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Abstract—In a Parallelizing Compiler, code transformations
help to reduce the data dependencies and identify parallelism in a
code. In our earlier paper, we proposed a model Data Dependence
Identifier (DDI), in which a program P is represented as graph
GP . Using GP , we could identify data dependencies in a program
and also perform transformations like dead code elimination and
constant propagation. In this paper, we present algorithms for
loop invariant code motion, live range analysis, node splitting
and loop fusion code transformations using DDI in polynomial
time.
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I. INTRODUCTION

Multicore processors have completely replaced single core
processors, as a result general purpose computers became
parallel systems, this change has thrown lot of challenges to
software community in the effective utilization of the former.
Though multiprocessing capability of operating systems im-
proves the overall throughput of new hardware still perfor-
mance of serial programs remains the same even on multicore
systems. To enhance the performance of serial programs on
multicore systems, instructions in the serial code has to be
broken into groups such that each group cab be run in parallel.
One way to accomplish this task is by manual conversion
which is a tedious job. One more way is to use a tool that
converts serial program to parallel.

Automating the process of serial to parallel conversion is
called as Automatic Parallelization and the compiler which
can perform automatic parallelization is typically referred as
Parallelizing Compiler. The general process of serial to parallel
program conversion is a three step one: 1) perform code
transformations in order to detect potential parallelism; 2)
check for data dependencies in the code; 3) generate parallel
code.

Two instructions I1 and I2 in a program are said to be
data dependent if both the instructions access same memory
location. Presence of data dependencies makes parallelism an
impossible task. Code transformations help to eliminate some
of the data dependencies thereby giving a scope to detect
potential parallelism.

In our earlier paper [1], we proposed a model called Data
Dependence Identifier(DDI) which can identify data depen-
dencies in scalars, arrays, and pointers in a program. We also

discussed how code optimizations like dead code elimination,
constant propagation can be performed using DDI. In this
paper, we discussed how code optimizations like loop invariant
code motion, live range analysis and node splitting, loop fusion
are performed using our model DDI.

II. RELATED WORKS

Compiler converts source code to Intermediate Repre-
sentation (IR) to perform code optimizations. This IR may
differ from compiler to compiler. Generally, in traditional
compilers for uniprocessor systems, instructions in source code
are intermediately represented in three address code format
and Directed Acyclic Graph (DAG), code optimizations are
performed using this Intermediate Representation [3].

Intermediate Representation is crucial for a parallelizing
compiler. Here, we will discuss in brief about some of the
parallelizing compilers and their Intermediate Representations.

• SUIF (Stanford University Intermediate Format):
SUIF is a source to source parallelizing compiler
that takes C or FORTRAN serial code as input and
produces parallelized code to be run on a multi-
processor machine. SUIF intermediate representation
is a language-independent abstract syntax tree. Data
flow analysis, data dependence analysis, scalar and
array privatization, reduction variable analysis are
performed using IR [4], [5], [6].

• Cetus: Cetus converts serial program written in C to
parallel C program by inserting OpenMP annotations
to be run on a multicore system. Cetus intermediate
representation is a hierarchial tree based structure
implemented in Java. Cetus IR includes a set of iter-
ators that traverses through the IR to get the required
information about loops, conditional statements, etc.
Data dependence analysis - GCD Test [7] and Range
Test [8] are used to identify data dependencies in
arrays. Transformation techniques like scalar and array
privatization, induction variable substitution, reduction
variable recognition are performed using IR to elimi-
nate some of the dependencies [9].

• Pluto: Pluto is a source to source compiler that trans-
forms serial C program to OpenMP C [10]. Interme-
diate Representation of Pluto is based on polyhedral
model. Dependence analysis, loop transformations for
parallelism and optimized data locality are performed
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using IR [11]. Optimizations based on polyhedral
model are integrated in compilers like GCC and
LLVM. State-of-art in Pluto includes loop fusion
transformation using Fusion Conflict Graphs (FCG)
[12] and verified code generation [13].

