
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

Verifiable Homomorphic Encrypted Computations
for Cloud Computing

Ruba Awadallah
School of Computer Sciences

Universiti Sains Malaysia
Penang, Malaysia

Azman Samsudin
School of Computer Sciences

Universiti Sains Malaysia
Penang, Malaysia

Mishal Almazrooie
School of Computer Sciences

Universiti Sains Malaysia
Penang, Malaysia

Abstract—Cloud computing is becoming an essential part of
computing, especially for enterprises. As the need for cloud
computing increases, the need for cloud data privacy, con-
fidentially, and integrity are also becoming essential. Among
potential solutions, homomorphic encryption can provide the
needed privacy and confidentiality. Unlike traditional cryptosys-
tem, homomorphic encryption allows computation delegation to
the cloud provider while the data is in its encrypted form.
Unfortunately, the solution is still lacking in data integrity. While
on the cloud, there is a possibility that valid homomorphically
encrypted data beings swapped with other valid homomorphically
encrypted data. This paper proposes a verification scheme based
on the modular residue to validate homomorphic encryption
computation over integer finite field to be used in cloud computing
so that data confidentiality, privacy, and data integrity can be en-
forced during an outsourced computation. The performance of the
proposed scheme varied based on the underlying cryptosystems
used. However, based on the tested cryptosystems, the scheme has
1.5% storage overhead and a computational overhead that can
be configured to work below 1%. Such overhead is an acceptable
trade-off for verifying cloud computation which is highly needed
in cloud computing.

Keywords—Cloud computing; computation verification; data
confidentiality; data integrity; data privacy; distributed processing;
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I. INTRODUCTION

The demanding needs of modern computing have prompted
many enterprises to outsource their data solution to cloud ser-
vice providers (CSP). CSP provides services that improve per-
formance efficiency and ease of maintenance to the adopters.
On top of the improvements, adopting cloud services also
offers savings in information technology infrastructure costs, in
which most of the infrastructure cost is transferred to the CSPs,
and clients only pay for what are used. Thus, enterprises can
conveniently store, maintain, and manage data files remotely
with reduced operation costs [1]. The CSP market is currently
brimming with CSPs and their innovative and competitive
products. In general, the current success of cloud services is
mostly on cloud storage. However, the market for cloud com-
puting is also building up in momentum. Implementing cloud
computing empowers enterprises to become more competitive
by having computing platforms that are scalable, agile, and
reliable. As a result, the growth in the cloud computing market
is projected to reach US 623.3 billion by 2023 [2].

A typical cloud computing ecosystem consists of cloud
users (client), CSP, and the network infrastructure that connects
the client and the CSP. Models of CSP architecture consist of

software as a service, infrastructure as a service, and platform
as a service. In addition, there are a few CSP designs that
include private, public, hybrid, and community clouds [3].

Even though the outlook for cloud computing is positive,
this technology is always being plagued with the trade-offs
between cost and security. The issue lies in the principle of
cloud computing, where enterprises need to delegate the task of
protecting their data to CSP [4]. Subsequently, data sovereignty
is lost once the data is stored in a remote CSP. This absence
of control for data security presents data protection problems.
According to the Cloud Security Alliance (CSA) analysis, for
the third time in a row [5], [6], [7], data breaches topped
the list of threats in the cloud. Data is considered breached
once its information is disclosed, manipulated, or used by
unauthorized parties. A data breach may be the primary goal of
a targeted attack or merely the result of human error. However,
the management of CSP is central, and it cannot guarantee the
reliability of its employees [8]. [9] found that the occurrence
of internal breaches is more serious and costly than foreign
attacks. The reason behind this result is that insiders know the
system and attack valuable information, while outsiders steal
what they have access to [10].

As part of the security risk assessment, data privacy,
confidentiality, and integrity must be considered to mitigate
potential risks. Privacy refers to the access control that the
clients have over their data. Confidentiality means only autho-
rized parties can access the data. In comparison, data integrity
refers to the assurance of data consistency over its entire life-
cycle [11].

In order to ensure privacy and confidentiality in cloud
computing, researchers have indicated that homomorphic en-
cryption (HE) is one of the promising methods for remote ma-
nipulations over encrypted data [12], [13]. However, although
HE makes computation delegation possible, it has security
flaws that can affect the validity of outsourced calculations.
Specifically, HE is malleable in nature, which makes it non-
compliance to the indistinguishability under adaptive chosen-
ciphertext attack (IND-CCA2) security notation [14]. There-
fore, data integrity is at stake with only HE itself versus
centralized cloud data management. For cloud computing, the
threats to data integrity can be numerous and varied. This paper
addresses the problem of data integrity verification (DIV) of
CSP computations over homomorphically encrypted data. The
focus of this paper is on the CSP behavior that stores and
computes sensitive data. Specifically, the threats from the CSP
can be enumerated as follows:
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1) An attacker (CSP) violates the data integrity by directly
substituting the given ciphertext with another valid cipher-
text.

2) An attacker (CSP) maliciously substitutes a given com-
putation query with another valid query.

Integer-based HE has been extensively researched and
used. Therefore, this research aims to achieve the compu-
tational integrity of HE over an integer finite field. That
contributes to strengthening the security of HE against data
tampering and thus achieving privacy, confidentiality and in-
tegrity of the processed data.

The rest of the paper is organized as follows. Section II
presents the current DIV methods with their limitations. Sec-
tion III illustrates the candidate HE cryptosystems and presents
the proposal scheme. The results and discussion are shown in
Section IV. Finally, Section V provides the conclusion.

II. RELATED WORK

Researchers are still looking for a comprehensive security
solution that can bring cloud computing to the mainstream.
HE with different approaches have been utilized to address
the DIV problem. Classical auditing methods on single data
copy had a broad resonance in addressing this problem, which
represented by provable data possession (PDP) techniques
[15], [16], [17], [18], [19], [20] and proving the possibility
of retrieval (POR) techniques [21], [22], [23], [24], [25], [26],
[27]. However, these methods are ineffective in the case of
data loss or corruption on the servers. Another alternative is
to archive multiple replicas of each file to use if the original
copy has compromised, this model is known as data integrity
auditing under distributed such as [28], [29], [30], [31].

