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Abstract—This paper studies a combination of two well-known
problems in distribution logistics, which are the truck loading
problem and the vehicle routing problem. In our context, a
customer daily demand exceeds the truck capacity. As a result,
the demand has to be split into several routes. In addition, it is
required to assign customers to depots, which means that each
customer is visited just once by any truck in the fleet. Moreover,
we take into consideration a customer time windows. The studied
problem can be defined as a Multi-depots open split delivery
and pickup vehicle routing problem with two-dimensional loading
constraints and time windows (2L-MD-OSPDTW). A mathemat-
ical formulation of the problem is proposed as a mixed-integer
linear programming model. Then, a set of four class instances is
used in a way that reflects the real-life case study. Furthermore,
a genetic algorithm is proposed to solve a large scale dataset.
Finally, preliminary results are reported and show that the MILP
performs very well for small test instances while the genetic
algorithm can be efficiently used to solve the problem for a wide-
reaching test instances.
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I. INTRODUCTION

LPG logistics transportation, in particular the distribution
of the Liquefied Petroleum Gas (LPG) cylinders is considered
among the basic building blocks in the Oil and Gas down-
stream supply chain and also known to be a very complex
supply chain [11]. A typical LPG downstream supply chain
consists of filling plants, distribution locations, fleet of trucks
and customer’s depots. The filling plant is an industrial unit
composed of several processes in order to fill a broad range
of gas cylinders. It should also be noted that the production
and storage capacity is different from one filling plant to an-
other. Therefore, each filling plant has an attached distribution
location which is a cylinder’s storage unit supplied from the
production unit, then serves a set of customers by using a fleet
of trucks. Moreover, due to the flammable nature of the gas,
it is usually stored in liquid form under a specific pressure, in
steel or composite plastic gas cylinders carefully checked and
protected against deterioration. In general, the companies do
not sell the gas cylinders but just the gas contents inside and
the packaging remains their property. This type of packaging
management system is called consignment.

Motivated by a case of a Moroccan petroleum company,
our paper considers a real-life application in the LPG dis-
tribution industry. The objective is to deal with a problem

which corresponds to current industry practice and also to give
solution methods able to solve real large-scale instances in very
fast computation times. The current distribution policy of our
case study links two main entities: the gas filling plants and
customers depots. Furthermore, each customer depot is served
fully by only one truck. So, deliveries are very difficult to
manage and generates a huge cost related to the production
capacity and the use of trucks. Thus, the GPL Company faces
a real problem which is serving customers in a way to optimize
both loading and vehicle routing.

Through this document, we will propose a new distribution
policy which will remove the dependency constraint between
customer depots and filling plants. Those customers can be
served by a fleet of heterogeneous trucks based in multiple
filling plants. We note that all customers are visited just once
by the truck in the same route. Every truck visits a number
of customers in a certain order along its route. Thus, the new
approach requires the assignment of customers to filling plants.
In addition, a fleet of trucks is based at each filling plant,
then, each truck originates from one filling plant serves the
customers assigned to that plant. The objective of this policy is
therefore to offer a global distribution model at minimal cost.
This model concerns both the operation of loading cylinder
racks into each truck and the construction of the trucks routes.

The remainder of this paper is organized as follows: Section
2 presents the loading and distribution problem considered in
our case study. In Section 3, we explore a related literature
review. In Section 4, we present a mathematical formulation
of our problem based on a mixed integer programming model.
Then, we present and discuss computational results. Section
5 presents a developed genetic algorithm (GA). Finally we
conclude this paper by discussing results obtained by the GA
and compare it with Cplex results, pointing out a few remarks
of practical relevance and giving some perspectives of our
further researches.

II. PROBLEM DESCRIPTION

The distribution problem studied in this paper includes two
sub-problems: a two-dimensional loading vehicle problem and
an open multi-depot split delivery and pickup routing problem
with time windows (MD-OSPDTW).
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A. Two-dimensional Loading Problem

As customer requests are in the form of a set of two-
dimensional and rectangular racks, the goal is to find an opti-
mal combination to load it into a set of dissimilar rectangular
trailers of height H and width W, without overlapping. The
two-loading vehicle problem can be described as a loading of
a limited fleet of heterogeneous trucks of capacity Pk and a
loading surface with length Lk and height Hk. During loading,
racks have a prefixed orientation with respect to the trailers.
In addition, all of them should occupy the entire surface width
of the truck. We note that in our studied problem three types
of trucks are considered.

We consider N racks of several types of gas cylinders to
be shipped to r customers. Each rack c is characterized by
a width wc<Lk , a height hc<Hk and a weight qc known.
A problem instance includes a fleet of heterogeneous trucks,
initially distributed among filling plants and may differ in term
of their cylinders loading capacities. Furthermore, each truck
can pull two types of trailers: flatbed trailer and lowboy trailer.
Since, the order of each customer is a combination of different
types of racks in which we put specific types of gas cylinder;
we assume that the loading racks combinations of each truck
are known. In addition, the loading surface in each truck can
be represented on a rectangular coordinate system (x,y) with
origin (0,0), in which the height represents the y-axis and the
length represents the x-axis. To summarize, the truck loading
is feasible if and only if all racks are placed completely inside
the tray surface, two different types of racks cannot overlap
and all racks are placed vertically parallel to the truck head.