• Intel compiler [16] automatically identify the loops
that can be parallelized and partitions the data accord-
ingly.

Using our proposed model DDI, we have shown how data
dependence analysis can be performed. We are broadening
the scope of our model by showing how code transformations
like loop invariant code motion, live range analysis and node
splitting, loop fusion can be applied on DDI.

III. DATA DEPENDENCE IDENTIFIER

In this section we discuss in brief about our model Data
Dependence Identifier(DDI) which we have proposed in our
earlier paper [1]. The main objective of DDI model is to
represent a program as graph to identify data dependencies in
a program. Though many graphical representation of program
exists [14], [15], our representation takes a completely different
perspective, we consider variables in the program as nodes and
the edges between these variables are drawn based on the mode
of access of variables from memory. For this purpose, we have
categorized the instructions in a program and parameterized
program as discussed in sections A and B.

A. Categorization of Instructions based on Memory Accessi-
bility

We categorized the instructions in a program broadly
into Memory Access Instruction (MAI) and Non Memory
Access Instruction (NMAI) based on the way they access the
memory. In MAI, instructions access the memory to perform
the required operation. Instructions like arithmetic, conditional
fall under this category. In NMAI, instructions do not access
the memory at all i.e., instructions like jump, break come under
this category.

MA Instructions are further classified into three cate-
gories: MA-READ, MA-WRITE, MA-READWRITE. In MA-
READWRITE(MARW), instructions access the memory for
both read as well as write operations. For example, in Arith-
metic instruction: ‘c = a + b′, data is read from memory
locations a and b and written to a memory location c. In MA-
READ(MAR), instructions perform only read operation but
no write operation. For example, in conditional instruction:
‘if(a > b)′ data is only read from memory locations a and
b but the output is not written to any variable. Generally in
these instructions data is read from memory and send to other
Hardware Units(HU) in the computer system like processor or
output devices. In MA-WRITE(MAW), instructions perform
only write operation but no read operation. For example, in
assignment instruction ‘a = 5′, a constant value is written to
a memory location a. Here we assume, a = 5 means that the
constant 5 is read from the programmer(PR) and written to the
location a.

B. Parameterization of Program

A program P is parameterized with I, V,W,HU,PR,
where:

• Set I , finite set of instructions {i1, i2, ...in}
• Set V , finite set of memory allocations or variables

{v1, v2, ...vp}
• Set MAI , finite set of MA instructions where MAI ⊆

I .
An instruction i ∈ MAI is represented as ordered pair
[R,W ] where R,W ⊆ V . R is a set that contains all
the variables from which the instruction i reads the
data and W is a set with a single variable to which i
writes the data. For example, instruction ‘c = a + b′

is written as pair [{a, b}, {c}] where data is read from
variables a , b and output is written to c.

• HU represents the set of hardware units i.e. input
devices, output devices, processor and any other hard-
ware unit in the computer system.

• PR is the set of constant values initialized in the
program P by the programmer.

Therefore, we write P as P (I, V ∪ {HU,PR},MAI).

C. Directed Graph Representation of a Program

In DDI model, we represent a program as graph. Here,
we discuss how a program P is transformed to an equivalent
directed graph called graph of P written as GP .

All instructions in a given program P are indexed se-
quentially with the positive integers 1, 2, ...n. First instruction
in a program is indexed as 1, second instruction as 2 and
so on. For in ∈ I , we call index of in = n. Every
instruction in is written as the pair [R,W ]. In other words,
index[in] = index([R,W ]) = n.

A program P = (I, V ∪{PR,HU},MAI) is transformed
into a directed labeled graph GP = (V ∪ {PR,HU}, E, L)
as follows:

• Set of nodes of GP are the set of variables V ∪
{PR,HU}.

• For every ordered pair of sets (R,W ) ∈ MAI , we
include the edges {[r, w])|∀r ∈ R,w ∈ W}.

• Every edge in GP is labeled with elements from
label set S which contains indices of instructions in
I. L : E → {1, 2, ...n} such that L((r, w)) = k if
index([R,W ]) = k such that (r, w) ∈ E, r ∈ R,w ∈
W .