As the previous schemes by their nature allow for a limited
number of queries, there are proposing solutions [32], [33],
[34], [35] that assign auditing tasks to a single third-party
auditor (TPA) that independently manages the data audits.
There are also works [36], [37], [38] where the auditing task
is assigned to multiple TPAs to benefit from simultaneous syn-
chronous audit sessions. Nevertheless, all the aforementioned
schemes focus on checking the data integrity stored in cloud
computing servers without verifying the validity and efficiency
of CSP computations over the data.

In the field of verifiable computing, a variety of methods,
including such [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51]. [52] the basic of many variants of
the verifiable computing proposal afterward, that developed
based on fully homomorphic encryption (FHE). Although
FHE appears theoretically ideal, it is inefficient for practical
implementations due to the difficulty of the requirements of
high storage usage and heavy overhead computing, therefore
it is not very powerful for use in many power-limited devices.
Likewise, these schemes [53], [51], [54], [55], [56], [57]
proposed impractical methods based on FHE.

Otherwise, [46] presented a verifiable scheme that im-
plements a commitment utilizing probabilistically checkable
proofs. At the same time, [44] extended the scope of verifiable
computation in two essential directions: public delegation and
public verifiability. While [47] used a quadratic arithmetic

program and Elliptic curve encryption to obtain public ver-
ification commitment with a constant size however the num-
ber of executed operations. Also, [40] suggested a verifiable
method of computations of quadratic polynomials over a large
number of variables. Meanwhile, [45] tried to solve possible
collusion attacks in the El-gamal scheme by re-encrypting
the ciphertext using the receiver’s public key. After that, [41]
present a general Incremental verifiable database system by
integrating the primitive vector commitment and the encrypted-
then-incremental MAC encryption mode. And [48] suggested
a framework using a hash function over ciphertext and dual-
CSPs to check data duplication. [43] scheme promised an
improved deduplication system in a hybrid cloud architecture.
Furthermore [58] introduced the IKGSR scheme to improve
the RSA key generation function based on the use of four giant
prime numbers to generate encryption and decryption keys. In
short, all of these proposals have the same framework idea of
bounding the CSP generate a commitment, and accordingly,
the client used this commitment to verify the CSP performance
over his ciphertexts.

Whereas [50] proposed a public evaluation verification
scheme over ciphertexts by interacting with the trusted au-
thenticator (TA) and a public auditor proxy (PAP). Although
they reduce the overload of both the cloud users and the
verifier, it inefficient for practical applications due to using
FHE’s complicated scheme.

While numerous attempts have been made to overcome
the CSP’s computation cheating attack problems, they remain
subject to certain fundamental flaws. First of all, most of the
previous works are constructed for particular structures and
cannot be included in other environments. This means that
even a minor alteration can cause the schemes to fail due to
their particular layouts. Furthermore, all the proposed models
believe in the centralization of the CSP’s authority or any third
party over the data. As CSP can manipulate the computations
applied to the data, it can generate the commitment value to
match the applied computations. Thus, the client still receives
an adequate commitment to computed ciphertexts, while the
CSP perform the computation fraud attack.

In different ways, some researchers, such as [11] and [4],
sought to use blockchain technology to prove the work of
cloud service providers on cloud data. [11] relied on fiat
cryptocurrencies such as Bitcoin and Ethereum to store the
hash of the database issued by at least four cloud service
providers and compare all the issued results. [4] used the proof
of work consensus to delay the creation of a new record in the
database to 6 minutes to create a single record as a minimum.

Despite the security effectiveness of the proposed schemes,
they are pretty expensive; i.e. in addition to the cost of the
required computations, blockchain implementation costs will
be added as additional costs that clients will have to pay.
Moreover, adopting the Byzantines Fault Tolerance consensus
for both proposals would at least quadruple both costs. Also,
using proof of work consensus in scheme [4] will impact cloud
computing business performance. Therefore, our proposal will
be based on modular arithmetic to provide a verification
mechanism for the processes applied to the data at the lowest
costs. Furthermore, the use of modular arithmetic dramatically
increases digital signal processing performance in algorithms
with extensive use of addition and multiplication. Thus, it
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provides speed and low energy consumption and promises high
reliability and fault tolerance [59], [60], [61]. The analysis
of the latest scientific papers [62], [63], [64], [65], [66]
confirms that the use of modular computation is continuously
expanding. They ascribe that to the modular arithmetic’s ability
to increase the reliability of monitoring systems and their
tolerance of errors significantly by increasing the resources
used while preserving the operating time. As a result, many
major companies such as Cisco and Kabushiki Kaisha Toshiba
are rushing to research and apply modular arithmetic [67].

III. VERIFICATION SCHEME DESIGN

The migration of sensitive data into CSP is a source of
security issues. If sensitive data are migrated into CSP, the
client must be assured that proper data security measurements
are in place. In order to ensure data privacy and confidentiality,
this paper assumes the use of HE. Subsequently, this section
presents the proposed scheme which enables the client to verify
the integrity of the applied computations over the encrypted
data. Fig. 1 shows the flow diagram of the proposed scheme.

A. Scheme Preliminaries

This paper proposes the use of HE over Z∗
p in encrypting

the data before sending them to CSP, thus allows CSP to
perform operations on the encrypted data at the client’s request,
without disclosing its content. In the context of this paper, the
HE is briefly defined as follows. An HE over operation ‘⋄’
in a finite field Z∗

p is an encryption scheme that supports the
following equation:

Encke
(m1)⋄Encke

(m2) = Encke
(m1⋄m2), ∀m1,m2 ∈ Zp∗,

(1)

where Enc(.) is an encryption algorithm, ke is the encryption
key and (m1, m2) are plaintexts. An HE scheme is primarily
characterized by four operations: KeyGen, Enc, Dec, and Eval.
Eval is an HE-specific operation, which takes ciphertexts as
input and outputs a ciphertext corresponding to the plaintexts
[68]. The Eval function in this paper supports both addition
and multiplication operations over Z∗

p. Table I summarizes
the math notations used in this article. Depending on the
supported homomorphism features, HE schemes can perform
different type of operations. At any given time, the Partial
Homomorphic Encryption (PHE) scheme can only perform one
type of computation operation. It can be either a multiplicative
homomorphism; e.g. RSA [69], and ElGamal [70], or additive
homomorphism; e.g. Benaloh [71], Paillier [72], and Okamoto-
Uchiyama (OU) [73]. While Somewhat Homomorphic En-
cryption (SWHE) scheme is a cryptosystem which supports
both properties but for limited number of operations. Such
as Boneh-Goh-Nissim (BGN) [74] which allowing unlimited
number of additions, but only one multiplication. In this
paper six HE schemes over Zp are benchmarks against the
propose scheme. The following subsections introduce the six
cryptosystems.