B. The MD-OSPDTW Problem

The problem considered in our paper can be defined on
a directed graph G = (V,A) in which V = V1,. . . Vn,. . . Vn+r

represent the vertices and A = (Vi,Vj) ; i 6=j represent the
arcs. The set of arcs comprises: Vc = V1,. . . Vn as vertices
corresponding to the filling plants and Ve = Vn+1,. . . Vn+r

as vertices representing customer’s depots. We indicate by cij
the transportation cost between two vertices i and j. Moreover,
customers have a daily requirement Di of cylinders, a service
time Si and an associated time window. We have to take
into account the trucks service time in filling plants s =
(t + w) which represent both, the duration t of the trucks
processing and the loading or unloading time w. Furthermore,
the requirement of each customer may exceed the capacity of
the truck, so it has to be split into several routes and each
customer can be visited several times by different routes. In
addition, each depot has a specific time window and should
not be visited outside of this interval time. The objective is
to determine for each truck the loading combinations and
the set of routes to achieve in order to minimize the total
transportation costs.

The problem in our paper is illustrated in Figure 1 and can
be considered as an open vehicle routing problem (OVRP). It
is a generalization of VRP in which a truck may not return to
its departure depot after shipping the last customer on a route.
Moreover, instead of the single-depot, deliveries are made from
several multi-depots. The considered transportation problems
include also more constraints: The time window restriction
(OVRPTW), the multi-depots constraints, the fleet of trucks

is assumed to be heterogeneous (HOVRP); the consideration
of multi-types of products (MPOVRP). In this paper the
transportation problem as a whole can be named as: open split
delivery and pickup routing problem with multi-depot, multi-
Product, time windows, using a heterogeneous fleet of trucks
and obviously with consideration of Two-dimensional loading
constraints. To the best of our knowledge, the OVRP as we
present it has not been considered in the literature.

III. LITERATURE REVIEW

The vehicle routing problem (VRP) is the most studied
combinatorial optimization problem in transport and logistics.
It was firstly presented in the literature by [1] as the truck dis-
patching problem. It can be defined as the determination of an
optimal set of routes for a fleet of vehicles which needs to serve
a set of customers. Few years later, a considerable number
of variants have been considered by researchers: Capacitated
vehicles, multi-depots, time-windows, pickup and delivery,
heterogeneous fleet, etc. In view of the problem statement, the
main purpose of this paper is to focus on the combination
of loading constraints and vehicle routing problems. Both
problems belong to the NP-hard type of optimization problems.
Thus, the combination of these two NP-hard problems gives
us a more complicated problem.

In this section, we review only the closely related works
which deal with the multi-depots open split pickup and de-
livery routing problems with time windows and with two-
dimensional loading constraints.

The variant of OVRP was firstly introduced in 1981 by
[3]. Since then, it has gained much attention from researchers
mostly in the studies addressing companies that avoiding being
charged for the return trip of the vehicles to their departure
depots. So, the important feature of the OVRP problem is that
the vehicles are not required to return to the starting depot,
but if they do, it must be through visiting customers in reverse
order [10]. Authors in [6] presented the first heuristic algorithm
to solve the OVRP. They developed a method based on a
minimum spanning tree with penalties procedure. Afterwards,
a tabu search algorithm was presented in [8] in which authors
explore the structure of the OVRP problem and compare its
performance with results obtained by other heuristics methods.
One year later, the same heuristic was proposed by [10] for
finding the routes that minimize both total travelling cost
and operating cost while satisfying vehicle capacity and route
length constraints. Many researchers have developed various
heuristic approaches to efficiently solve the OVRP, such as
ant colony optimisation by [19], simulated annealing by the
researchers in [9] and genetic and evolutionary computing in
[20].

To address the real-world business issues, the OVRP can
be combined with more complicated constraints, such as split
delivery (SDVRP). The SDVRP was introduced in the first
time in [5]. The Authors studied this problem to prove that
it can generate savings by allowing divisible deliveries. In
[21] a study of the maximum possible savings achieved by
enabling divisible deliveries is presented. Authors analyse the
SDVRP algorithmic complexity with small capacity vehicles.
Another work in which two hybrid genetic algorithms are used
to solve a split delivery problem with respect to the total travel
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Fig. 1. Illustration of 2L-MD-OSPDTW.

distance is presented by [22]. In regards to the SDOVRP,
we find only one interesting paper [30]. Authors developed
a mathematical model of the OVRPSD that minimize both
total fixed cost of vehicles and delivery workers and total
transportation cost. Other features are also considered such
as delivery and pickup (DPRP). This problem has received
continual attention in transportation logistics field. The early
work on the VRPPD was in [2], it was conducted for dial-
a-ride scenarios. Later, researchers in [7] provided a lower
limit where a demand of each customer does not exceed the
vehicle capacity. In the VRPSPD, the vehicles are not only
required to deliver goods to customer, but also pickup goods
at customer locations. A general assumption in the VRPSPD is
that all delivered goods must be originated from the depot and
all pickup goods must be transported back to the depot. Very
recently an iterated local search metaheuristic and a branch-
and-price algorithm are proposed to solve the multi-vehicle
one-to-one pickup and delivery problem with split loads [27].
Moreover, Authors in [31] studied a barge transportation of
maritime containers between a dry port and a set of sea
port terminals. They develop a hybrid local search meta-
heuristic algorithm, combined with a branch-and-cut method
to solve the VRPSPD problem. The objective is to find the best
allocation of containers to barges in order to guarantee on-time
delivery and meet capacity restrictions. In a previous paper we
have introduced the split delivery and pickup vehicle routing
problem with two-dimensional loading constraints. We attempt
to give solutions for small instances in order to validate the
model [26].