We use the notation (., .) to represent the edges of the graph
and [., .] indicates the pair of sets R,W for representing memory
access instructions.

In example 1, I = {i1, i2, i3, i4}, V = {a, b, c, d} and
MAI=I as all instructions in program P are memory access
instructions. To construct GP , V acts as nodes N. For in-
struction 1 : [{a, b}, {c}], we include the edges (a, c) and
(b, c) with labels L((a, c)) = 1 and L((b, c)) = 1 are added
to GP . For instruction 2 : [{a, PR}, {d}], edges (a, d) and
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(PR, d) with labels L((a, d)) = 2 and L((PR, d)) = 2
are added. For instruction 3 : [{c, d}, {HU}], edges with
label L((a,HU)) = 3 and L((d,HU)) = 3 are added. For
instruction 4 : [{a, PR}, {b}], edges with label L((a, b)) = 4
and L((PR, b)) = 4 are added to GP . The adjacency matrix

Example 1
(a) (b)

vo id func1 ( a , b )
{
1 : c=a+b ;
2 : d=a −10;
3 : i f ( c>d )
4 : b=a +10
}

ba

c

d

HU

PR
1 1

2

3
3

4

2

4

(c)
a b c d PR HU

a 4 1 2
b 1
c 3
d 3

PR 4 2
HU

of graph GP is shown in example 1(c), rows gives the read
information about the variables and columns gives the write
information. Scanning column c of the matrix tells that variable
c is accessed for ‘write′ in instruction 1 and row of c shows
variable c is accessed for ‘Read′ in instruction 3.

The procedure by which we convert P (I, V ∪
{PR,HU},W ) into a simple edge labeled graph
Gp(N ∪ {PR,HU}, E, L) is discussed in algorithm
1.

Algorithm 1 Convert Program P to Directed edge-labeled
graph GP

1: procedure PROGRAM TO GRAPH
Input: Program P (I, V ∪ {PR,HU})
Output: Graph Gp(N ∪ {PR,HU}, E, L)

2: for each instruction [R,W ] ∈ I, index[R,W ] = k do
3: if MAI-verification() then
4: for every r ∈ R and w ∈ W do
5: E = E ∪ {(r, w)}
6: L([r, w]) = k

Loop representation in DDI:
The statements within the loop are denoted as i.k, where i.k
represents instruction i when the loop is executed kth time.

Nested loop representation in DDI:
Consider nested loops L1 and L2, where L1 is the outer loop
and L2 is the inner loop. The statements within the nested loop
are denoted as m.x.p, where m.x.p represents mth instruction
when the loop is executed xth iteration in L1 loop and pth

iteration in L2 loop.

Example 2
(a) (b)

vo id add ( )
{

f o r (

I2︷︸︸︷
i = 2 ;

I2︷︸︸︷
i < 4 ;

I3︷︸︸︷
i + + )

4 : a [ i ]= b [ i ]+ c [ i ] ;
}

a[2]

b[2]

c[2]

b[3]

a[3]

c[3]

4.1

4.1

4.2
4.2

Consider the nested sequence of loops L1, L2, L3, ...Ln,
where L1 is the outermost loop and Ln is the innermost
loop. The statements within this nested loop are denoted as
m.x1.x2....xn, where m represents the instruction number and
x1 represents the instance of iteration of outermost loop L1,
x2 represents the instance of iteration of loop L2, and xn

represents the instance of execution of innermost loop Ln.

IV. APPLICATIONS OF DDI

In our earlier paper [1], we proposed how compiler opti-
mizations like constant propagation, dead code elimination and
induction variable detection can be performed using our DDI
model. In this section, we will discuss how optimizations like
loop invariant code motion, live range analysis, loop fusion,
scalar privatization can be performed using our DDI model.