1) RSA Cryptosystem: RSA is a block cipher algorithm
over integer finite field which support evaluation function for
only homomorphic multiplication computations over ciphertext
[69]. In RSA, the plaintext and the ciphertext (which are

TABLE I. MATHEMATICAL NOTATION

Notation Explanation

ci a ciphertext
mi a plaintext
p a large prime number
q a large prime number
n a modulus
λ an encryption security parameter
Z∗
n a set of integer modulo n

Z∗
p a set of integers modulo p

Z∗
r a set of integer modulo r

Z∗
T a set of integer modulo T

Prk a private key
Puk a public key
KeyGen a homomorphic Prk and Puk generation
DecPrk(ci) a homomorphic decryption of ci using Prk
EncPuk(mi) a homomorphic encryption of mi using Puk
Eval a homomorphic function of m
⋄ a computation function
cr a homomorphic computed result in ciphertext
G a cyclic group
G a multiplicative group

represented as positive integers) are bounded by n, where n is
defined as n < 24096 for practical purposes. Following are the
four main operations governing the RSA multiplicative-PHE
cryptosystem:

• KeyGen: The public key Pk = {e, n} and the private
key Prk = {d, n} are built upon two large prime
numbers p, q such that p ̸= q, and n = p× q. The in-
teger e is randomly selected such that gcd(ϕ(n), e) =
1, 1 < e < ϕ(n) and d ≡ e−1 mod ϕ(n), where
ϕ(n) = (p− 1)(q − 1).

• Enc: The public key Pk = {e, n} is used to encrypt
plaintext m ∈ {0, 1}∗ as shown by Equation (2).

c = EncPk(m) = me mod n. (2)

• Dec: The ciphertext c can be decrypted by using
private key Prk = {d, n} as shown in Equation (3).

m = DecPrk(c) = cd mod n. (3)

• Eval: RSA cryptosystem satisfies multiplicative homo-
morphism as shown in Equation (4).

Enc(m1)× Enc(m2) = (me
1 mod n)× (me

2 mod n),

= (m1 ×m2)
e mod n,

= Enc(m1 ×m2).
(4)

2) ElGamal Cryptosystem: ElGamal proposed a probabilis-
tic cryptography scheme based on public key cryptosystem
in 1985 [70]. The scheme is based on Diffie–Hellman key
exchange. The security of the scheme is based on the security
of the discrete logarithm problem. A simple ElGamal’s scheme
is as follows:

• KeyGen: Key generation process required a cyclic
group G with order n using generator g. (h = gy)
is calculated based on a randomly chosen y ∈ Z∗

n.
The public key and the private keys are defined as
Pk = {G,n, g, h} and Prk = {y, n}, respectively.
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Fig. 1. Proposed Scheme Flow Diagram.

• Enc: The encryption of plaintext m requires a random
integer r to be selected and kept hidden. The result of
encrypting plaintext m is a ciphertext pair c = (c1, c2)
which is defined as follows:

(c1, c2) = EncPk(m) = (gx,mhx) = (gx,mgxy)
(5)

• Dec: The decryption is performed by using the private
key {y, n} to compute s = c1

y , followed by the
decryption process itself as shown in the following
equation:

Dec(c) = c1 × s−1 = mgxy × g−xy = m. (6)

• Eval: ElGamal cryptosystem satisfies multiplicative
homomorphism as shown in Equation (7).

Enc(m1)× Enc(m2) = (gx1 ,m1h
x1)× (gx2 ,m2h

x2)

= (gx1+x2 ,m1 ×m2h
x1+x2)

= E(m1 ×m2).
(7)

3) Benaloh Cryptosystem: Benaloh scheme is based on
the Goldwasser-Micali (GM) public key cryptosystem [71].
Benaloh scheme enhances the GM scheme by encrypting in
blocks of bits rather than encrypting bit by bit. Security as-
sumption of Benaloh scheme is based on the higher residuosity
problem which is the generalization of quadratic residuosity
problems (x2). Following is the description of the Benaloh
additive-PHE cryptosystem:

• KeyGen: For a given block size r, two large primes
p and q are selected such that gcd(r, (p− 1)/r) = 1
and gcd(r, (q − 1)) = 1. Subsequently n and ϕ(n)
are calculated as n = pq and ϕ(n) = (p− 1)(q − 1),
respectively. y ∈ Z∗

n is selected such that (y
ϕ
r ) ≡

1 mod n, where Z∗
n is the multiplicative subgroup of

integers modulo n which includes all the numbers
smaller than r and relatively prime to r. The public
key is published as (y, n), while (p, q) represents the
private key.

• Enc: To encrypt a plaintext m ∈ Zr, where Zr =
{0, 1, ..., r − 1}, a random u ∈ Z∗

r is selected. The
encryption equation is as shown below:

c = EncPk(m) = (ymur) mod n. (8)

• Dec: The decryption process is done through an ex-
haustive search for i ∈ Zr, in which the plaintext m
can be recovered by using Equation (9).

m = (y−ic)ϕ/r mod n. (9)

• Eval: Benaloh cryptosystem satisfies additive homo-
morphism as shown in Equation (10).