Customer’s time window is also an important characteristic
of the studied OVRP. The modeling of such problems requires
consideration of the arrival time of each customer, which
requires the integration of time windows constraints of each
customer. The first paper introduced the open vehicle routing
problem (OVRPTW) was studied by [15] Authors studied a
real-world cases such as the delivery of school meals, school
bus routing, the plans of passing through tunnels of trains, etc.
The problem variants are extended to include the case where
more than one depot is considered. The multiple depots open
routing problem (MD-OVRP) is a variant of the capacitated
vehicle routing problem CVRP in which a fleet of vehicles
is based at each depot and customers are assigned to depots.

Recently, [29] proposed a two-phase algorithm to solve a low-
carbon multi-depot open vehicle routing problem with time
windows (MDOVRPTW) with minimum total costs. In the
literature, several papers have studied OVRP and VRPSDP
with times windows and multi-depots constraints [8] [28] [29].

Another complicated problem presented in this paper which
is the two-dimensional loading constraint. In recent years, a
problem of loading customer items into vehicles has become
a fertile ground for researchers in the field of combinatorial
optimization. Nevertheless, the combination of the loading
constraints and vehicle routing problems has received a little
attention in the literature. The first work related to trans-
portation problem with loading constraints was introduced by
[4]. They address the Pickup and Delivery Traveling Sales-
man with LIFO Loading where a single rear-loaded vehicle
serves a set of customer orders with LIFO policy. Next, [12]
addressed the Two dimensional Capacitated Vehicle Routing
Problem with Loading Constraints (2L-CVRP) using an Ant
Colony Optimization (ACO). In another work they present an
exact approach based on branch-and-cut for solving the same
problem [14]. Researchers in [17] resolved a two dimensional
Capacitated Vehicle Routing Problem using a tabu search
algorithm. The 2L-VRP is combined to various VRP variants,
such as time windows [16] [23][ [24]], Pickup and delivery
[13] [18] and heterogeneous fleet [25].

IV. MATHEMATICAL FORMULATIONS

Two virtual plants are considered to formulate our dis-
tribution problem: a departure plant and an arrival one.
We suppose that the transportation cost is null between
these plants and the other considered plants. We de-
fine our problem as an oriented graph G = (V,A) with
V=V0,V1,..Vn+1,..,Vn+r,Vn+r+1,. . . ,V2n+r,Vn+r+1 and A =
(Vi,Vj) ; i6=j. The arcs A comprises: a virtual starting plant
V0, a filling departure plants Vc =V1,..Vn+1, a set of cus-
tomers to be visited Ve=Vn+1,..,Vn+r, the arrival filling plants
Vc′=Vn+r+1,. . . ,V2n+r, and the arrival virtual plant V2n+r+1

(Figure 2).

www.ijacsa.thesai.org 609 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

Fig. 2. Illustration of the Solution Method.

A. Assumptions.

• A truck cannot leave or arrive at customer depots
outside a specific time window;

• Each filling plan has a determined service time corre-
sponding to unload racks of the empty cylinders and
to load racks of the filled cylinders;

• Each customer depot has a determined service time
corresponding to unload racks of the filled cylinders
and to load racks of the empty cylinders;

• The travel time and the distance between the gas filling
plants and the customer depots are well known;

• At the beginning, all trucks are empty and supposed
parked at the plants where it belongs;

• The starting location of each tour which is the filing
plant can never be a pickup location;

• The last pickup location of the tour is the last served
customer;

• Each customer may be served one or more times;

• We suppose the use of heterogeneous and limited fleet
of trucks;

• The racks should occupy the entire surface width of
the truck;

• The capacity of each truck is well known.

B. Parameters.

In order to formulate the above problem and solve it, we
define the complete nomenclature and then state the model.
The nomenclature is divided into parameters, sets and vari-
ables:

• o : Virtual starting plant;

• n : Number of Plants;

• r : Number of customers;

• 2n+r+1 : Virtual arrival plant;

• K : Number of trucks in the fleet;

• Cijk : Truck k transport cost between vertex i and j;

• Pk : Truck capacity;

• Hk : Maximum height of truck k;

• Lk : Maximum length of truck k;

• C : Number of racks types;

• Maxck : Maximum number of racks with type c on
truck k:

Maxck ≤ Hk

hc
< Maxck+1 , ∀ k ∈ 1,..,K ∀ c ∈ 1,..,C

• Dic : Customer requirement of cylinders of the type
of rack c.

• Di : Customer requirement of cylinders:

Di = Dic ,∀ c ∈ 1,. . . ,C, i ∈ 1,. . . ,r

• nc : Max number of cylinders in rack c;

• hc : Rack c heght;

• lc : Rack c lenght;

• qc : Rack c weight when it is full;

• tij : Travel time between vertex i and j;

• dij : Distance time between vertex i and j;

• M : Large number;

• (ei, li) : Time windows

• w : Time to load / unload a rack in a truck

• si : Service time si = 2w * Number of racks.

• Vik : Binary parameter

Vik =

{
1 if truck k was parked in plant i.

0 otherwise
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• λ : Filling plant waiting time

λi =

{
λ if i ∈ (1, . . . . . . , n).

0 if i ∈ (n+ 1, . . . , n+ r)

C. Decision Variables.

Five decision variables are used in our mathematical model
as follow:

xijk =

{
1 if truck k visits i from j.

0 otherwise

i, j ∈ (0, .., 2n+ r + 1)

yik =

{
1 if truck k visits nodi.