A. Loop Invariant Code Motion

A set of statement(s) within a loop is called as Loop
Invariant Code if the semantics of the program is not affected
when the statements are moved out of the loop. Identifying
and removing invariant code loop reduces the number of
statements within the loop, thereby enhancing the performance
of the parallel loop. Code Motion is the process of moving the
loop invariant code outside the loop. In the program given in
example 3(a), value of x in instruction 5 remains unchanged
through out the execution of loop. Even if instruction 5 is
moved above the loop, value of x remains the same.

Following observation is made to identify loop invariant
code:

• For an instruction i : [R,W ], the value of the variable
‘W’ will get updated during the loop iteration if atleast
one of the values of variables in ‘R’ is changing
during the execution of the loop. In example 3(a),
in instruction 5 : [{t, PR}, {x}], input variables are
{t, PR}, t is the only input variable here as PR is a
constant value and variable t never gets updated in the
loop. As t value never changes during the execution
of the loop, consequently there is no change in x. We
call statement 5 as ‘Loop Invariant Code’.

Theorem 1. Given a loop l with statements {i1, i2, ...is} and
Gl be the graph that corresponds to the loop l. A statement
lk ∈ l is said to be Loop Invariant Code if
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1. There exists a node u ∈ N.Gl such that L((u′, u)) =
[ik.1, ik.2, ...ik.m] where m is the number of iterations of the
loop.

2. There is no edge (v, u′) for every u ∈ N.Gl.

Proof: ik is ‘Loop Invariant Code’

=⇒ If ik : [R,W ], then ∃ u ∈ W where the value of u
does not change through out the loop.

=⇒ u ∈ W implies that there exists uk ∈ R such that
value of uk is written in u and there is no change in uk through
out the loop.

=⇒ By algorithm, Gl will have the edges (uk, u) and
there will not be any edge of the form (v, uk) where u, uk ∈
N.Gl, since the nodes of Gl pertains to the variable inside the
loop.

Example 3(a)
Before Code Motion

vo id func1 ( i n t a , i n t b )
{
1 : t =10

f o r (

2︷︸︸︷
i = 1 ;

3︷︸︸︷
i < 3 ;

4︷︸︸︷
i + + )

5 : x= t *10 ;
6 : y=20+ a [ i ] ;
7 : z [ i ]= x+y ;
}

y

x

t

PR

a[1]

a[2]

z[1]

z[2]

5.1

5.1

7.1

7.1

7.2

7.2
6.2

5.2

6.1

6.1

6.2
1

5.2

Example 3(b)
After Code Motion

vo id func1 ( i n t a , i n t b )
{
1 : t =10
2 : x= t *10 ;

f o r (

3︷︸︸︷
i = 1 ;

4︷︸︸︷
i < 3 ;

5︷︸︸︷
i + + )

6 : a =20+ a [ i ] ;
7 : z [ i ]= x+y ;
}

y

x

t

PR

a[1]

a[2]

z[1]

z[2]

2

2

7.1

7.1

7.2

7.2
6.2

6.1

6.1

6.2
1

In example 4(a), Loop Statements(LS)={5,6,7} for node x,
L((t, x)) = [5.1, 5.2] and L((PR, x)) = [5.1, 5.2], there exists
no other edges to node x with label 5. Only source of input
to node x with label 5 is from nodes t and PR. As PR is
constant value, only input is node t. Incoming edge to node t
is L((PR, t)) = 1, 1 /∈ LS. Therefore, we conclude statement
5 is loop invariant code.

Algorithm illustrates the process of loop invariant code
detection. Line 3-6 of the algorithm examines if node u have

Algorithm 2 Loop invariant code detection

1: procedure LOOP INVARIANT CODE DETECTION
Input: Graph Gp(N,E,L)

2: edgelabels=FALSE,invariant=TRUE
3: LS={i1, i2, ..is}
4: for every u ∈ N.G do
5: if L((ui, u)) == [n.1, n.2, ...n.m] then
6: if L((vi, ui)) ∈ LS then
7: invariant=FALSE
8: if invariant==TRUE then ▷ perform Code Motion
9: delete edges L((ui, u)) = [n.1, n.2, ...n.m]

10: add edge L((ui, u)) = p, p < l1

any incoming edges from nodes u, u1, u2, ..uk with labels
matching the pattern [n.1, n.2, ...n.m]. If so, then line 8-10
checks if there are any incoming edges to nodes u, u1, u2, ..uk

with label l where l ∈ LS, LS contains loop statement
labels.If no such edges exist, instruction n is considered as
loop invariant code, move instruction n above the loop in the
program. Line 8-10, perform code motion. Example 3(b) shows
the program and graph after code motion.

