
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

324 | P a g e

www.ijacsa.thesai.org

A Cryptocurrency-based E-mail System for SPAM

Control

Shafiya Afzal Sheikh1, M. Tariq Banday2

Department of Electronics and Instrumentation Technology

University of Kashmir, Srinagar, India

Abstract—Sending bulk e-mail is commercially cheap and

technically easy, making it profitable for spammers, even if a tiny

percentage of recipients falls for the attacks or turn into

customers. Some researchers have proposed making e-mail paid

so that sending bulk e-mail becomes expensive, making

spamming unprofitable and a futile exercise unless many victims

respond to spam. On the other hand, the small sending fee is

negligible for legitimate e-mail users. Making e-mail paid is a

challenging task if implemented using a conventional payment

system or developing new cryptocurrencies. Traditional payment

systems are challenging to integrate with e-mail systems, and new

cryptocurrencies will have challenges in adoption by users on the

required scale. This work proposes using cryptocurrency

payments to make e-mail senders pay for sending an e-mail

without creating a new cryptocurrency or a new blockchain. In

the proposed system, the recipients of the e-mail can collect the

payments and use the collected revenues to send e-mail messages

or even sell them on an exchange. The proposed solution has been

implemented using Ropsten, an Ethereum Test Network and

tested using enhanced E-mail Client and Server software.

Keywords—E-mail; SPAM; blockchain; cryptocurrency;

Ethereum

I. INTRODUCTION

E-mail spamming is one of the critical technical challenges
the cyber community faces, causing problems on various
fronts. In 2019, 28.5% of total global e-mail traffic was SPAM
and was above 45% of total e-mail traffic in 2018 [1]. This
huge percentage of SPAM traffic forces e-mail service
providers and users to invest hugely in anti-spam technologies
and infrastructure, which is a substantial commercial loss
globally. These SPAM e-mails take up a considerable amount
of storage space on both the e-mail servers and clients. In
addition to this, SPAM e-mails pose a multitude of threats to
e-mail users by tricking them into visiting malicious websites
where they get usually cheated and suffer financial loses. The
spammers use phishing, credential phishing, spear phishing,
whaling, blackmailing, etc., to harm the recipients in various
ways. The SPAM e-mail can also spread and install viruses,
rootkits, exploits or other malicious software resulting in data
leakage, including passwords, credit card details, etc. and may
even compromise the underlying computer software.

Cryptography [2] is being extensively used in securing
online communications, including e-mail messaging. Many
communication protocols and security features used in the e-
mail messaging system rely on cryptographic techniques.
These techniques help make e-mail communication safe
against the attacks like unauthorized access, spoofing [3],

spamming [4], phishing [5], etc. Cryptographic techniques are
also used in various e-mail encryption techniques to send
encrypted e-mail to prevent unauthorized access to e-mail
message while in transit over a network. The most common
protocols and standards which are used for this purpose
include GNU Privacy Guard (GPG) [6], Pretty Good Privacy
(PGP) [7], Secure Multipurpose Internet Mail Extensions
(S/MIME) [8], Privacy-Enhanced Mail (PEM) [9], OpenPGP
[10], etc. The Transport Layer Security (TLS) also falls in this
category of techniques, which helps encrypt e-mail
communication at the transport layer.

Domain Key Identified Mail (DKIM) [11] is a popular
cryptography-based e-mail authentication technique which
attaches Digital Signatures to outgoing e-mail messages from
a domain name. The Digital Signatures are generated by the
sending server using Asymmetric Key Cryptographic
technique. The recipient can verify them to ensure the
incoming e-mail has arrived from the domain name it claims.
This helps counter e-mail spoofing, which can result in e-mail
SPAM and various email-based phishing attacks.

In combination with blockchain [12] technology,
cryptography has revolutionized the payment systems through
cryptocurrency. A cryptocurrency is a form of a digital asset
that acts as a medium of exchange. The ownership records of
assets are stored in a blockchain that is a distributed and
decentralized ledger. Cryptocurrencies use modern and secure
encryption techniques to secure transactions, verify
transactions, and generate new assets. There is no central
authority or a trusted party in between the individuals
involved in a transaction. The cryptocurrency system works
entirely on top of robust cryptographic techniques. Some of
the most popular and widely used Cryptocurrencies and
blockchain applications are Bitcoin [13], Ethereum [14],
Litecoin [15], Chainlink [16], Ripple [17], Stellar Lumens
[18] and many more.