0 otherwise
i ∈ (0, .., 2n+ r + 1)

aik: The arrival time of truck k at customer i.

bcik : Number of racks c delivered to customer i by truck k.

zck : Number of piles c occupied in the truck k.

zck =

n+r∑
i=n+1

sup(
bcik

Maxck
)

D. Objective and Constraints.

Using the above notation, the problem can be presented as
follows.

1)

Minimize =

2n+r+1∑
i=1

2n+r+1∑
j=1

K∑
k=1

Cijkxijk

Subject to:
2)

2n+r∑
j=0

xijk =

2n+r+1∑
j=1

xijk = yik

∀ i ∈ (o, 1, .., 2n+ r + 1), i 6= j, k ∈ (1, ..,K)
3)

2n+r+1∑
j=1

K∑
k=1

xijk = 0 ∀ j ∈ (o, .., n)

4)
2n+r∑
i=0

K∑
k=1

xijk = 0 ∀j ∈ (n+ r + 1, .., 2n+ r + 1)

5)
n+r∑

j=n+1

xojk =

n+r∑
j=n+1

xj(2n+r+1)k = 0 ∀ k ∈ (1, ..,K)

6)

yok ≤
n+r∑

j=n+1

yjk ≤Myok ∀ k ∈ (1, ..,K)

7)

y(2n+r+1)k ≤
n+r∑

j=n+1

yjk ≤My(2n+r+1)k ∀ k ∈ (1, ..,K)

8)

yok =

n∑
j=1

yjk = y(2n+r+1)k =

2n+r∑
j=nr+1

yjk ∀k ∈ (1, ..,K)

9)

bcik ≤
Dic

nc
yjk

∀ i ∈ (n+ 1, .., n+ r), c ∈ (1, .., C), k ∈ (1, ..,K)
10)

n+r∑
i=n+1

c∑
c=1

(bcikQc) ≤ Pk ∀ k ∈ (1, ..,K)

11)
K∑

k=1

bcik =
Dic

nc
∀ i ∈ (n+ 1, .., n+ r), c ∈ (1, .., C)

12)
aik + λi + Si + tij ≤ ajk +M(1− xijk)

∀ i, j ∈ (1, ..2n+ r + 1), i 6=j, ∀ k ∈ (1, ..K)
13)

aik ≥ eiyik ∀ i ∈ (1, ..n+1, .., r+n),∀ k ∈ (1, ..K)

14)
aik ≤ li +M(1− yik)

∀ i ∈ (n+ 1, .., r + n, ..2n+ r + 1), ∀ k ∈ (1, ..K)
15)

C∑
c=1

n+r∑
i=n+1

bcikhclc ≤ HkLk + bkck ∀ k ∈ (1, ..K)

16)
C∑

c=1

zcklc ≤ Lk ∀ k ∈ (1, ..K)

17)

zck − 1 +
1

M
≤

∑n+r
i=n+1 bcik

Maxck
≤ zck

∀ k ∈ (1, ..K), ∀ c ∈ (1, .., C)
18)

xojk ≤ Vjk ∀ k ∈ (1, ..K),∀ j ∈ (1, .., n)

19)
aik ≥ 0

20)
bcik, zck ∈ N

21)
xijk, yik = 0, 1
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The objective function (1) minimizes the total transporta-
tion cost. Constraints (2) impose the continuity of a tour; xijk
= 1 indicates that the truck k visits j after i and yik= 1 indicates
that the truck k visits i. So if a truck k visits a vertex it should
necessarily leave it except for the vertex 2n + r + 1. Constraints
(3) assure that the virtual departure plant ’O’ can never be
a destination, and the departure filling plant can only be a
destination for this virtual plant. Constraints (4) enforce the
virtual arrival plant 2n+r+1 to never be a provenance and the
arrival filling plant to be a provenance only for the virtual
arrival plant 2n+r+1. Constraints (5) ensure the passage by a
departure filling plant and an arrival filling plant. Constraints
(6) require the truck to leave the virtual departure plant if it
is used. Constraints (7)-(8) enforce the truck to finish its tour
at the virtual arrival plant and pass necessarily by the virtual
departure plant. Constraints (9) assure that the quantity bcik
delivered to customer i cannot exceed the requirement of this
customer. Constraints (10) limit the overall load to not exceed
the truck capacity. Constraints (11) impose the satisfaction
of customer’s demands. Constraints (12) determine the arrival
time and represent subtour elimination constraints. Constraints
(13)-(14) enforce the respect of time windows. Constraints (15)
ensure that the total surface occupied by racks on each truck
is less than the total surface of the tray space. Constraints (16)
ensure that the sum of the widths of racks loaded in the tray is
less than the length of the truck. Constraint (17) determines the
number of piles occupied by each type c of racks. Constraint
(18) indicates that each truck can only be started at initial
parked filling plant.

V. RESULTS

In this section we start by describing the problem instances
used within the computational experiments. The test instances
considered in our paper are derived from a real-life dataset
provided by a major petroleum company in Morocco. For the
exact resolution, the dataset consists of 4 problem classes; each
problem class is divided into 3 dispersed configurations of
different sizes and the model was tested on all 12 instances.
In our problem settings we have at most fifteen customer’s
depots C = C1...C15 supplied from four gas filling plants D
= D1...D4 and using at most forty trucks of three different
configurations.

Exact solutions are obtained by implementing the model
using the commercial solver IBM ILOG CPLEX 12.5 and
tested on a workstation with Intel(R) Core(TM) i7 CPU @
2.60Ghz (8 CPUs) and 16 GB RAM. Our goal is to determine
how large an instance could be solved to optimality in a
reasonable amount of time.