B. Live Range Analysis

For parallelizing a program, statements in the program has
to be grouped in such a way that the statements in these
groups can be executed in parallel and gives the same output
as sequential execution. one way to accomplish this task is
using the live range information of variables in the program.
We define the live range of a variable in a program as follows:

Definition IV.1. A variable u is said to live in statement k of
program P if either Read or Write operation is performed
on u.

Consider the program in example 5, y is live in statement
2 and not live in statements 1,3,4.

Definition IV.2. Live Range Analysis of a program P is a
description which provides an information on the nature of
the variable, whether live or not, in each of the instruction of
program P .

In example 4(a), x is live in statements 1,2,3,4. y is live
in statement 2. k is live in statement 1. a is live in statement
4. This information is represented in the form: x : {1, 2, 3, 4},
y : {2}, k : {1}, z : {3}, a : {4}, which is usually referred as
live range analysis of P.

Now, we propose a method to compute live range of
variables in a program using our DDI model.

Theorem 2. Given a program P and the corresponding graph
GP . If node u ∈ GP have either incoming and outgoing edges
with labels ik then variable u is said to be live in statements
ik of program P.

Proof: u is live in instruction ik.

=⇒ By definition IV.1, either Read or Write operation
is performed on u in ik. =⇒ By algorithm 1, there will be

www.ijacsa.thesai.org 840 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 10, 2021

an outgoing edge with label ik from u (if Write operation is
performed over u in ik) or there will be an incoming edge
with label ik to u (if Read operation is performed over u in
ik).

=⇒ There is an edge incident on u with label ik.

Based on the above theorem, we propose an algorithm to
compute live range of variables in a program.
In Line 2 of algorithm 3, A is initialized as an empty two

Algorithm 3 Live Range Analysis

1: procedure LIVE RANGE ANALYSIS
Input: Graph Gp(N,E,L)

2: A=[ ]
3: i=0
4: for every u ∈ N.G do
5: A[i].append(u, L((v, u)), L((u, u‘)))
6: i=i+1
7: return A

dimensional array. The for loop in lines 4-6 examines all the
incoming and outgoing edge labels of each node and assigns
this information to A. Each row of array A have node label
u, the incoming and outgoing edge labels of node u. With
assumption the graph is represented using adjacency matrix,
the running time of this algorithm is O(n2), where n is the
number of nodes in the graph. The for loop requires scanning
the row and column of each and every node, therefore the
complexity O(n2).

Example 4(a)
Before Node Splitting

vo id func1 ( i n t k , i n t z )
{
1 : x=k +5;
2 : y=x ;
3 : x=z ;
4 : a=a+x ;
}

x

y

ka

PR

z

1

1

2

3
4

4

C. Node Splitting

If a variable is live through out the program means there
exists data dependence among the statements. The data de-
pendence has to be broken in order to group the statements
such that each group can execute in parallel. One approach to
break the data dependence cycle is using Node Splitting. Node
splitting creates one more copy of a node(duplicate node) in the
graph and divides the edges between two nodes to produce an
analogous graph. This transformation limits the live range of a
variable to a section in the code hence producing a code more
feasible for parallelization. Consider the program in example
4, variable x is live in instructions {1, 2, 3, 4}, after splitting
x as x and n, x is live in instructions {1, 2} and n in {3, 4}.