Researchers have proposed making e-mail senders pay for
sending an e-mail, using tiny amounts, to make sending e-mail
for spammers an expensive endeavour. However, there is no
robust payment solution to make it possible. Cryptocurrencies
can play a vital role in making such proposed system work in
reality and can help control e-mail SPAM by making it an
expensive and a futile effort for spammers.

A. Contribution

In an attempt to control SPAM by making it expensive,
this work proposes the use of existing cryptocurrency and
blockchain of payments for sending e-mail messages, without

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

325 | P a g e

www.ijacsa.thesai.org

the need to set up an entirely new payment network. The
proposed system has been implemented and demonstrated on
Ropsten Ethereum Test Network. It includes implementing a
new communication protocol to distribute Wallet Addresses
and support creating and verifying cryptocurrency transactions
within the existing e-mail infrastructure. The solution's
implementation and demonstration include developing a
primary E-mail Server with support for the proposed protocol,
making and verifying the transaction. The implementation also
includes enhancing an open-source e-mail client to create the
transactions and attaching them to e-mail messages.

II. LITERATURE REVIEW

Adam Back's Hashcash [19] proposed a proof-of-work-
based solution to counter automated abuse of Internet services
like e-mail, HTML form submissions, etc. The said solution
requires the user to perform some function on the system with
moderate CPU requirement before using a service like sending
an e-mail. In an e-mail system, this technique ensures that the
sender machine has performed some computation and utilized
a moderate CPU resource before sending out the e-mail. This
computation hardly makes any difference for a legitimate e-
mail sender but is extremely expensive for spammers who
send many SPAM e-mails within a small-time duration. This
technique dramatically reduces the number of e-mails
spammers can send within a given amount of time using
limited resources. The major drawback to this technique is that
spammers will prefer to attack computer users and online
servers, control them and use them to process and send e-
mails, rather than use their hardware to do the processing.
That way, the spammers do not have to invest anything other
than hacking into other people's resources and using them for
sending their SPAM.

David A. Turner and Ni Deng [20] proposed a solution of
payment-based e-mail using Lightweight Currency Protocol.
Their proposed solution suggests enhancing the SMTP
protocol and includes the payment and payment verification
processes into the SMTP protocol. They propose that e-mail
service providers will issue their currencies for payments,
which will lead to the creation of an unlimited number of
currencies that become impossible to manage and lead to
problems while performing inter-server mail exchanges.
Sending e-mails to different e-mail servers will require
purchasing or acquiring a large number of different currencies.
Another drawback in their proposed solution is that payments
take time to process and verify and including the two
processes into the SMTP transaction will make the transaction
take too long. This will result in highly reducing the
performance of the SMTP servers. Furthermore, changing an
existing, widely used protocol is not feasible in a real-world
situation. Therefore, the payment transaction and transaction
verifications should be independent of the widely used SMTP
protocol.

K. Nakayama, Y. Moriyama and C. Oshima [21] have
proposed an algorithm named SAGABC, which uses
blockchain technology to control the e-mail SPAM. They
propose to make the Sender pay a processing fee to send an e-
mail using a new Cryptocurrency which they name as "Mail
Send Coin". The fee paid by the senders is later refunded if the

e-mail messages are received correctly by the e-mail
recipients. However, their claim to develop and implement an
entirely new cryptocurrency for their proposed solution is
technically impractical. The cryptocurrency will require
mining which should generate returns for the miners. There is
no reason why for miners to be interested in investing in
mining their proposed cryptocurrency. Another drawback in
their proposed system is that refunds are never guaranteed in
any cryptocurrency, and it entirely depends upon the
recipients to make any refunds. There is no central authority
or trusted intermediary in cryptocurrency networks who can
guarantee or force a refund in successful e-mail delivery.
Furthermore, the authors have not proposed any practical
methodology for implementing payment transactions or
transaction verification by the recipients.