Furthermore, the requirement for each customer for three
different types of gas cylinders (B03, B06 and B12), the
transport costs between each vertex and the dimensions of the
storage racks are all known

Furthermore, in the latest test class CL4 in which we have
used the real volume of customers’ demand, we use four filling
plants and limiting the number of customers to be fifteen
and the number of vehicles to be forty. Having discussed the
savings generated by recovering the packaging, racks should
return charged by empty cylinders. Thus, let us now consider
the following decision rules: The delivered depot of order

Direpresent the pickup location of the same number and types
of racks. In what follows, we detail our findings for each input
setting.

Table I reports also the result for each instance. It shows the
instances characteristics, the obtained objective value, the best
bound, the real gap percentage and the CPU time. We observe
that for instances of small size (CL1-01, CL1-02 and CL1-03)
the resolution does not take too much time to obtain an optimal
solution at less than the 107th iteration. Furthermore, when we
increase the number of customers to be served, CPLEX reaches
good feasible solutions for medium size instances (CL2-01 to
CL3-01). After ten tests, we tried to solve problem instances
(CL4-02 and CL4-03); the execution took more than one hour
without obtaining results. So, the solver can be stopped sooner
without significantly finding a feasible solution. Moreover, we
observe that both, the number of iterations and the time of
resolution increase extensively with the number of customers
affected by the volume of requirement.

Summing up, the MILP model solves the small-size prob-
lems (1 gas filling plant and 1 customer) optimally within sec-
onds. When the number of customers increases to 7 (instance
CL3-02), MILP could not prove the optimality of solutions
within time limits. We note also that the customers’ demands
used in our first test instances are in the order of a hundred
cylinders only, while the actual demand varies between 2000
and 11000. By testing the model of distribution with actual
customers’ demands (instance CL4-02), the solver ran for a
long time without generating any results. Solving our problem
requires examining a very large number of combinations. If
there are few customers to visit, the number of combinations
to explore is low and the problem is resolved quickly. However,
adding only a few clients can dramatically increase the number
of combinations to explore so that the resolution time becomes
excessively long; this phenomenon is called the combinatorial
explosion.

An example of an optimal solution to the routing, as well
as to the loading problem with five customers and two gas
filling stations is depicted in Figure 3. It represents the test
instance CL2-3 in which six vehicles spread over the two filling
stations. As we have considered in the problem formulation
two virtual stations (0 and 0’) with transport cost between
these virtual stations and the other stations is equal to zero. In
the MILP formulation we consider that all vehicles are initially
located at depot O.

Fig. 3. Illustration of the CL2-03 Solution.

In Table II we report the visited sequence of each tour and
the related loading characteristics. As customers’ order in the
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TABLE I. RESULTS USING ILOG IBM WITH CPLEX AS SOLVER.

I: Number of filling plant J: Number of customers K: Number of trucks R: Number of racks

Instances I J K R Variables Constraints Iterations Objective Bound Rel. Gap CPU (S)

CL1-01 1 1 2 1 75 90 107 1456 1456 0.00 0.02
CL1-02 1 2 3 2 163 208 2382 5983 5983 0.00 0.55
CL1-03 1 3 5 2 356 459 80 21403.47 21403.47 0.00 0.75

CL2-01 2 3 5 2 536 439 993 20045.57 18787.68 6.28 0.22
CL2-02 2 4 6 2 781 794 7175 10392.69 10123.23 2.59 0.42
CL2-03 2 5 6 3 967 1072 110786 14694.68 12435.76 15.37 1.86

CL3-01 3 5 7 2 1450 1293 113050 13224.71 13016.11 1.58 6.58
CL3-02 3 6 7 3 1716 1673 184771 16853.72 16424.73 2.55 105.92
CL3-03 3 10 12 3 5896 5961 17902486 30634.29 30609.29 0.08 1006.78

CL4-01 4 10 15 3 7096 6354 30136529 35215.265 32564.23 7.53 1869.53
CL4-02 4 13 20 3 14461 10980 52413896 - - - >3600
CL4-03 4 15 40 3 25576 16866 52213264 - - - >3600

test instance CL2-03 are small sizes in which total demand
for each type of cylinder do not exceed 1000, the distribution
of orders is balanced between all vehicles. Thus, we get the
optimality for this test instance.

The addressed model is considered to be a NP-hard com-
binatorial problem. Thereby, the use of exact optimization
method to solve this problem may be difficult in an acceptable
CPU times, mostly when the problem involves large data
sets. Therefore, the exact method is used only for small size
problems.

TABLE II. CL2-03 SOLUTION WITH LOADED RACKS.

Truck Tour Loaded racks

Type 1 = 5 racks
1 0→1→6→8→0’ Type 2 = 8 racks

Type 3 = 8 racks

2 0→2→4→9→0’ Type 1 = 7 racks
Type 3 = 10 racks

Type 1 = 3 racks
3 0→2→3→4→9→0’ Type 2 = 2 racks

Type 3 = 10 racks

Type 1 = 5 racks
4 0→1→5→8→0’ Type 2 = 8 racks

Type 3 = 8 racks

Type 1 = 7 racks
5 0→1→7→8→0’ Type 2 = 10 racks

Type 3 = 12 racks

Type 1 = 6 racks
6 0→2→4→9→0’ Type 2 = 7 racks

Type 3 = 3 racks

VI. GENETIC ALGORITHM FOR THE DISTRIBUTION
PROBLEM

By drawing inspiration from the mechanisms of the natural
evolution of living beings, many optimization problems are
resolved successfully by using genetic algorithms. The GA

is a metaheuristic, introduced for the first time by [32].
The main concern is to find approximate solutions for these
problems in a reasonable computation time. To implement our
GA, it is necessary to have a solution coding, parameters, a
fitness function to evaluate the solutions and a mechanism to
obtain the initial population. In addition, we need a method
of selecting individuals to reproduce and genetic operators
adapted to the problem.