Example 4(b)
After Node Splitting

vo id func1 ( i n t k , i n t z )
{
1 : x=k +5;
2 : y=x ;
3 : n=z ;
4 : a=a+n ;
}

x

y

ka

PR

z

n

1

1

2

3

4

4

Given a variable v, the possible sequence of Read(R) and
Write(W) operations on v are 1. {W,R,R,R..R} - value
assigned to v is only Read through out the program. 2.
{W,R,W,R..R} - variable v is updated multiple times in the
program. Based on this observation, we define the scope of
node splitting as follows:

Definition IV.3. A node u ∈ V.GP is said to be a splitting
node if the sub-graph that involves u can be split into two
sub-graphs GP1 and GP2 such that functionality of both the
programs P1 and P2 is equivalent to the functionality of P .

Theorem 3. Let P be a program, GP be the graph that
corresponds to P . A node u ∈ V.GP is a splitting node of
GP if and only if ∃ a sub-graph GP

u that involves the node
u as follows.

Fig. 1. u is Splitting Node of GP .

Proof:
Hypothesis: u is a splitting node of GP .

Claim: ∃ a sub-graph GP
u of GP as shown in fig1.

Hypothesis: GP
u can be split into two sub-graphs GP1

u

and GP2

u such that the functionality of P1 and P2 is equivalent
to P .
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=⇒ ∃ a program P in which variable u is used more
than once( t1 times) for writing and u is used more than once
(t2 times) such that t1 ≥ t2.

without loosing any generality, assume t1 = t2 = t

=⇒ u is used t times for writing and u is used t times
for reading purpose.

=⇒ Again, without loss of any generality, for every
writing to u, we have a reading from u.

=⇒ Since u is a splitting node, we have a sequence of
t blocks in P such that in each block, u is written first and
then u is read.

=⇒ A snippet of P that involves u will look as follows:

block 1

{
s0 + k : u = w1 + a1
.....
s1 + k : r1 = u

block 2

{
s2 + k : u = w2 + a2
.....
s3 + k : r2 = u.

.

.
block t

{
sx + k : u = wt + at
sx+1 : rt = u

Corresponding GP will be as shown in fig.1, hence the claim.

Part II proof:
Hypothesis: In P, ∃ GP

u

li < si
Claim: u is a splitting node.
Hypothesis: P has a sequence of t blocks and in each block,
value is read from u after a value is written to u.

=⇒ GP
u can be split as follows

In each Pi, a value is written to u first and then u is read.

=⇒ From GP
u, we infer that in P , value is written first

and then read next.

=⇒ By sheer observations, we infer that the total
functionality of the snippets Pi(i = 1 to t) is same as

the functionality of P . The functionality of other statements
(which does not involve u) in P remains as such in Pi also.

=⇒ We have a node u in GP
u which can be split into

a sequence of sub-graphs GP
u, i = 1, 2, .., t such that the

total functionality of Pi, i = 1, 2, .., t is equivalent to the
functionality of P .

=⇒ u is a splitting node of GP .

Corollary 3.1. Let P be a program. Let GP be the graph that
corresponds to P. P is parallelizable if and only if GP has
atleast one splitting node.

Algorithm 4 Node Splitting

1: procedure NODE SPLITTING
Input: Graph Gp(N,E,L)

2: for every u ∈ N.G do
3: if L((u′, u)) = m and L((u′′, u)) = n and n > m

then
4: add node w
5: delete edge L((u′′, u)) = n
6: add edge L((u′′, w)) = n
7: for every edge (L((u, v)) > n) do
8: delete L((u, v)) and add L((w, v))

Let M be the adjacency matrix representation of GP . In
algorithm, lines 2 requires scanning each and every column of
M to check if there exists any node u which satisfies the
condition in line 3. Lines 4-6 i.e. adding a new node and
edges takes constant time. In line 3, if a node u meet the
condition then in lines 7-8 the entire row of the node u has
to be examined. Let’s say if there are n nodes among which
m nodes satisfy the condition in line 3, then the complexity
is O(mn).