Enc(m1)× Enc(m2) = ((ym1u1
r) mod n))

× ((ym2u2
r) mod n),

= (ym1+m2(u1 × u2)
r
) mod n,

= E((m1 +m2) mod n).
(10)
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4) Okamoto-Uchiyama Cryptosystem: [73] proposed a new
additive cryptosystem which improve the computational per-
formance by defining n = p2q within the same domain of Z∗

n.
The security assumption of OU cryptosystem is based on the
p-subgroup that makes it equivalent to the factorization of n.
Following is the OU cryptosystem:

• KeyGen: After determining the value of n, a random
number g ∈ {2, . . . , n − 1} is selected such that
gp−1 ̸≡ 1 mod p2. Subsequently h can be calculated
as h = gn mod n. The public key and the private key
are {n, g, h} and {p, q}, respectively.

• Enc: A plaintext m < p can be encrypted with the
public key Pk = {n, g, h} as shown in Equation (11).
r ∈ {1, . . . , n− 1} is randomly selected.

c = EncPk(m) = gmhr mod n. (11)

• Dec: To recover the plaintext, the private key Prk =
{p, q} is used with Equation (12).

a =
(cp−1 mod p2)− 1

p
,

b =
(gp−1 mod p2)− 1

p
,

b′ = b−1 mod p,

DecPrk(c) = ab′ mod p.

(12)

• Eval: OU cryptosystem satisfies additive homomor-
phism as shown in Equation (18).

Enc(m1)× Enc(m2) = ((gm1hr1) mod n)

× ((gm2hr2) mod n),

= (gm1+m2hr1+r2) mod n,

= Enc(m1 +m2).
(13)

5) Paillier Cryptosystem: Paillier cryptosystem is a proba-
bilistic public key cryptosystem based on higher-order residual
classes which support only additive homomorphism computa-
tions [72]. Following are the four main operations governing
the Paillier additive-PHE cryptosystem:

• KeyGen: Paillier cryptosystem has a set of keys. p ∈
Z∗
n, q ∈ Z∗

n, g ∈ Z∗
n2 are randomly selected such that

gcd
(
L(gλ mod n2), n

)
= 1, where p, q are two large

primes, n = p× q and functions L and λ are defined
as follows:

L(u) = (u− 1)/n. (14)
λ = lcm

(
(p− 1)(q − 1)

)
. (15)

• Enc: The encryption process utilizes the public key
Pk = {n, g} to encrypt an arbitrary plaintext m ∈ Z∗

n
with a randomly selected integer r ∈ Z∗

n to produce
ciphertext c.

c = EncPk(m) = gmrn mod n2. (16)

• Dec: The decryption process uses the private key
Prk = λ in the decrypting process as shown by
Equation (17).

DecPrk(c) =
(L(cλ mod n2)

L(gλ mod n2)

)
mod n = m. (17)

• Eval: Paillier cryptosystem satisfies additive homo-
morphism as shown in Equation (18).

Enc(m1)× Enc(m2) = (gm1rn1 mod n2)

× (gm2rn2 mod n2),

=
(
g(m1+m2)(r1 × r2)

n
)
mod n2,

= Enc(m1 +m2).
(18)

6) Boneh-Goh-Nissim Cryptosystem: BGN defined a
Paillier-like cryptosystem with an unlimited number of homo-
morphic additions and a single multiplication on the plaintext
[74]. BGN cryptosystem is described as follows:

• KeyGen: A two large prime numbers q and r are
chosen to produce the value of n = qr and a positive
integer T < q which is selected randomly. Subse-
quently, two multiplicative groups G, G1 of order n
that support a bilinear pairing e : (G × G) → G1 are
selected. Random generators g, u are chosen where
g, u ∈ G, and h = uq where h is a generator of the
subgroup of order p. The public key is composed
of Pk = {n, g, h,G,G1, e}, and the private key is
Prk = {p, n}.

• Enc: For a plaintext m ∈ ZT a random r ∈ Zn

is selected. The encryption process is as shown by
Equation (19).

EncPk(m) = c = gmhr mod n (19)

• Dec: Decrypting ciphertext c ∈ G by using private key
Prk = {p, n} is shown in Equation (20). Message m
can be recovered in time O(

√
(T )) since the message

is bounded by T .

cp ≡ (gmhr)p mod n

≡ (gm)p mod n

≡ (gp)m mod n

(20)

• Eval: BGN satisfies unlimited additive homomorphism
as shown in Equation (21) and a single multiplicative
homomorphism as represented in Equation (22).

Enc(m1)× Enc(m2) = ((gm1hr1) mod n)

× ((gm2hr2) mod n)

= (gm1+m2hr1+r2) mod n

= E(m1 +m2)
(21)

Enc(m1)× k = c1
k mod n

= (gm1hr1)k mod n

= (gkm1hr1k) mod n

= E(m1)× k

(22)

HE cryptosystem is malleable, and therefore it is not IND-
CCA2 secured by design. Data integrity can still be compro-
mised by CSP and can go undetected. For example, the CSP
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can implicitly substitute given ciphertext or the cumulative
result with other valid ciphertext without the need to know the
content of those substituted data. Different from confidentiality
and privacy, once integrity is compromised there is no way to
restore the original data. Therefore, data integrity needs to be
enforced on such outsource computations.

B. Proposed Scheme

The verification scheme has three phases: environment
setup, computation outsourcing to the CSP by the client, and
computation validation of CSP’s work by the client, in which
the last two phases can be repeated as required (see Table II).
The three phases are thoroughly discussed in the subsequent
context.

Phase 1 (Setup): The client initiates the initialization phase
by defining system parameters. The propose scheme consists
of two different number systems. The first number system
is the finite field Z∗

p where the HE calculations take place.
The second number system is an n-bit binary number system,
where n is a positive integer such that 2n is much smaller
than the prime p. The HE encryption function takes as input
a public key ke and message m of index i and produces a
ciphertext ci as an output, as shown in Equation (23).

ci = Encke
(mi); mi, ci ∈ Z∗

p. (23)

Subsequently, the client identifies a positive integer v < L
as the secret value, where L is the largest integer allowed in
the implemented system. v will also serves as the verification
parameter.