In this section we detail our solution approach based
on a genetic algorithm (GA) for the resolution of the gas
cylinder distribution problem. We present the adopted coding,
the initialization as well as the different genetic operators.

A. Solution Encoding

In our genetic algorithm we represent a coding based on
a permutation representation for the adopted solution of the
studied distribution problem. Each solution is represented in
the form of a one-dimensional table in which a sequence rep-
resents the departure plant, the order of the visited customer’s
depots and the arrival plant. However, this representation poses
a problem of delimitation between the filling plants and the
customers. Therefore, we use a number n-2 of permutations
in which n represents the number of customers in the tour,
then we assume that the filling plants start from c = a +1
with n ≤ a (in our study we take a = 1000). An example
of this encoding for the vehicle routing problem is given
in [33]. Authors propose a permutation which contains both
customers and route separators with a set [0,. . . ,9] represents
the customers while [10,. . . ,12] are the route separators.

Figure 4 represents an example of routes made by 3 trucks
(K1, K2 and K3) in which a sequence of visited customers
is assigned to them. In the first route made by truck K1, the
departure plant represented by 1001, visited customers 4-1-
6-2-3-5 (in that order), and the arrival plant as 1001. In the
second route, truck K2 starts at same filling plant 1001 to
serve customers 1-6-2-4 but this time it terminates at another
filling center 1002. In the third route, truck 3 starts its route
at plant 1002, visits customers 2-5 -3-1-6 and returns to the
same departure plant. Furthermore, this representation makes
it possible to represent trucks to which no route is assigned,
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when the number of trucks in the problem is fixed and greater
than 1. This case is represented by the last empty route of the
truck K4.

Fig. 4. Chromosome Representation.

B. Initial Population Construction

To generate an initial population of our distribution prob-
lem we decided to make a mix between two techniques,
by generating in a completely random way a half of the
population and the rest with a priori good solutions. To build
a solution using the random method, we assign randomly
selected customers to each truck until all trucks reach their
maximum loading capacity. It should be noted that this assign-
ment is made while respecting the various constraints of the
problem (time windows, two-dimensional loading constraints,
satisfaction of the customer’s requirement, etc.). In addition,
while building the solution, if the generated route cannot be
added to the under construction solution since one of the
constraints of the problem will be violated, the route will be
rejected. On the other side, if no route can be added to the
solution under construction or there is a risk that the random
method will turn around the unfeasible routes, we risk that
the algorithm will run infinitely without finding a feasible
solution. Therefore, we introduce a stop criterion defined by
the elapsed CPU time, so the GA stops when this variable
reaches the defined limit. To add a randomly generated route
to the solution under construction, we have to know the filling
plants, the truck that will make the trip and its maximum
capacity and the customers who will be visited. The rest of the
tour characteristics, in particular the start time, end time and
number of racks assigned to each customer, will be calculated
based on the solution method. In addition, the calculation of
the start and end time of each route must take into account
that the truck cannot move for another route until after the
end time of its last one.

To generate an initial population of our distribution prob-
lem we decided to make a mix between two techniques,
by generating in a completely random way a half of the
population and the rest with a priori good solutions. To build
a solution using the random method, we assign randomly
selected customers to each truck until all trucks reach their
maximum loading capacity. It should be noted that this assign-
ment is made while respecting the various constraints of the
problem (time windows, two-dimensional loading constraints,
satisfaction of the customer’s requirement, etc.). In addition,
while building the solution, if the generated route cannot be
added to the under construction solution since one of the
constraints of the problem will be violated, the route will be
rejected. On the other side, if no route can be added to the

solution under construction or there is a risk that the random
method will turn around the unfeasible routes, we risk that the
algorithm will run infinitely without finding a feasible solution.
Therefore, we introduce a stop criterion defined by the elapsed
CPU time, so the GA stops when this variable reaches the
defined limit.

Algorithm 1: Random Population Initialization
Input: Population size PS, Filling plants D,

Customers C, Trucks K, Racks Cr, Maximal
truck capacity CKmax

Output: Initial population Pi

1 while p ≤ PS do
2 for d ∈ {1, ...,D} do
3 Random select of truck k from K
4 while Loaded capacity ≤ CKmax do
5 Random select of customer c from C
6 Random select of rack cr from Cr
7 Add rack cr to k
8 if All constraints are respected then
9 Add customer c to route

10 Add route of k to Pi

11 p ← p+ 1

To add a randomly generated route to the solution under
construction, we have to know the filling plants, the truck that
will make the trip and its maximum capacity and the customers
who will be visited. The rest of the tour characteristics, in
particular the start time, end time and number of racks assigned
to each customer, will be calculated based on the solution
method. In addition, the calculation of the start and end time of
each route must take into account that the truck cannot move
for another route until after the end time of its last one.