Likewise, the Credo project's concept is to use Credo
Tokens as a payment method for an e-mail service provided
by BitBounce. The service makes e-mail senders, who are not
in the recipient's contact list, pay for sending e-mails. The
non-whitelisted e-mail senders get a payment request when
they try to send an e-mail to an e-mail account on the
BitBounce Server. However, the credo cryptocurrency is
linked directly to the BitBounce e-mail service. There is no
information about if any other e-mail service providers can
adopt this technology or the cryptocurrency [22].

These researchers and service providers have tried to
provide solutions which could help make e-mail messaging
paid and control e-mail SPAM. Due to the limitations in their
proposed solutions or lack of practical methodology, this work
offers a solution that overcomes these shortcomings and
proposes a design implemented and tested, using existing
cryptocurrency systems without any widely accepted changes
e-mail communication protocols.

III. PROPOSED SOLUTION

The work presented in this paper proposes a methodology
that uses the existing cryptocurrency as a mode of payment for
sending e-mail messages. The Sender of the e-mail, either the
E-mail Client or the E-mail Server, makes a payment in
advance, for the e-mail message it sends to the recipient. The
recipient will get the e-mail message in the inbox, only if the
payment is verified successfully. The payment transaction can
be made by the sending Mail Transfer Agent (MTA) on behalf
the domain users or by the sending Mail User Agent (MUA),
depending upon the payment policies and network
configuration of the e-mail infrastructure. The proposed
solution is comprised of multiple processes viz: (a) Wallet
Creation, (b) Wallet Address Distribution, (c) Payment and
Stamp Creation, (d) Sending the e-mail, (e) Transaction
Verification and (f) Delivering E-mail to MUA.

In the proposed solution, a Cryptocurrency is used for
payment processing in which the e-mail sender is required to
make a small cryptocurrency payment for sending an e-mail.
The small fee is negligible for legitimate users who send a
limited number of e-mails. However, the cost will accumulate
to form a massive number for spammers who operate by
sending out a large number of e-mails in a short time, making
spamming expensive and useless. The payment is made using
an existing cryptocurrency transaction, and the payment has

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

326 | P a g e

www.ijacsa.thesai.org

been made a prerequisite for delivering the e-mail to the inbox
of recipients. The work also proposes a new wallet distribution
protocol. With the help of which the Sending MTA or the
sending MUA (Email Sender) after opening a connection with
the recipient MTA asks for the list of supported
cryptocurrencies. The recipient MTA responds with the list of
supported cryptocurrencies. The E-mail Sender then requests
for the wallet address of the recipient e-mail address on that
domain to which the recipient MTA responds with the wallet
address of the e-mail address. The E-mail Sender makes a
cryptocurrency payment favouring the wallet and attaches the
transaction hash of the payment to the e-mail header and sends
the e-mail to the recipient MTA. This research names the
transaction hash in the e-mail header as "EmailSTAMP". The
'EmailSTAMP' in the e-mail header can be thought of as a
postal stamp on a letter's envelope, which implies that the
Sender has obtained the stamp by making a payment.

On the receiving side, the 'EmailSTAMP' from the e-mail
header is extracted, and the transaction is verified on the
blockchain. On successful transaction verification, the e-mail
is delivered to the inbox of the recipient e-mail address. If the
transaction verification fails or a transaction hash is not found
in the e-mail header, the e-mail is categorized as SPAM by the
recipient MTA. This proposed solution makes sure that the
Sender makes a tiny payment for each e-mail it sends,
favouring the recipient or the recipient MTA for successfully
delivering e-mails to the recipient's inbox. Fig. 1 show a
sequence diagram of the proposed solution.

The various steps and processes involved in the proposed
solutions are discussed below in detail.

A. Wallet Creation

The e-mail server creates wallet addresses for all the e-
mail accounts present on the e-mail server and stores the
private keys securely. The E-mail Server may even create
wallets for multiple cryptocurrencies for every e-mail account.
The wallets are used to receive payments from the e-mail
senders. The wallets can be created immediately when
creating the e-mail accounts or whenever an e-mail server
requests one. The E-mail Client can request the Private Key
from the E-mail Server, after the proper authentication. In an
alternate implementation, instead of the E-mail Server, the E-
mail Client generates and stores the secret keys and wallet
addresses, and shares the E-mail Server's wallet address. In
such cases, the payment transaction is made by the E-mail
Client itself and attached to the e-mail header before
submitting it to the MTA for sending. Fig. 2 shows the
flowchart of creating a wallet by the E-mail Server when an E-
mail Sender requests a wallet.

