standard international pro-
cedures and agreements. However, these large vessels cannot
work in coastal areas and estuary locals due to the risk of
crashing with rocks, irregularities in seabed, and currents. The
use of autonomous surface crafts (ASCs) is an alternative and
has advantages, such as low dimensions, zero human risk, able
to explore shallow waters.

The main contribution of this paper is to estimate a greater
number of parameters for the ALBA ASC, using the maximum
likelihood approach with simulated and actual data, the method
used in this paper is called maximum likelihood estimation
(MLE) and allows us to identify many parameters at a time,
therefore MLE is used for large samples and is very versatile
and accurate because it works estimating not only from the
values obtained of the inertial sensor and of the position sensor
so it is reliable and even being able to have initial conditions.
The organization of this document is as follows: Section 1
provides topics on the importance of water and its exploration
using ASCs. For this, the identification of parameters and
the importance of using the MLE method is done; Section 2

presents the work done on parameter estimation and ASCs;
Section 3 presents the mathematical model of the ALBA
ASC in nonlinear representation; Section 4 presents the maxi-
mum likelihood parameter estimation approach to identify the
ALBA ASC; Section 5 presents the experimental tests and
their achieved estimated parameters; Section 6 provides the
conclusion.

II. BACKGROUND

The ASCs are executing different missions around the
world and their developments involve multidisciplinary areas,
such as modeling, identification, navigation, control, guidance,
path planning, etc. The Charlie ASC, for instance, carries
out surface micro layer sampling with its real-time platform
composed of navigation, guidance and control [2]. Another
ASC, powered with solar energy, has navigation, guidance and
collision avoidance systems to accomplish missions of water
quality and greenhouse gas emissions measurements in lakes.
[3].

In [4], the authors describe the modeling and identification
of an ASC in a wide range of speeds and glide conditions,
obtaining good estimated parameters that have been used in
the proportional-derivative (PD) controller synthesis. There are
other approaches to estimate nonlinear model parameter, such
as the symbolic regression using genetic programming [5]. The
model parameter can also be identified using experimental
towing tank and open water self-propelled tests, as in [6].
The nonlinear parameters estimation is presented in [7] using
the maximum likelihood approach and applied to autonomous
underwater vehicle in [8]. This method maximizes the likeli-
hood function of innovation variables, which is the difference
between the output measured variable and the output estimated
variable. In [9], the authors present the recursive least squares
optimization approach to determine the linear and nonlinear
parameters of an autonomous underwater vehicle (AUV). In
[10], the authors present the parametric identification model
of a ship based on the least squares approach, validating by
means of high precision of identified hydrodynamic deriva-
tives. Identifiability property can be verified before to apply
a parameter estimation approach and there are some linear
algebra tools that can solve this problem indeed when the
model to be identified is nonlinear. These tools can be found
in [11], [12], [13], [14].
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III. ALBA ASC MODELING

ALBA is a low-cost ASC, developed on an inflatable boat,
used for water quality monitoring and scientific study. This ve-
hicle has a trolling motor and a servomechanism that changes
the force direction for maneuvering. The vehicle has a control
architecture composed of inertial navigation sensors, wireless
communication, and microcontrollers to execute navigation,
guidance and control algorithms. Fig. 1 shows the picture of
the cited vehicle under Lake tests, a detailed description of its
development can be found in [15]. Fig. 2 presents a diagram
of the servomechanism structure developed for turning the
trolling motor, with 0.2462 m height and 0.511 m long. The
servomotor is located on the right side and covers a space of
0.062×0.094×0.029 m. Fig. 2(b) shows the clamps where the
trolling helm is installed.

The ALBA model is expressed according to standard
notation used in maritime vehicles [16]. The dynamics of 6
degrees-of-freedom (DOF) are represented with two coordinate
systems, one named earth-fixed η = (x, y, z, φ, θ, ψ) and
another named body-fixed ν = (u, v, w, p, q, r) (Fig. 3).
The dynamic equation is given by (1) and the kinematic
transformation between earth-fixed and body-fixed frames is
expressed by (2), respectively:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ, (1)
η̇ = J(η)ν, (2)

where J(η) is the coordinate transformations; M is the mass
matrix composed of rigid body mass and added mass; C(ν)
includes terms of centripetal, Coriolis and rigid body; D(ν) is
the damping matrix and τ is the control effort vector. Table I
presents the main features of the ALBA ASC.