Algorithm 2: Greedy Randomized Algorithm
Input: Population size PS, Filling plants D, Trucks

K
Output: Initial population Pi

1 while p ≤ PS do
2 for d ∈ {1, ...,D} do
3 Random select of truck k from K
4 V ← List of potential routes of k
5 Sort V according to the Fitness
6 while V 6= Ø do
7 if All constraints are respected then
8 Add route of k to Pi

9 Delete route from V

10 p ← p+ 1

The Random routes generator operates in a way that at each
time it produces a random potential route that can be added to
the solution under construction. On the other hand, if this route
is not feasible the generator reproduces another one randomly
which is different from the first until a feasible potential route
is found. Otherwise, this mechanism cannot continue, so it
has failed to find a feasible solution randomly. The greedy
random method is similar to the random method except we
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do not generate the routes randomly. In fact, we associate a
fitness with each route in order to be able to compare them.

C. Mutation and Crossover Operators

In the case of our adopted genetic algorithm we will
try to reproduce the same mechanism of changing in the
sequence as in biology. As a result, the proposed mutation
operators should allow us to guarantee the homogeneity of the
population and thus avoid too rapid convergence towards a
local optimum. In addition, the developed mutation operators
in this paper do not apply to all individuals in the population
and in each generation. Indeed, we will define a mutation rate
Pm which indicates what average proportion of the population
must undergo a mutation.

Moreover, the use of completely free mutations allows a
better exploration of the solution space. However, as in the case
of population initialization, if we have a priori information
about our problem, we can restrict the possibilities in order
to achieve faster convergence. In this case, there is always
the risk, if the information is not relevant, of guiding the GA
towards a local optimum. Furthermore, the mutation operator
behaves in a completely random manner in choosing the
individuals subject to the mutation. As a result, we have the
guarantee of the quality of the solutions obtained. In this
paper, we propose a mutation operator, based on the local
improvements illustrated in Figure 5.

The proposed crossover operator in this paper ensures
the mixing and recombination of parental genes to form
descendants with new potential. It corresponds to form two
new chromosomes (children) based an exchange of genes
between two reproducers (parents). However, we apply a single
point crossover operator proposed by [34], which consists in
randomly choosing a crossing point. The first child is obtained
by taking the first sequence from the first parent, while the rest
of the genes are taken from the second parent, so that the genes
which have already been taken from the first parent cannot be
considered again. It should be noted that the genes from the
second parent remain in the same order (Figure 6). Since the
crossover operator is random, it occurs with a probability Pc,
where we set the rate at 75%.

D. Fitness Function

Because of the variation of trucks capacity in the fleet the
crossover and mutation operators can build solutions that do
not respect the constraint of satisfying customer needs. On
the other hand, our problem is an OVRP where the trucks
are not attached to any filling plant at the end of their route.
This possibility allows them to end their route at any other
plant. Therefore, we encounter a problem of balancing the
number of trucks between filling plants at the end of the
day which generates a cost that we must consider in our
fitness function. Thus, to obtain solutions which respect all
the constraints resulting from our problem and after having
applied the crossover and mutation operators we are facing
a development of very complex mechanisms. Therefore, the
best solution is to evaluate each individual by construct a
penalization function.

In order to balance the number of trucks between filling
centers at the end of the day, we make the least expensive

routes, respecting the following criteria: A truck can move for
the second time after all truck are used in the filling plant; a
truck cannot move without a load.

Algorithm 3: Genetic Algorithm
Input: Pi : Initial population, Pc : Crossover rate,

Pm : Mutation rate
Output: Best solution with minimum travelling cost

1
2 Pi ← Generate 50% using the random algorithm
3 Pi ← Generate 50% using the greedy random

algorithm
4
5 Evaluate the population using fitness function
6
7 while s ≤ MaxSteps do
8
9 Random select two parents from Pi

10 Crossover operator(Parents, Pc)
11 Mutation operator(Parents, Pm)
12
13 Evaluate solution using the fitness function
14
15 s ← s+ 1

We adopt the following indicator parameter: ”The lower the
fitness value, the better the individual”. The fitness function is
equal to the objective function plus the trucks balancing costs.

Fitness =

n∑
i=1

r∑
j=1

K∑
k=1

Cijkxijk

A selection operator used in our paper is based on Tour-
nament method in which we select two individuals from
the population in a randomly way, we compare their fitness
function and we select the one how has the lower value.

E. Computational Experiments of the AG

In this section, we present the statistics and numerical
results from the developed genetic algorithm. A heuristic was
implemented using the Java language which is an object
oriented programming language. In addition, the tests are
performed on a machine with an Intel (R) Core (TM) i7
processor at 2.60 GHz (8 processors) and 16 GB of RAM.

To test the performance of our genetic algorithm as well
as the power of the mutation and crossover operators used, we
present an illustration of the statistics obtained during the tests
carried out. For this, we will use a larger instance than the one
presented in the exact resolution. The test instance considered
in this part is derived from actual data provided by the same
oil company. It is made up of 120 customers C = C1...C110
supplied by 16 filling centers D = D1...D16 and using at most
50 trucks of three different configurations.

We associate with each filling plant a number of hetero-
geneous trucks in terms of capacity. It should be noted that
the tests are carried out for customer needs for a single day,
but these needs influence either the number of trucks used
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Fig. 5. Example of the Mutation Proposed Operators.

Fig. 6. An Example of the Single Point Crossover.

or the number of customers visited by the trucks or both.
The solution obtained with the genetic algorithm depends on
a number of parameters which are: population size, mutation
rate and crossover rate. To study the influence of the population
size we set the stop criterion at 100 iterations, crossover rate at
Pc = 0.85 and mutation rate at Pm = 0.50. Figure 7 shows that
the quality of the fitness function improves with the increase
in the population size. In addition, we find a positive linear
relationship between population size and the computation time.

Fig. 7. Influence of the Population Size on the Fitness Value and CPU Time.