As shown in Fig. 2, the Mail Server generates a wallet and
returns it to an E-mail Sender for a non-existent e-mail address
to counter the problem of e-mail address harvesting. E-mail
spammers use various techniques to collect valid and working
e-mail addresses to spam them and ensure that most of the e-
mail being sent is received by e-mail addresses that exist and
are active. One of the methods of collecting e-mail addresses
is guessing and cleaning. In this method, the spammers guess
e-mail addresses and send them e-mail messages. If the e-mail
address is invalid and receives a bounce mail, they remove the
e-mail address from the list and keep the ones that did not
respond with a bounce mail. This way, they can collect
working e-mail addresses and filter out invalid ones. In the
proposed technique, if the sending server queries for the wallet
address of invalid e-mail addresses, the e-mail server still
generates a wallet at runtime and return that to the sending
server. This way, instead of returning an invalid-email-address
message, the e-mail server will respond positively with a
wallet address. If e-mail messages are afterwards received on
such, non-existent e-mail addresses, the Server can still collect
the payments made and discard the e-mail message silently.
This way, the sending e-mail server is made to pay for e-mail
address harvesting using guessing and cleaning technique.

B. Identify the Headings

A communication protocol has been proposed, which E-
mail Senders and E-mail Recipients use to request and share
wallet addresses of e-mail addresses. The sending MTA or the
sending MUA (Email Sender) asks the recipient MTA for an
e-mail address's wallet address. The recipient MTA responds
with a wallet address. The E-mail Sender verifies the wallet
address for correct format. If the wallet address is confirmed
to be a valid address, the E-mail Sender will use that wallet
address to make payment for the e-mail message. Fig. 3 shows
an example of the protocol for distribution of wallets against
e-mail addresses after establishing a connection. As shown in
Fig. 3, R denotes the Recipient Server, and S represents the
Sending MTA or MUA. After establishing a connection with
the Recipient Server, the E-mail Sender receives a welcome
message with a 220-status message. The E-mail Sender issues
a command LIST CURRENCY. The Recipient Server
responds with a 220-status message and a list of supported
cryptocurrencies. The E-mail Sender issues a command
WALLET followed by the cryptocurrency preference, a colon
and an e-mail address to send the e-mail. According to the
Sender's selected cryptocurrency, the Recipient Server
responds with a 220-status followed by a wallet address. After
receiving the wallet address, the E-mail Sender closes the
connection.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

327 | P a g e

www.ijacsa.thesai.org

Email Sender

(MUA or MTA)

Email Recipent

(MTA)

Cryptocurrency

Blockchain

Request for Wallet Address

Sends Wallet Address of Recipent

Create and Broadcast Transaction

Send Email with Transaction Hash

in Email Header

Verify Transaction Hash

alt

verificationsuccess=true

else

verificationsuccess=false

MUA

Deliver Email to Users Inbox

Deliver Email to SPAM Folder

Request for Cryptocurrency List

Sends List of Cryptocrurrency Supported

Send Email Request

Fig. 1. Sequence Diagram of the Proposed System.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

328 | P a g e

www.ijacsa.thesai.org

Start

Receive Request for Wallet with

Email Id

Search Wallet Database for Email Id

Wallet Exits for

Email ID

Search for Email ID in Email

Address Database

Create new Private Key and

Wallet Address for Email Address

Email Address Exits

Store Private Key and wallet

address with Email Id

Return Wallelt Address

End

Wallet

Database

No

Email

Address

Database

Secure

Private

Key Store

Yes

Store Private Key and

wallet address without

Email Id

Yes

Create new Private Key

and Wallet Address

without Email Address

No

Fig. 2. Flowchart Showing the Creation and Returning of a Cryptocurrency Wallet by the E-mail Sender.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

329 | P a g e

www.ijacsa.thesai.org

Fig. 3. An Example of a New Wallet Distribution Protocol.