Fig. 1. ALBA ASC Operating in a Lake [15].

For the ALBA ASC, it is reduced in dynamics to 2-DOF
that correspond to the body η = (v, r)T and inertial ν =
(y, ψ)T frames, respectively. The hydrostatic forces in these
two directions are null and the strip theory is used to obtain
theoretical vehicle parameters [17]. The nonlinear model is
given for very small values of the propeller angle δp and surge
velocity constant u0 = cte.

(m− Yv̇)v̇ + (mxG − Yṙ)ṙ = Yvu0v + Yru0r+

Yv|v|v|v|+ Yr|r|r|r| −mu0r + b+ ku0
sin δp

(3)

(mxG −Nv̇)v̇ + (Iz −Nṙ)ṙ = Nvu0v +Nru0r+

Nv|v|v|v|+Nr|r|r|r| −mxGu0r − lxG
ku0 sin δp

(4)

Fig. 2. Turning Propeller Mechanism.

o

Earth-frame

Body-frame

o

Fig. 3. ALBA ASC Coordinate System.

ẏ = u0 sin(ψ) + v cos(ψ), (5)

ψ̇ = r, (6)

where ku0
= 99 is the propeller coefficient, lxG

= 1.79 m is
the distance from the propeller location to the gravity center,
and the rest hydrodynamic derivatives are described in Table II.
The propeller angle in this vehicle is limited by ±25◦ degrees
considered sufficient to generate effort to maneuver the whole
craft.

Using straightforward transformation, the nonlinear model
of the ALBA ASC (3)-(6) can be expressed in the standard

TABLE I. ALBA ASC MAIN FEATURES

Features Value
Length (L) 3.14 m
Width 1.45 m
Gravity center (xG) 0.15 m
Propeller location (lxG

) 1.79 m
Mass (m) 125 kg
Inertia around z axis (Iz) 123.84
Cruise speed (u0) 1 m/s
Maximum speed 4 m/s
Autonomy 3 hours
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TABLE II. ALBA HYDRODYNAMIC PARAMETERS

Parameters Value Unit Description
Yv̇ -571.0619 kg Added mass
Yṙ -101.9671 kg.m/rad Added mass
Nv̇ -101.9671 k.m Added mass
Nṙ -232.9491 kg.m2/rad Added mass
Yv -139 kg/s Linear drag
Yv|v| -854.7687 kg/m Nonlinear drag
Yr -43.8331 kg.m2/rad.s2 Linear cross drag
Yr|r| -228.8418 kg.m/rad2 Nonlinear cross drag
Nv 70.5207 kg.m/s Linear cross drag
Nv|v| -143.9553 kg Nonlinear cross drag
Nr -101.9671 kg.m2/rad.s2 Linear drag
Nr|r| -884.0436 kg.m2/rad2 Nonlinear drag
b -10 kg Offset in sway

form:

ẋ = f(x, u),

y = g(x, u),
(7)

where x = [v r y ψ]
T is the state space vector, y =

[r y ψ]
T is the output vector, u = δp is the control input,

and f and g are nonlinear functions. More details of nonlinear
and linearizing models can be found in [15].

IV. PARAMETER ESTIMATION APPROACH

The parameters estimation approach is presented here
based on an optimization problem. The goal is to maximize
a likelihood cost function, which means an expression of the
output error or difference between measurement and output
variables (Fig. 4). This is a nonlinear approach because the
model to be identified presents nonlinearities (7). There should
be included the parameter vector Θ, the discrete time measure-
ment variable z(k) with N samples, w state noise variable with
its distribution matrix G, and v measurement noise variable
with distribution matrix F . Then, the nonlinear model to be
used in MLE approach is rewritten as:

ẋ = f(x, u,Θ) + G(w)

y = g(x, u,Θ)

z(k) = y(k) + Fv(k)

(8)

The prediction error is given by:

q(k) = [ŷ(k)− y(k)] (9)

Then, a likelihood function is expressed in function of q
and its respective covariance matrix B:

p(y | Θ) =(2π)−m/2 | B |−n/2 ·

exp

[
−1

2

n∑
k=1

[q(k,Θ)]TB−1[q(k,Θ)]