D. Loop Fusion

Loop fusion is a technique in which two loops are merged
or fused to form a single loop. Generally, a loop iterates
through the same set of instructions to perform a task. Two
loops L1 and L2 can be fused if number of iterations, termi-
nating conditions of both the loops match and the semantics
of the code be intact after merging. Fusing of loops reduces
the number of loops present in a program thereby mitigating
the overhead involved in parallelization of many loops.

Definition IV.4. Loop Fusion: is a technique by which
statements of multiple loops are merged into a single loop
such that semantics of the code is intact.

Consider L1 be the first loop and L2 be the second loop
in sequence, then L1 and L2 can be fused if the following
conditions are satisfied:

• Loops L1 and L2 should have same looping condi-
tions and should iterate for same number of times.

• Dependencies that exist between statements of loop
L1 and L2 does not change the semantics of the code.

So, concept of fusion depends on the dependencies that exist
between the loops. Hence, first we discuss different depen-
dencies that exist between the loops. Two loops L1 and L2
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are said to be data dependent if dependence exists between
any statement of L1 and any statement of L2. Let statements
Si ∈ L1 and Sj ∈ L2. The following dependencies may exist
between Si and Sj :

Definition IV.5. No dependence: L1 and L2 are said to have
no dependence if the statements Si and Sj do not access any
common memory location.

Definition IV.6. Flow dependence: If memory location M is
accessed for ‘Write’ operation in statement Si and the same
location M is accessed for ‘Read’ in statement Sj . Then, flow
dependence exist between statements Si and Sj .

In example 6(case i), ‘Write’ operation is performed on an
index location in array A in first loop and is ‘Read’ from the
same index location in array A in second loop. So, there exist
flow dependence between loops L1 and L2.

Definition IV.7. Anti dependence: If memory location M is
accessed for ‘Read’ operation in statement Si and the same
location M is accessed for ‘Write’ in statement Sj . Then, anti
dependence exist between statements Si and Sj .

In example 7(case i), ‘Read’ operation is performed on an
index location in array x in first loop and ‘Write’ operation on
the same index location of array x in second loop, there exist
Anti dependence between loops L1 and L2.

Definition IV.8. Loop carried forward dependence: If mem-
ory location M is accessed by an iteration of statement Si

and then the same location M is accessed in later iterations
of statement Sj . Then, loop carried forward dependence exists
between statements Si and Sj .

In example 8, A[1] value computed in first iteration of
first loop is read in the second iteration of second loop, shows
existence of loop carried forward dependence between L1 and
L2.

Definition IV.9. Loop carried backward dependence: If
memory location M is accessed in an iteration of statement
Sj and then the same location M is accessed in later iterations
of statement Si. Then, loop carried backward dependence
exists between statements Si and Sj . In example 9, A[2]
value computed in second iteration of first loop is read in the
first iteration of second loop, shows presence of loop carried
backward dependence.

Identification of data dependencies using DDI and
feasibility of fusion

So far we have discussed the dependencies that exist be-
tween the loops. Here, we will discuss the type of dependencies
between L1 and L2 which does not affect the fusion of L1
and L2. We propose four theorems with which we can identify
the type of dependence that exist between L1 and L2 using
our DDI and the feasibility of fusing them.

Theorem 4. Given program P with loops L1 with statements
{ir1 , ir2 , ...irn} and loop L2 with statements {is1 , is2 , ...ism}.
Let GP be the corresponding graph of P, with GL1 and GL2

as the sub-graphs of GP that corresponds to loops L1 and
L2 respectively. L1 and L2 is said to have no dependence if
there exists no edge (u, v), ∀u ∈ GL1 and ∀v ∈ GL2. Such

loops L1 and L2 can be fused.

Proof: Assume that there exists an edge (u, v) where u ∈
V (GL1) , v ∈ V (GL2).

=⇒ An edge (u, v) in GL1 means that a value is Read
from variable u in some statement irj (say) and Written to
variable v. As v ∈ GL2, v is accessed by some statement isk
(say) in L2.