C. Cryptocurrency Payment and 'EmailSTAMP'Creation

In the proposed solution, the Sending MTA or the Sending
MUA (Email Sender) is enhanced to generate a
cryptocurrency transaction. The transaction is made up of an
input wallet address, the wallet address of the e-mail recipient
and the amount to be paid. The E-mail Sender concatenates
the FROM e-mail address, the recipient e-mail address, the
amount and the e-mail subject, together and calculates an md5
hash of the resulting string, named "verification-hash". The
verification-hash is then attached to the cryptocurrency
transaction and is afterwards used to verify if the payment
transaction in the 'EmailSTAMP' applies to the e-mail attached
to it re-calculating the verification-hash on the recipient side.
The entire transaction is signed by the private wallet key of
the E-mail Sender. The transaction hash of the transaction is
calculated, and the transaction is broadcasted into the
cryptocurrency blockchain network. Fig. 4 shows the structure
of a cryptocurrency transaction that can be used as a proof of
payment for a given e-mail message. The same transaction
cannot be used for any other e-mail messages because of the
"verification-hash".

D. E-mail Message Submission

The e-mail server creates the e-mail address in the usual
way and adds an extra header, EmailSTAMP, to the e-mail
headers. The 'EmailSTAMP' header field contains the
cryptocurrency name and the transaction hash, as a proof of
payment. The e-mail is then sent to the Recipient Server for
delivery.

A sample set of headers is shows in Fig. 5, wherein the
'EmailSTAMP' header field includes the name of the
cryptocurrency and the transaction hash. After adding the
'EmailSTAMP' header, the Sending Server can send the e-mail
to the Recipient Server in a regular manner. The Recipient
Server can use the header information to check for the
transaction information on the relevant blockchain.

E. Transaction Verification

The recipient server on receiving the e-mail checks the e-
mail header extracts the stamp which contains the transaction
hash. It queries the blockchain for the correctness of the
transaction hash and gets the information about the
transaction. If the transaction is correct and verified by an
adequate number of nodes, it is considered successful. The
Recipient Server extracts the verification-hash from the
transaction details. The Server also calculates the hash of a
string resulting from the concatenation of the sender e-mail
address, recipient e-mail address and the subject. The
calculated hash is compared to the verification-hash obtained
from the cryptocurrency transaction details. If the two
matches, the Server can be sure that the given transaction has
in reality been made for the e-mail message being received.
The Recipient Server also compares the transaction date with

the e-mail sending date to ensure that a payment made for an
e-mail is not being used again for a similar e-mail the next
day. Suppose the E-mail Server cannot verify the transaction
for an e-mail message, depending on the policy. In that case,
the Server may mark the e-mail message as SPAM or send a
bounce e-mail back to the E-mail Sender, explaining that an
'EmailSTAMP' is required for delivering the e-mail message.
The transaction verification of 'EmailSTAMP' header in an e-
mail message is shown in Fig. 8.

SIGNED TRANSCATION

Transaction Info

Sending Wallet Address

Recipient Wallet Address

Amount

Md5 Hash of:

Sending Address

Recipient Address

Amount

Email Subject

Checksum of Transaction Info. Encrypted by Wallet Private Key

Fig. 4. A Cryptocurrency Transaction showing the Necessary Elements.

Fig. 5. Sample E-mail Headers Containing the Cryptocurrency Payment

Information in the EmailSTAMP.

F. E-mail Delivery to the Recipient.

If the Recipient Server can successfully validate the
transaction and confirm the payment made for the e-mail
being received, it delivers the e-mail message to the user's
inbox. The user can then open and read the e-mail message.
The E-mail Client is modified to display the amount of
cryptocurrency received for the e-mail address, after opening
the e-mail message. The E-mail Client also shows the total
Cryptocurrency amount available in the user's wallets.