Phase 2 (Outsource): In this phase, the client sends its
outsource calculations in a form of an arithmetic equation to
the CSP. In return the CSP executes the requested calcula-
tions and returns the corresponding result back to the client.
From the client’s repository, the client sends the arithmetic
expression, <expr>, to CSP for evaluation. The expression,
<expr>, consists of ciphertexts that had been encrypted by
using HE with the corresponding arithmetic operators (e.g.
“(101 + 202) × 303”). The syntax of the <expr> follows
the following grammar:

<expr> ::= <term> ‘+’ <expr> | <term>

<term> ::= <factor> ‘×’ <term> | <factor>

<factor > ::= ‘(’ <expr> ‘)’ | <const>

<const> ::= integer
(24)

In return, CSP calculates the requested arithmetic expres-
sion before sending the corresponding result, cr (e.g. “91809”),
back to the client.

Phase 3 (Validation): To verify CSP’s calculation(s), the
client needs to assure that the value received from CSP, cr,
is the result of the arithmetic expression outsourced earlier,
<expr>.

The equality of a basic arithmetic expression can be vali-
dated by evaluating its modular residue. Let <expr> be the
outsourced arithmetic expression send by the client to the CSP

and let cr be the calculation result received by the client from
CSP. Subsequently, the client can validate cr by comparing
the modular residues of both cr and <expr>, as depicted by
Equation (25).

cr = <expr>.

cr mod v = <expr> mod v.
(25)

To simplify the calculation of the right-hand-side of Equa-
tion (25), the expression, <expr>, is further expanded by
using the following grammar based on modular arithmetic
properties.

<expr> ::= <term> ‘+’ <expr> | <term>

<term> ::= <factor> ‘×’ <term> | <factor>

<factor> ::= ‘(’ <expr> ‘)’ mod v |

<const> mod v

<const> ::= integer
(26)

TABLE II. WORKING EXAMPLES OF THE PROPOSE VERIFIED SCHEME
BASED ON THE ARITHMETIC EXPRESSION cr = ((c1 + c2)× c3): (A)

SETUP, (B) OUTSOURCING, (C) VALIDATION

(a) Setup: client determines modulus and identifies ciphertexts.

Modulus and Ciphertexts Example 1 Example 2 Example 3

v 310 6210 15810
c1 410 10110 9999910
c2 710 20210 8888810
c3 810 30310 7777710

(b) Outsource: CSP computes the outsourced expression.

Outsourced Computation Example 1 Example 2 Example 3

cr = ((c1 + c2) × c3) 8810 9180910 1469106419910

(c)Validation: client validates result by comparing residues.

Intermediate Values and Residues Example 1 Example 2 Example 3

Intermediate c1 mod v 110 3910 14310
Values c2 mod v 110 1610 9210

c3 mod v 210 5510 4110
((c1 mod v)+ 410 302510 963510
(c2 mod v)) mod
v

Residue: ((((c1 mod v)+ 110 4910 5510
Arithmetic (c2 mod v))mod
Expression v) × (c3 mod v))

mod v

Residue:
Out-
source
result

cr mod v 110 4910 15510

IV. RESULT AND DISCUSSION

In this section, the data storage requirement and computation
performance are analyzed when implementing the proposed
scheme. The client and the CSP are simulated with different
machines capacity to reflect the actual setting of the two
domains. Cloud computing enterprises offer different com-
puting instances with different performances as shown in
Table III. To reflect such capabilities, an Intel® Core(TM) i7-
3770 CPU, 3.40GHz CPU, 12GB RAM machine was used
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to emulate the CSP computation environment. On the other
hand, the client computations are simulated on a machine with
Intel® Core(TM) i5-7500U, 2.70GHz CPU, and 4GB RAM.

On the software side, the proposed verified scheme that
is running at CSP was implemented using Numpy [75], a
compiled library which is efficient in manipulating big integer
calculations for Python. For the client implementation which
does not require big integer calculations, a basic C++ compiler
was used when implementing the proposed scheme. This
paper further assumes the use of the two HE properties; PHE
represented by multiplicative homomorphic (RSA, ElGamal)
and additive homomorphic (Benaloh, OU, Paillier) and SWHE
represented by the BGN’s method.

TABLE III. GENERIC CLOUD SERVICE PROVIDER CONFIGURATIONS

CSP Configuration CPU Virtual Memory
CPUs (GiB)

AWS Elastic Cloud
ComputingTM [76]

Low Intel Xeon E5-2666 v3 2 3.75
High Intel Xeon Platinum 72 192

Azure Virtual
MachineTM [77]

Low Intel Xeon Platinum 8168 2 4
High Intel Xeon Platinum 8168 72 144

Google Cloud
Compute EngineTM

[78]

Low Intel Xeon Scalable 4 16
High Intel Xeon Scalable 60 240

In the following subsections, we present the results of
applying the verification scheme to the different ciphertext
sizes generated from candidate cryptosystems. The purpose
of these calculations is to assess the implementation costs
and performance of the proposed scheme for all candidate
cryptosystems.

A. Storage Analysis

For the storage analysis, it is important to analyzes the storage
requirement to store the residues of all the encrypted data
at the client side against the actual encrypted data stored
at the CSP. Storing the residues at the client side is an
overhead to the proposed verified scheme, which does not
exist in a normal HE implementation. To gauge the CSP’s
storage requirement, a few assumptions are made. Among the
assumptions is the modulus size. NIST recommends 2048-
bit as the minimum size for the factoring modulus. While
for a more secured applications, factoring modulus of at least
3072-bit is recommended [79]. To simplify calculation while
adopting highest modulus value, this paper assumes 4096-bit
as the factoring modulus.