]
(10)

where n is the dimension of state space vector x and m is
the dimension of the measurement vector y. The value of Θ is
estimated through the maximization of this likelihood function,
as follows:

Θ̂ = arg max
Θ

p(y | Θ) (11)

The likelihood expression (10) can be transformed using the
relation −`n(p(y | Θ)), and neglected the constant term [18],
[7]:

J(Θ) =
1

2

N∑
i=1

{
[q(k,Θ)]TB−1[q(k,Θ)] + `n | B |

}
(12)

Therefore, minimize the functional J(Θ) is equivalent to
maximize the likelihood function with a great advantageous for
computational purposes. There are many types of algorithms
that solve the problem of the optimization, such as Gauss-
Newton (GN) and Levenberg-Marquardt (LM).

To achieve an optimal Θ, the cost function J(Θ) should
be approximated to a parabolic function using the well known
Taylor series [7]:

J(Θ0 + ∆Θ) ∼=J(Θ0) + ∆ΘT ∂J

∂Θ

∣∣∣∣
Θ=Θ0

+
1

2
∆ΘT ∂2J

∂Θ∂ΘT

∣∣∣∣
Θ=Θ0,

∆Θ

(13)

where Θ0 is the nominal vector parameter. The optimiza-
tion is obtained under the constraint:

∂

∂Θ
[J(Θ0 + ∆Θ)] = 0 (14)

Solving expression (13) with the constraint given in (14),
the variation of the estimated parameter vector ∆Θ̂ is:

∆Θ̂ = −

[
∂2J

∂Θ∂ΘT

∣∣∣∣
Θ=Θ0

]−1
∂J

∂Θ

∣∣∣∣
Θ=Θ0

(15)

Let the Hessian matrix be a non-singular matrix, the estimated
parameter vector can be expressed as follows:

Θ̂ = Θ0 + ∆Θ̂ (16)

Considering the approximation (13) for the cost function, in
the next iteration, the process will be repeated assuming the
estimated vector as a nominal parameter Θ0 = Θ̂. Therefore,
the generalized recursive equation is expressed as:

Θj+1 = Θj −
[
∇2

ΘJ(Θj)
]−1∇TΘJ(Θj) (17)

where ∇ is the gradient of J whose Hessian matrix is
∇2

ΘJ(Θj). Compute of Hessian matrix demands a huge com-
putational effort which can be avoided by the GN algorithm:

∇2
ΘJ(Θ) =

n∑
k=1

[∇Θŷk(Θ)]T [B]
−1

[∇Θŷk
(Θ)] (18)

where the terms of the second order derivatives are re-
moved. The gradient of the estimated output, ∇Θŷk

(Θ), is
named sensitivity function.

The LM algorithm is an extension of the GN, whose
principal idea consists in modify ∇2

ΘJ(Θ) by the expression
∇2

ΘJ(Θ) + λI in the Eq. (17). The inversion of the matrix
is not yielded in explicit manner and, now, it will be solved
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by singular value decomposition (SVD) according to the
expression: [

∇2
ΘJ(Θ) + λI

]
∆Θ̂ = ∇TΘJ(Θj) (19)

The above LM algorithm [19] solves the problem of sin-
gularity in the Hessian matrix. Additionally, the LM algorithm
works like a GN algorithm for small values of λ. These
optimization algorithms are already present in libraries of non-
commercial and commercial softwares, such as Gnu-Octave
and Matlab.

Fig. 4. Parameter Estimation via Output Error.

V. RESULTS

This section gives the results of the approach applied to the
ALBA ASC. For data generated in simulator and data obtained
experimentally, the parameter vector defined in (8) is expressed
relative to the nonlinear model as:

Θ = [ Θ1 Θ2 Θ3 Θ4 ]
T
, (20)

where Θ1 = Yv̇ , Θ2 = Iz , Θ3 = Nv , and Θ4 = b. Three
cases are analyzed in order to estimate a greater number of
parameters.