IV. TESTING AND IMPLEMENTATION

The proposed solution has been implemented and tested
using an Ethereum Test Network [23]. A Token named
"EmailSTAMP" was created on the Ropsten Test Network.
The Token is a standard ERC20 token with a fixed number of
tokens, and the contract has only standard rules. The
agreement was developed using Solidity language and
deployed and tested on the Ropsten Test Network. Fig. 6
shows a screenshot of the 'EmailSTAMP'ERC20 Token on the
Ropsten Test Network. The screenshot shows the Contract

R: 220 smtp.recipient-domain.com ESMTP Postfix
S: LIST CURRENCY

R: BITCOIN ETHER DOGE.
S: WALLET DOGE:some-user@recipient-domain.com
R: 220 DB1Xu2kgdkgu83UWxFE3r9hJiG65FaC003D

From: Alice (alice@sending-server.com)

Subject: Offer, Flat 50% of on all products.

Date: December 25, 2020 3:30:58 PM PDT

To: bob@recipient-server.com

Return-Path: <alice@sending-server.com>

Envelope-To: bob@recipient-server.com

Delivery-Date: Fri, 25 Dec 2020 15:31:01 -0700

EmailSTAMP: currency=DOGE; trx-
hash=fef584b0bc69af96565cc7541gryhA0af756id8f7rtp0af6daf498ytFDNjH5f

af099a

More Headers...

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

330 | P a g e

www.ijacsa.thesai.org

Address of the 'EmailSTAMP' in the address bar and the Total
Supply, which is 100 million. The 'EmailSTAMP' Token was
created with support for 18 decimal places. Therefore, a tiny
fraction of the Token can also be transferred in transactions.

The Smart Contract was designed such that the users or E-
mail Senders can send the verification-hash along with the
Token Transfer transaction. The transfer() functions of the
Smart Contract accepts an additional string parameter, viz.
'verificationHash', which is meant for sending the verification-
hash to the recipient for payment verification.

When calling the transfer() function on the contract, the
"verificationHash' parameter should be supplied. In case the
'verificationHash' parameter is not provided, the contract
execution will fail, and the entire cryptocurrency transaction
will fail. Fig. 7 shows a screenshot of Remix Ethereum IDE's
transfer function, showing the 'verificationHash' parameter,
which accepts a string value. Fig. 9 shows the input data of a
successful transaction, in which one 'EmailSTAMP' token was
transferred. Note that the transaction shows 10^18 tokens
equal to one 'EmailSTAMP' Token because, in the Smart
Contract, the number of decimals for the Token was set to 18.
This can help send a tiny fraction of the Token in a transaction
instead of sending a full Token.

Fig. 9 also shows a value in the 'verificationHash'
parameter, the MD5 hash of a string created by concatenating
the sender e-mail address, recipient e-mail address, amount
and e-mail subject of an e-mail message.

An SMTP Server was written in JAVA and set up on two
AWS EC2 Instances, one used for sending e-mail and the
other was used as a Recipient. The proposed Wallet
Distribution Protocol for requesting and sharing Wallet
address was added to the JAVA based E-mail Server. MySQL
database server was used to store wallet private keys and
wallet addresses. The e-mail server was developed to create
transactions on the Ethereum Test Network, create the
'EmailSTAMP' header, and add it to the outgoing e-mail. The
e-mail server also verifies transactions on the blockchain, if an
'EmailSTAMP' header is found in the incoming e-mail
messages.

An open-source PHP based e-mail client, SquirrelMail,
was enhanced to work with and support the custom JAVA
based SMTP Server. The enhanced E-mail Client was hosted
on both the AWS EC2 instances and configured with the
respective E-mail Servers. The modified E-mail Client can
also create the wallet, store it in MySQL database. On the

Sending Server, the Client can also use the Wallet Distribution
Protocol to connect to the Recipient Server to obtain wallet
address for an e-mail address. It can create a Transaction and
add the transaction hash to an e-mail message 'EmailSTAMP'
header before submitting it the E-mail Server.

The E-mail Client was able to create the wallet and store it
in the MySQL database. Before sending an e-mail, the E-mail
Client successfully obtained the wallet address of an e-mail
address on the Recipient Server. It then generated and
broadcasted a transaction on the Ropsten Network, created an
'EmailSTAMP' e-mail header, added it to the e-mail and
submitted the e-mail to the E-mail Server for Delivery. On the
Recipient Server, the e-mail headers were obtained by the
SMTP Server. The transaction was extracted, and the
transaction was verified on the Ropsten Test Network after
which the e-mail was successfully delivered to the recipient's
inbox. Another test message, which was sent without adding
an 'EmailSTAMP' header, was sent to the Recipient Server
which was successfully filtered out and sent to the SPAM
folder.