Another assumption is the machine word-size. Current
CPUs typically operate on 32- or 64-bit data, stacked of 4-
bits or 8-bits based on ISO/IEC 2382:2015 standard [80]. The
storage requirement for the verified scheme depends on the
size of the verifying parameter, v. In order to simulate primitive
encryption, we assume the client operates on 64-bit data which
is typical in most modern desktop computers. Thus, the storage
requirement at the client side is less than 1.5% of the CSP full
storage. To put this result into perspective, for a client who
owns petabytes of data stored at the CSP, this scheme will
require the client to store only terabytes of the corresponding

TABLE IV. MULTIPLICATIVE HOMOMORPHIC CALCULATIONS:
VERIFICATION COST AGAINST THE COST OF PERFORMING THE ACTUAL

HOMOMORPHIC CALCULATION

CSP: RSA Client: RSA-Verified Method
Number of
Operations

per
Verification

Actual Multiplicative
Homomorphic Calculation*

(µsec)

Verification
Calculation*

(µsec)

Overhead
(%)

1 63.83332 0.477777 0.748
10 745.9444 0.833333 0.111
100 88345.34 0.922222 < 0.000

1000 7071374.8 2.5001 < 0.000
10000 1120000000 17.254 < 0.000

CSP: ElGamal Client: ElGamal-Verified Scheme
Number of
Operations

per
Verification

Actual Multiplicative
Homomorphic Calculation*

(µsec)

Verification
Calculation*

(µsec)

Overhead
(%)

1 115.0222 0.566666 0.49265
10 1592.375 1.622222 0.1018
100 299578.7 2.9785 < 0.000

1000 37347510.18 7.222222 < 0.000
10000 2749672997 33.98888 < 0.000

* Average of 10 readings.

data at the client side which is feasible on current modern
desktop.

B. Performance Analysis

It is crucial to analyze the calculation overhead of the proposed
verification scheme, that is, it is important to gauge the accept-
able number of calculations per verification in order to reduce
the calculation overhead in the proposed scheme. The analysis
in this section is therefore qualitative in nature and based on
how the proposed scheme works in terms of homomorphic op-
erations. In general, the computations performed by the client’s
machine is slightly faster than the computations performed
by the CSP when processing single outsource expression (one
expression, one verification). However, a series of expressions
(many expressions per verification) can reduce the calculation
overhead extremely.

In case of multiplicative-PHE, on verifying one RSA
multiplication calculation the client is required to perform one
64-bit multiplication and two 64-bit modular operations on
the residues of the two corresponding ciphertexts, while the
CSP homomorphically performs one big integer multiplication
(4096-bit) operation on the two ciphertexts. Whereas ElGamal
cryptosystem needs to double up the RSA computations for
one multiplication operation because the nature of the scheme
in producing ciphertext pair for each single plaintext. Table
IV shows the simulation results in multiplicative-PHE over
x operations. Where Fig. 2 and Fig. 3 show the application
of the proposed scheme to RSA and ElGamal cryptosystems,
respectively. Both figures demonstrate the requested time vari-
ance between the client verification process and the CSP pro-
cessing the data. Fig. 4 illustrates the corresponding overhead
in processing multiplicative-PHE expressions per verification.
Both encryption systems converge in the overhead percentage.
In which a performing of one verification process per each
computation process is less than 0.01%, but it quickly drops
further to less than 1.00E−7% in one verification process per
10000 computations.
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Fig. 2. Verified Scheme over RSA.

Fig. 3. Verified Scheme over ElGamal.

Fig. 4. Cost Overhead for Verifying Multiplicative-PHE Calculation.

The schematic for additive-PHE verification is similar to
the multiplicative-PHE. For verifying x additive Benaloh or
OU calculations, the client performs x multiplications and
two modular operations. Whereas in verifying x additive
Pailier calculations, the client performs x multiplications and
two modular n2 operations, as seen in Section III-A. On
the other hand, the CSP homomorphically performs x big
integer multiplications (4096-bit). Table V shows the CSP
and client average execution time for the verified scheme in
additive-PHE. Fig. 5, Fig. 6 and Fig. 7 display the results of

TABLE V. ADDITIVE HOMOMORPHIC CALCULATIONS: VERIFICATION
COST AGAINST THE COST OF PERFORMING THE ACTUAL HOMOMORPHIC

CALCULATION

CSP: Benaloh Client: Benaloh-Verified Scheme
Number of
Operations

per
Verification

Actual Additive
Homomorphic Calculation*

(µsec)

Verification
Calculation*

(µsec)

Overhead
(%)

1 70.2354 0.5324 0.75802
10 821.267 0.9924 0.12083
100 96514.354 1.352 < 0.000

1000 8075412.25 3.1231 < 0.000
10000 1750000000 27.564 < 0.000

CSP: OU Client: OU-Verified Scheme
Number of
Operations

per
Verification

Actual Additive
Homomorphic Calculation*

(µsec)

Verification
Calculation*

(µsec)

Overhead
(%)

1 121.733 0.78889 0.6480
10 1663.42 1.02222 0.06145
100 154769.59 1.5 < 0.000

1000 14875365 3.12222 < 0.000
10000 2394117441 28.9556 < 0.000

CSP: Paillier Client: Paillier-Verified Scheme
Number of
Operations

per
Verification

Actual Additive
Homomorphic Calculation*

(µsec)

Verification
Calculation*

(µsec)

Overhead
(%)

1 86.48889 0.6964 0.80519
10 1082.333 0.96667 0.08931
100 139625.84 1.1 < 0.000

1000 9175365.1 2.88889 < 0.000
10000 1921808022 29.874 < 0.000

* Average of 10 readings.

Fig. 5. Verified Scheme over Benaloh.

applying the verification scheme over the selected additive-
PHE cryptosystems. Also, Fig. 8 shows the overhead results
in processing additive-PHE expressions per verification for the
selected cryptosystems. They are at rates less than 0.01% and
rapidly decline to be approximately 1.00E−5% in only 100
applied computations.

The verification for a BGN calculation consists of veri-
fying additive homomorphic and multiplicative homomorphic
at the same time. For x BGN computation, the verification
process at the client side involves x 64-bit addition, one 64-
bit multiplication and two 64-bit binary operations on the
residues of the two respective ciphertexts, while the CSP
homomorphically conducts x big integer addition and one
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Fig. 6. Verified Scheme over OU.

Fig. 7. Verified Scheme over Pailler.

Fig. 8. Cost Overhead for Verifying Additive-PHE Calculation.

big integer multiplication (4096-bit) operations on the two
ciphertexts. Simulation result shown in Table VI and Fig. 9.
Where Fig. 10 indicates that the verification overhead which
is performed by the client is about 2.9% of the computation
time needed by the CSP to process the real BGN calculation,
moreover, it shows the overhead at the client side decreasing
fast, as the number of calculations per verification increases.