A. Simulated

The nonlinear model of the ALBA ASC expressed by
(3)-(6) is implemented in Matlab/Simulink as shown in Fig.
5. The upper block named ALBA USV (unmanned surface
vehicle) presents the nonlinear dynamics of the vehicle, and the
lower block named Zig-zag maneuvering presents the zigzag
maneuver generated numerically.
Fig. 6 presents the plot of data generated using this software
resource, where ψ is the yaw angle in zigzag course due
to the switching control of the propeller angle δp between
±20◦ = ±0.3490 rad. This switching control signal is in
closed loop and is activated by the yaw angle limits given
also between ±20◦ = ±0.3490 rad. The yaw rate angle
r follows an oscillatory behavior indicating the necessary
angular rate of the vehicle to approach this zigzag maneuver,
the initial condition for this numerical test is v = 0.001m/s ,
r = 0.001rad/s , y = 0.001m and ψ = −30 x pi/180rad
The simulated data were obtained with different hydrodynamic

parameters moved purposefully to 25% respect to the theoret-
ical values (nominal values) given in Table II.

Table III presents the case where two parameters are esti-
mated using the MLE algorithm. The fitting between identified
model response and simulated data is 94.56% for the yaw rate
r, 57.71% for the y position, and 58.88% for the yaw angle ψ
(Table IX). Table IV presents the case where three parameters
are estimated using the MLE algorithm. The fitting between
identified model response and simulated data is 94.55% for
the yaw rate r, 56.77% for the y position, and 58.98% for
the yaw angle ψ. (Table IX). Table V presents the case where
four parameters are estimated using the MLE algorithm. The
fitting between identified model response and simulated data
is 90.49% for the yaw rate r, 71.38% for the y position, and
83.16% for the yaw angle ψ (Table IX). Fig. 7 presents this
last comparison validating the approach used here.

TABLE III. ESTIMATION WITH 2 PARAMETERS.

Parameter Estimated value Nominal value Maneuver
Θ3 102.551309 70.520700 ±20(π/180) rad
Θ4 -8.139283 -10.00000 ±20(π/180) rad

TABLE IV. ESTIMATION WITH 3 PARAMETERS.

Parameter Estimated value Nominal value Maneuver
Θ2 172.83619 123.844500 ±20(π/180) rad
Θ3 102.722541 70.520700 ±20(π/180) rad
Θ4 -8.3401932 -10.00000 ±20(π/180) rad

TABLE V. ESTIMATION WITH 4 PARAMETERS.

Parameter Estimated value Nominal value Maneuver
Θ1 -897.157150 -571.061900 ±20(π/180) rad
Θ2 188.315315 123.844500 ±20(π/180) rad
Θ3 103.501259 70.520700 ±20(π/180) rad
Θ4 -8.923712 -10.00000 ±20(π/180) rad

B. Experimental

The experimental tests were carried out in the Tingo lagoon
in Arequipa. The inertial navigation system provided the yaw
rate r and yaw angle ψ at sampling time of 0.1 s, a global
positioning system (GPS) provided the position y at sampling
time of 1 s. There was a need to use oversampling technique
from 1 s to 0.1 s for the y data in order to feed the estimation
algorithm used here. The control δp signal is also provided at
0.1 s sampling time from the embedded electronic of ALBA
ASC, described in [15].
Fig. 8 presents the plot of experimental data, where ψ is the
yaw angle in zigzag course due to the switching control of
the propeller angle δp between ±20◦ = ±0.3490 rad. This
switching control signal is in closed loop and is activated by
the yaw angle limits given also between ±20◦ = ±0.3490
rad, the initial condition for this numerical test is v = 0m/s ,
r = 0rad/s, y = 0.01m and ψ = −30 x pi/180rad
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. The yaw rate angle r follows an oscillatory behavior indicat-
ing the necessary angular rate of the vehicle to approach this
zigzag maneuver.

Fig. 5. Nonlinear Model Simulink.
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Fig. 6. Simulated Zigzag Maneuver.
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Fig. 7. Comparison Responses between the Identified Model and the
Simulated Data.