Fig. 6. Screenshot of the 'EmailSTAMP' Token on the Ropsten Test

Network.

Fig. 7. Screenshot of transfer() function from Remix Ethereum IDE.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

331 | P a g e

www.ijacsa.thesai.org

Start

Get EmailSTAMP from Email

Headers

EmailSTAMP Header Exists

Get Tx Hash, Currency Name from

the Crypto STAMP

Yes

Mark as SPAM

No

Cryptocurrency

BlockChain

Transaction Exists

Verifications >=5

Yes

No

Delay 5 minutes

Yes

Calculate Verification Hash �H1

from sending email, recipient email,

amount and email subject.

Obtain Verification Hash �H2 from

Transaction Details

H1==H2

Payment Verified and Accept Email

Yes

No

End

Fig. 8. Verification of the 'EmailSTAMP' Header.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

332 | P a g e

www.ijacsa.thesai.org

Fig. 9. Screenshot of the 'EmailSTAMP'token on the Ropsten Test Network.

V. LIMITATIONS AND FUTURE SCOPE

Although a minimal fee payment per e-mail can serve the
purpose of reducing e-mail SPAM, the introduction of a fee
for a service which is otherwise free will be an inconvenience
for ordinary e-mail users. For such users, large E-mail Service
Providers can pay the fee on their behalf. The E-mail Service
Providers can make the payments from the amount they
collect for incoming e-mails. Therefore, the common users
might not even be required to purchase any cryptocurrency at
all.

The introduction of extra security measure, no doubt, will
have an impact on any process. Likewise, adding a payment
system into the e-mail delivery process will introduce some
delay in e-mail delivery. Generating and broadcasting a
transaction on an Ethereum network will take no more than a
second; therefore, sending side will not notice any delays. On
the other hand, Ethereum transactions take between 15
seconds and 5 minutes, to complete. Thus, the e-mail recipient
will have the e-mail delivered in their inboxes as quickly as
within 15 to 20 seconds or may be delayed by about 5
minutes. Time taken to complete and confirm a transaction
varies for different cryptocurrency blockchain networks.

There is a need to research various currently available
cryptocurrencies regarding their feasibility for implementing
the proposed solution. The research can compare and contrast
the multiple cryptocurrencies regarding their support for
publishing the "verificationHash" and the transaction,
transaction verification and processing speed, and transaction
fee. The research will help in implementing the proposed
solution most effectively.

VI. CONCLUSION

E-mail senders can be made to pay tiny amounts for
sending an e-mail negligible for legitimate users but
accumulates to form a considerable part for spammers sending
bulk e-mail messages. Setting up a payment for such purposes
can be extremely difficult using currently available payment
infrastructure. It will be costly, if not impossible, for the e-
mail recipient to verify if the e-mail sender has paid for
incoming e-mail messages. This problem can be solved by
using existing blockchains and cryptocurrencies. This will
require some modifications to the E-mail Servers and E-mail
Clients and implementing an additional communication
protocol. In the proposed solution, the E-mail Server can make
payments for the outgoing e-mail messages on behalf of its e-
mail addresses or the end users can make the payments
themselves using their E-mail Clients. At the recipient's end,

these payments can be collected by the e-mail recipients or the
E-mail Server and used to send out e-mail messages or be sold
on cryptocurrency exchanges.

The work presented in this paper suggests not to create any
new cryptocurrency or set up a new blockchain for processing
the payments for several reasons. It is tough to use new
cryptocurrencies, making it more feasible to use any existing
reliable cryptocurrency. Cryptocurrencies need miners to
verify transactions and support the blockchain, which is only
possible if they find the process profitable. New
cryptocurrencies are not attractive for miners at all and are,
therefore, challenging to implement. Hence, using an existing
cryptocurrency is recommended and demonstrated in this
study.