TABLE VI. SOMEWHAT HOMOMORPHIC CALCULATIONS: VERIFICATION
COST AGAINST THE COST OF PERFORMING THE ACTUAL HOMOMORPHIC

CALCULATION

CSP: BGN Client: Verified Scheme
Number of
Operations

per
Verification

Actual Additive & One
Multiplicative

Homomorphic Calculation*
(µsec)

Verification
Calculation*

(µsec)

Overhead
(%)

1 128.3111 3.7 2.8836
10 1768.6644 6.87778 0.03889
100 225805.97 8.18889 < 0.000

1000 41472148 11.9333 < 0.000
10000 3168250731 29.77778 < 0.000

* Average of 10 readings.

Fig. 9. Verified Scheme over BG.

Fig. 10. Cost Overhead for Verifying SWHE Calculation.

C. Security Analysis

The proposed verification mechanism enhances the security
of HE against data tampering. That is, HE cryptosystems with
this mechanism are able to provide data integrity, not only
confidentiality and privacy. Now the client can infer if any
data breach occurred from substitution in ciphertext or change
in the query process. In which the verification result does not
match the results sent to the client.

D. Discussion

In general, the overhead of the propose scheme does not
varied too much against the homomorphic cryptosystems.
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This is because all the mentioned cryptosystems are based
on the integer finite field, in which both the multiplicative-
PHE and additive-PHE are being designed by manipulating
only the multiplication operation on the cihpertexts. Across
the board, the overhead is high since the propose scheme
is verifying by invoking calculations within the integer finite
field. However, as shown in the previous section, amortization
plays an important role in reducing the overhead, that is, one
verification calculation is used to verify a batch of outsourced
calculations. This is attributed to the increase in the execution
time discrepancy between the CSP and the client; that is, the
increase in the number of multiplications that CSP applies to
the encrypted data against the execution time for verification
which changes very slightly on the client machine.

It is also important to note that the increase in the ciphertext
size due to the different cryptosystems and the size of the finite
field do affect the overall performance of the propose scheme.
It is also important to note that the propose scheme is less
efficient on BGN with SWHE feature. This is due, partly to the
high cost of exponential operation that was used to represent
a single multiplication operation.

V. CONCLUSION

This paper addresses the problem of DIV of outsource com-
putation. In the context of outsourcing computation to CSP,
HE over Z∗

p does provide data confidentiality but lacks in data
integrity. This paper presents an efficient DIV scheme for HE
over Z∗

p by evaluating the modular residue of the outsource
calculation. The propose scheme is flexible and extensible in
design, in which the number of modulus that can be used is
limited only by the word size of the client’s machine. With
a 64-bit machine, there are technically 264 possible modules.
Subsequently, base on a 64-bit machine the storage require-
ment on the client’s machine is less than 1.5% of the data size
stored at the CSP. Across different cryptosystems tested, the
worst computational overhead performed by the client is less
than 3% of the actual homomorphic calculation perform by the
CSP, that is, if one verification is applied to one homomorphic
calculation. The worst computational overhead reduces to less
than 0.1%, if one verification is performed for every 10
homomorphic calculations. It is also worth noting that the
cryptosystems tested are slightly varied in their performances.
In general, the proposed verified scheme can be implemented
on any homomorphic cryptosystem that operates over the
integer finite field Z∗

p without much restriction. Although the
scheme solves the problem of verifying the integrity of the
data computations, it may constitute a burden on the client
to provide storage and extra work to achieve the verification
phase. Therefore, we aim to shift the verification process
to decentralized fog nodes, which communicate through a
consensus in future work.
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[23] D. Vasilopoulos, M. Önen, K. Elkhiyaoui, and R. Molva, “Message-
locked proofs of retrievability with secure deduplication,” in Proceed-
ings of the 2016 ACM on Cloud Computing Security Workshop, 2016,
pp. 73–83.

[24] C. B. Tan, M. H. A. Hijazi, Y. Lim, and A. Gani, “A survey on proof
of retrievability for cloud data integrity and availability: Cloud storage
state-of-the-art, issues, solutions and future trends,” Journal of Network
and Computer Applications, vol. 110, pp. 75–86, 2018.

[25] J. Yuan and S. Yu, “Proofs of retrievability with public verifiability
and constant communication cost in cloud,” in Proceedings of the 2013
international workshop on Security in cloud computing, 2013, pp. 19–
26.

[26] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs of
retrievability,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, 2013, pp. 325–336.

[27] K. Omote and T. P. Thao, “Md-por: multisource and direct repair for
network coding-based proof of retrievability,” International Journal of
Distributed Sensor Networks, vol. 11, no. 6, p. 586720, 2015.

[28] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, “Efficient
provable data possession for hybrid clouds,” in Proceedings of the 17th
ACM conference on Computer and communications security, 2010, pp.
756–758.

[29] Z. Hao and N. Yu, “A multiple-replica remote data possession checking
protocol with public verifiability,” in 2010 second international sympo-
sium on data, privacy, and E-commerce. IEEE, 2010, pp. 84–89.

[30] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and
dependable storage services in cloud computing,” IEEE transactions on
Services Computing, vol. 5, no. 2, pp. 220–232, 2011.

[31] B. Rakesh, K. Lalitha, M. Ismail, and H. P. Sultana, “Distributed scheme
to authenticate data storage security in cloud computing.”

[32] R. Saxena and S. Dey, “Cloud audit: A data integrity verification
approach for cloud computing,” Procedia Computer Science, vol. 89,
pp. 142–151, 2016.

[33] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud computing,”
IEEE transactions on parallel and distributed systems, vol. 22, no. 5,
pp. 847–859, 2010.

[34] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for data storage security in cloud computing,” in 2010 pro-
ceedings ieee infocom. Ieee, 2010, pp. 1–9.

[35] S. E. Arasu, B. Gowri, and S. Ananthi, “Privacy-preserving public
auditing in cloud using hmac algorithm,” International Journal of
Recent Technology and Engineering, vol. 2, no. 1, pp. 149–152, 2013.