The graph illustrated in Figure 8 represents the distributions
of the solution values over 37 iterations: the algorithm goes
from a population of very dispersed solution at the beginning
to a population more centered on the optimum found at the
end, thus the improvement of the population is very fast at the
start (global search) and becomes slower and slower as time
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passes (local search).

Fig. 8. Variation and Dispersion Fitness Value.

Throughout the evolution of the genetic algorithm the
crossover and mutation operators can build solutions that do
not respect the problem constraints. However, in most cases
these solutions are rejected by the algorithm mechanisms. With
the aim of observing this behavior we define a reproduction
error rate according to the number of iterations.

Error rate =
Number of invalidate individuals

Total number of individuals

The point cloud in Figure 9 shows an absence of con-
nection between reproduction error and number of iterations.
Moreover, the percentage of reproduction error varies between
2% and 8%, so the choice of the crossover and mutation
operators is good depending on the probability of reproducing
valid individuals. On the other hand, a good choice of the
parameters of a method is very important, the adjustment of the
parameters is crucial and conditions the quality of the results
obtained. However, optimal tuning remains a difficult task.

Fig. 9. Error Rate According to the Number of Iterations.

As described above, appropriate adjustment of parameters
in genetic algorithms can make a significant difference in

terms of performance. Some values can provide very high
performance in specific instances while giving premature con-
vergence in others, even over the same kind of problems. The
parameters used in the comparison tests between the proposed
GA and the exact method are listed as flow:

• The population size equal to 1400

• The number of iteration equal to 100

• The crossover rate Pc = 0.85

• The mutation rate Pm = 0.50

Table III shows computational results of the developed
genetic algorithm, which also makes comparisons with the
exact method illustrated in table I. This table reports the
configuration of each instance, the objective and CPU obtained
from CPLEX running, solution and CPU obtained with GA
and percentage Gaps. Based on results reported in table III
we remark that both methods could find optimal solution for
the four first test instances. The CPU time performs better in
the case of GA for all test instances. In addition, the results
obtained from the GA are not too far from those obtained
by Cplex. This is justified by the choice of the crossover and
mutation operators. Unlike the exact resolution of the studied
open split delivery and pick up problem, the developed genetic
algorithm gives ambitious results. We have performed tests for
real instances of a large scale and in each time we obtain good
solutions in a good CPU time. An example of a solution with
five customers and two gas filling plants is depicted in Figure
10. It represents the test instance CL2-3 in which six trucks
spread over the two filling plants. For example, we have the
first truck which leaves from station 1, serves customers 3 and
4 and returns to the station 1 while the second truck which
leaves from the same center, serves customer 5 and finishes
its trip in the station 2. This is explained by the fact that the
trip is open. On the other hand, the first truck which leaves
from station 2, serves customers 1 and 3 and returns to the
station 2 while the second truck which leaves from the same
center, serves customer 1 then customer 2 and finishes its trip
in the station 1.

Regarding the loading of each truck, it is clear that the
combination is in the form of stacks of n racks of type L, M
and N. For example, the truck which leaves from station 1 to
serve customer 4 is loaded with five racks of type L, eight
racks of type M and eight racks of type N.

VII. CONCLUSIONS

In this paper, we have addressed the open multi-depot split
delivery and pickup routing problem with two-dimensional
loading constraints in the case of a real-world problem of
an LPG distribution company with its real-life assumptions
and data. First, we have formulated our problem as a mixed
integer linear programming (MILP), then we have tested the
problem for 12 tests instances grouped in 4 classes in which
we have proved optimality for 10 instances. Also, we have
discussed the effect of changing the setting of the input data on
the quality of the solutions obtained and on the running time.
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TABLE III. COMPARISON BETWEEN RESULTS FROM CPLEX AND FROM THE PROPOSED GA.

I: Number of filling plant J: Number of customers K: Number of trucks R: Number of racks

Instances Configuration CPLEX GA Gaps(%)
I J K R Objective CPU(S) Solution CPU(S) Obj. Gap(%) CPU Gap (%)

CL1-01 1 1 2 1 1456 0.02 1456 0.01 0 50
CL1-02 1 2 3 2 5983 0.55 5983 0.01 0 98.18
CL1-03 1 3 5 2 21403.47 0.75 21403.47 0.01 0 98.67

CL2-01 2 3 5 2 20045.57 0.22 20045.57 0.04 0 81.82
CL2-02 2 4 6 2 10392.69 0.42 11023.92 0.13 6.07 69.05
CL2-03 2 5 6 3 14694.68 1.86 14918.11 0.08 1.52 95.7

CL3-01 3 5 7 2 13224.71 6.58 14036.06 1.03 6.14 99.54
CL3-02 3 6 7 3 16853.72 105.92 14564.65 1.56 13.58 98.53
CL3-03 3 10 12 3 30634.29 1006.78 31256.36 3.09 2.03 99.69

CL4-01 4 10 15 3 35215.265 1869.53 36952.47 4.7 4.93 99.75
CL4-02 4 13 20 3 - >3600 43625.24 4.33 - -
CL4-03 4 15 40 3 - >3600 61452.87 6.87 - -

Fig. 10. An Example of Solution.

Due to the difficulty in solving the combination of two NP-
hard problems, such as vehicle routing and two-dimensional
loading; efficiently, feasible solutions for large instances can
be obtained only by developing a metaheuristic method like
genetic algorithm. We developed a genetic algorithm and
execute it for large data by increasing the size of instances
which we are not capable of solving exactly within reasonable
computational times. Finally, we gave some statistics and
results for the developed GA and discuss obtained results.
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