The proposed system is backwards compatible because it
does not attempt to modify the basic SMTP protocol or any
other established e-mail communication protocols. Existing
SMTP servers can receive e-mail from E-mail Senders even if
they support the proposed system. In the absence of the
payment header, a Recipient SMTP Server which supports the
proposed solution will still accept e-mail from the Sender, but
it will deliver the message to a SPAM folder instead of inbox.

REFERENCES

[1] Spam: Share of Global Email Traffic 207-2019, https://www.statista.co
m/statistics/420400/spam-email-traffic-share-annual/, accessed October
2020.

[2] U. H. Rao, U. Nayak, "Cryptography," An Introduction to Information
Security, Springer, September 2014.

[3] E. Kirda, C. Kruegel, "Protecting Users against Phishing Attacks," The
Computer Journal, vol.49, January 2006.

[4] W. Z. Khan, M. K. Khan, F. T. B. Muhaya, M. Y. Aalsalem, H.C. Chao,
"A Comprehensive Study of Email Spam Botnet Detection," IEEE
Communications Survey and Tutorials, vol. 4, pp. 2271-2295, June
2015.

[5] A. Karim, S.Azam, B. Shanmugam, K. Kannoorpatti, M Alazab, "A
Comprehensive Survey for Intelligent Spam Email Detection," IEEE
Access, vol. 7, November 2019.

[6] W. Koch, "The GNU privacy guard," http://www.gnupg.org, accessed
November 2020.

[7] PGP, "Pretty Good Privacy (PGP)," http://www.openpgp.org, accessed
November 2020.

[8] J. Schaad, B. Ramsdell, S. Turner, "Secure/Multipurpose Internet Mail
Extensions (S/MIME)," RFC 5751, Version 4.0, April 2019.

[9] J. Linn, "Privacy-Enhanced Mail (PEM)," RFC1421, February 1993.

[10] J. Callas, L. Donnerhacke, IKS GmbH, H. Finney, D. Shaw, R. Thayer,
“OpenPGP,” RFC 4880, November 2007.

[11] D. Crocker, T. Hansen, and M. Kucherawy, "DomainKeys Identified
Mail (DKIM) Signatures," RFC 6376, September 2011.

[12] Y. Yuan and F.-Y. Wang, "Blockchain and Cryptocurrencies: Model,
Techniques, and Applications," IEEE Trans. Syst. Man Cybern, Syst.,
vol. 48, no. 9, pp. 1421–1428, Sep. 2018.

[13] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008.
https://bitcoin.org/bitcoin.pdf, accessed October 2020.

[14] V.Buterin, "White Paper- Ethereum," https://ethereum.org/en/ whitepape
r/, accessed November 2020.

[15] C. Lee, White Paper- Litecoin, https://litecoin.org/, accessed October
2020.

[16] S. Ellis, A. Jules, S. Nazarov, "ChainLink: A Decentralized Oracle
Network," URL: https://link.smartcontract.com/whitepaper, accessed:
October 2020.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

333 | P a g e

www.ijacsa.thesai.org

[17] D. Schwartz, N. Youngs, A. Britto, "The Ripple Protocol Consensus
Algorithm," https://ripple.com/files/ripple_consensus_whitepaper.pdf,
accessed November 2020.

[18] D. Mazieres, "The Stellar Consensus Protocol," https://www.stellar.org/
papers/stellar-consensus-protocol?locale=en. Accessed October 2020.

[19] A. Back, "Hashcash - a denial of service counter-measure,"
http://www.hashcash.org/papers/hashcash.pdf, 2002.

[20] David A. Turner and Keith W. Ross, "The Lightweight Currency
Protocol (LCP)," September 2003. http://www.ietf.org/internet-drafts/
draft-turner-lcp-00.txt.

[21] K. Nakayama, Y. Moriyama, C. Oshima, "An algorithm that prevents
spam attacks using blockchain," International Journal of Advanced
Computer Science and Applications (IJACSA), vol. 9, 2018.

[22] S. Dennis, "Credo Token-Blockchain Based Spam & E-mail Access
Solutions,", Turing Technology, Inc., July 2017.

[23] Ropsten Testnet Explorer, https://ropsten.etherscan.io/, accessed
December 2020.