[36] M. Kolhar, M. M. Abu-Alhaj, and S. M. Abd El-atty, “Cloud data
auditing techniques with a focus on privacy and security,” IEEE Security
& Privacy, vol. 15, no. 1, pp. 42–51, 2017.

[37] S. H. Abbdal, H. Jin, A. A. Yassin, Z. A. Abduljabbar, M. A. Hussain,
Z. A. Hussien, and D. Zou, “An efficient public verifiability and data
integrity using multiple tpas in cloud data storage,” in 2016 IEEE 2nd
International Conference on Big Data Security on Cloud (BigDataSecu-
rity), IEEE International Conference on High Performance and Smart
Computing (HPSC), and IEEE International Conference on Intelligent
Data and Security (IDS). IEEE, 2016, pp. 412–417.

[38] A. Razaque and S. S. Rizvi, “Triangular data privacy-preserving model
for authenticating all key stakeholders in a cloud environment,” Com-
puters & Security, vol. 62, pp. 328–347, 2016.

[39] C. Asmuth and J. Bloom, “A modular approach to key safeguarding,”
IEEE transactions on information theory, vol. 29, no. 2, pp. 208–210,
1983.

[40] M. Backes, D. Fiore, and R. M. Reischuk, “Verifiable delegation of
computation on outsourced data,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013,
pp. 863–874.

[41] X. Chen, J. Li, J. Weng, J. Ma, and W. Lou, “Verifiable computation
over large database with incremental updates,” IEEE transactions on
Computers, vol. 65, no. 10, pp. 3184–3195, 2015.

[42] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating compu-
tation: interactive proofs for muggles,” Journal of the ACM (JACM),
vol. 62, no. 4, pp. 1–64, 2015.

[43] J. Li, Y. K. Li, X. Chen, P. P. Lee, and W. Lou, “A hybrid cloud
approach for secure authorized deduplication,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 5, pp. 1206–1216, 2014.

[44] B. Parno, M. Raykova, and V. Vaikuntanathan, “How to delegate and
verify in public: Verifiable computation from attribute-based encryp-
tion,” in Theory of Cryptography Conference. Springer, 2012, pp.
422–439.

[45] P. Renjith and S. Sabitha, “Verifiable el-gamal re-encryption with
authenticity in cloud,” in 2013 Fourth International Conference on
Computing, Communications and Networking Technologies (ICCCNT).
IEEE, 2013, pp. 1–5.

[46] S. T. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes).”
in NDSS, vol. 1, no. 9, 2012, p. 17.

[47] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish,
“Taking proof-based verified computation a few steps closer to practi-
cality,” in Presented as part of the 21st {USENIX} Security Symposium
({USENIX} Security 12), 2012, pp. 253–268.

[48] Z. Wen, J. Luo, H. Chen, J. Meng, X. Li, and J. Li, “A verifiable data
deduplication scheme in cloud computing,” in 2014 International Con-
ference on Intelligent Networking and Collaborative Systems. IEEE,
2014, pp. 85–90.

[49] X. Yu, Z. Yan, and A. V. Vasilakos, “A survey of verifiable computa-
tion,” Mobile Networks and Applications, vol. 22, no. 3, pp. 438–453,
2017.

[50] X. Yu, Z. Yan, and R. Zhang, “Verifiable outsourced computation over
encrypted data,” Information Sciences, vol. 479, pp. 372–385, 2019.

[51] D. Fiore, R. Gennaro, and V. Pastro, “Efficiently verifiable computation
on encrypted data,” in Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2014, pp. 844–855.

[52] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference. Springer, 2010, pp. 465–482.

[53] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in Annual international conference on the theory
and applications of cryptographic techniques. Springer, 2011, pp.
129–148.

[54] T. Li, J. Li, Z. Liu, P. Li, and C. Jia, “Differentially private naive bayes
learning over multiple data sources,” Information Sciences, vol. 444,
pp. 89–104, 2018.

[55] Y. Ding, B. Han, H. Wang, and X. Li, “Ciphertext retrieval via attribute-
based fhe in cloud computing,” Soft Computing, vol. 22, no. 23, pp.
7753–7761, 2018.

[56] A. Marinho, L. Murta, C. Werner, V. Braganholo, S. M. S. d. Cruz,
E. Ogasawara, and M. Mattoso, “Provmanager: a provenance manage-
ment system for scientific workflows,” Concurrency and Computation:
Practice and Experience, vol. 24, no. 13, pp. 1513–1530, 2012.

[57] R. Canetti, B. Riva, and G. N. Rothblum, “Two 1-round protocols for
delegation of computation.” IACR Cryptol. ePrint Arch., vol. 2011, p.
518, 2011.

[58] P. Chinnasamy and P. Deepalakshmi, “Improved key generation scheme
of rsa (ikgsr) algorithm based on offline storage for cloud,” in Advances
in big data and cloud computing. Springer, 2018, pp. 341–350.

[59] M. Deryabin, M. Babenko, A. Nazarov, N. Kucherov, A. Karachevtsev,
A. Glotov, and I. Vashchenko, “Protocol for secure and reliable data
transmission in manet based on modular arithmetic,” in 2019 Interna-
tional conference on Engineering and Telecommunication (EnT). IEEE,
2019, pp. 1–5.

[60] A. Tchernykh, U. Schwiegelsohn, E.-g. Talbi, and M. Babenko, “To-
wards understanding uncertainty in cloud computing with risks of
confidentiality, integrity, and availability,” Journal of Computational
Science, vol. 36, p. 100581, 2019.

[61] M. Deryabin, N. Chervyakov, A. Tchernykh, M. Babenko, N. Kucherov,
V. Miranda-López, and A. Avetisyan, “Secure verifiable secret short
sharing scheme for multi-cloud storage,” in 2018 International Confer-
ence on High Performance Computing & Simulation (HPCS). IEEE,
2018, pp. 700–706.

[62] N. Chervyakov, M. Babenko, A. Tchernykh, N. Kucherov, V. Miranda-
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