Table VI presents the case where two parameters are
estimated using the MLE algorithm. The fitting between
identified model response and experimental data is 76.05%
for the yaw rate r, 16.27% for the y position, and 63.35% for
the yaw angle ψ (Table IX). Table VII presents the case where
three parameters are estimated using the MLE algorithm. The
fitting between identified model response and experimental
data is 75.78% for the yaw rate r, 15.15% for the y position,
and 63.45% for the yaw angle ψ (Table IX). Table VIII
presents the case where four parameters are estimated using
the MLE algorithm. The fitting between identified model
response and simulated data is 75.71% for the yaw rate r,
15.31% for the y position, and 64.46% for the yaw angle
ψ (Table IX). Fig. 9 presents this comparison validating the
approach used here.

Table IX summarizes the numerical and experimental re-
sults carried out to estimate the main parameters of the ALBA.
The fitting between the identified model and experimental data
are good and above to 50%, except for the y position. As noted
in model structure (3)-(6), its differential equation does not
exert significant contribution in the whole model. Moreover,
in autonomous vehicles [16], the y kinematic commonly com-
promises the observability and controllability linear properties.
Here, there is an unsolved and open area for autonomous
surface craft consisting in to examine identifiability properties
and advances recently developed for biologic systems [13],
[14].

VI. CONCLUSIONS

A nonlinear model for the ALBA autonomous surface ve-
hicle was identified using the maximum likelihood estimation
approach. This approach was initially tested numerically with
data obtained through the vehicle dynamic simulator. The
approach was then applied to the vehicle data obtained in
experimental test maneuvers. The four estimated parameters
compose the identified system for the ALBA, a low-cost
vehicle destined to monitor water conditions of lagoons and
shallow water of the Pacific sea. The fitting between identified
model responses and data is quite good and above 50%,
guarantying the proposed approach and its application to this
class of maritime vehicles. The fitting of y position was not
good and analysis using identifiability properties should be
conducted further.

TABLE VI. ESTIMATION WITH 2 PARAMETERS.

Parameter Estimated value Nominal value Maneuver
Θ3 68.478772 70.520700 ±20(π/180) rad
Θ4 -7.552532 -10.000000 ±20(π/180) rad

TABLE VII. ESTIMATION WITH 3 PARAMETERS.

Parameter Estimated value Nominal value Maneuver
Θ2 140.339921 123.844500 ±20(π/180) rad
Θ3 70.648283 70.520700 ±20(π/180) rad
Θ4 -7.874004 -10.000000 ±20(π/180) rad
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TABLE VIII. ESTIMATION WITH 4 PARAMETERS.

Parameter Estimated value Nominal value Maneuver
Θ1 -819.501860 -571.061900 ±20(π/180) rad
Θ2 124.193961 123.844500 ±20(π/180) rad
Θ3 73.561674 70.520700 ±20(π/180) rad
Θ4 -7.160477 -10.000000 ±20(π/180) rad

TABLE IX. FITTING BETWEEN IDENTIFIED MODEL RESPONSE AND DATA
(SIMULATED AND EXPERIMENTAL).

Fitting Number of estimated parameters
Simulated Experimental

Response two three four two three four
r 94.56% 94.55% 90.49% 76.05% 75.78% 75.71%
y 57.71% 56.77% 71.38% 16.27% 15.15% 15.31%
ψ 58.88% 58.98% 83.16% 63.35% 63.45% 64.46%
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Fig. 8. Experimental Zigzag Maneuver.
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E. Balsa-Canto, and J. Hasenauer, “GenSSI 2.0: multi-experiment
structural identifiability analysis of SBML models,” Bioinformatics,
vol. 34, no. 8, pp. 1421–1423, 11 2017. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btx735

[15] B. A. Monroy-Ochoa and J. C. Cutipa-Luque, “Development of a
low-cost unmanned surface vehicle for water quality monitoring,”
International Journal of Control and Automation, vol. 13, no. 4, pp.
1197–1207, Jul. 2020.

www.ijacsa.thesai.org 692 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

[16] T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

[17] J. N. Newman, Marine hydrodynamics. The MIT press (40th anniver-
sary edition), 2018.

[18] L. Ljung, System Identification: Theory for the user, 2nd ed. Prentice

Hall, 1999.
[19] B. Maciel, L. Goes, E. Hemerly, and N. Neto, “Flight path reconstruc-

tion and parameter estimation using output-error method,” Journal of
Shock and Vibration, vol. 13, pp. 379–392, 2006.

www.ijacsa.thesai.org 693 | P a g e