=⇒ By Algorithm 1, there exists a statement irj in L1

which Read’s a value from variable u and that value is Written
to a variable v in statement isk in L2.

=⇒ Thus, we have proved that if there exists an edge
(u, v) with label irj then there exists a statement irj which
accesses the variables u and v .

=⇒ By considering contrapositive statement of above
proposition i.e, if there does not exist a statement irj which
accesses the variables u and v then there does not exist edge
(u, v). =⇒ There exists no common variable accessed by
statements of L1 and L2. Therefore, by Definition 4.5, if
statements of L1 and L2 do not access common memory
location then there exists no dependence between statement
of loops L1 and L2 .

Example 5
(a) (b)

L1 : f o r (

1︷︸︸︷
i = 1 ;

2︷︸︸︷
i < 3 ;

3︷︸︸︷
i + + )

4 : A[ i ]= x ;

L2 : f o r (

5︷︸︸︷
j = 1 ;

6︷︸︸︷
j < 3 ;

7︷︸︸︷
j + + )

8 : B[ j ]= y ;

x

A[1]

A[2]

B[1]

B[2]

y
4.1

4.2

8.1

8.2

In Example 5, nodes {x,A[1], A[2]} ∈ L1 and nodes
{y,B[1], B[2]} ∈ L2, there exists no common nodes among
L1 and L2, no edges between nodes of L1 and L2. Therefore,
no dependence exist between the two loops, in which case
merging of loops is possible.

Theorem 5. Given program P with loops L1 with statements
{ir1 , ir2 , ...irn} and L2 with statements {is1 , is2 , ...ism}. GP

be the corresponding graph of P, GL1 and GL2 are the sub-
graphs of GP that corresponds to loops L1 and L2 respec-
tively. Let there exist edges L((u, v)) = irj .n and L((v, w) =
isk .m such that irj ∈ L1, isk ∈ L2. i

1) L1 and L2 is said to have flow dependence if isk >
irj .

2) L1 and L2 can be fused if m ≥ n and isk > irj .
3) L1 and L2 can not be fused if n > m.

Proof: Let GL1 and GL2 be the sub-graphs of GP that
corresponds to loops L1 and L2 in P and there exist edges
L((u, v)) = irj .n and L((v, w) = isk .m in GP .

Hypothesis 1: There is a flow dependence if isk > irj .
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=⇒ An incoming edge with label irj .n to node v means
variable v is Written in nth iteration of instruction irj . An
outgoing edge with label isk .m to node v means variable v is
Read in mth iteration of instruction isk .

=⇒ The condition isk > irj means that first a value is
Written to v in nth iteration of instruction irj and then Read
from v in mth iteration of instruction isk .

=⇒ By Definition IV.6, there exists flow dependence
between statements isk and irj if Read operation succeeds
Write operation.

Hypothesis 2: L1 and L2 can be fused if m ≥ n and
isk > irj .

=⇒ As m ≥ n and isk > irj , even after fusing
the statements isk and irj as Read operation succeeds Write
operation on variable v, semantics of code is unchanged.

=⇒ By definition IV.4, statements of loops L1 and L2
can be fused if the semantics of the code is intact.

Hypothesis 3: L1 and L2 can not be fused if n > m.

=⇒ Before fusing, in loop L1 write operation is
performed on variable v in nth iteration of instruction irj .
In loop L2 variable v is Read in mth iteration of instruction
isk .

=⇒ If L1 and L2 are fused, as n > m, variable v is read
in mth iteration of instruction isk even before v is written in
nth iteration of instruction irj i.e., older value of variable v
is read not the updated.

=⇒ As semantics of code changes, loop fusion is not
possible if n > m.

Example 6 (Case i)

L1 : f o r (

1︷︸︸︷
i = 1 ;

2︷︸︸︷
i < 3 ;

3︷︸︸︷
i + + )

4 : A[ i ]= x ;

L2 : f o r (

5︷︸︸︷
j = 1 ;

6︷︸︸︷
j < 3 ;

7︷︸︸︷
j + + )

8 : B[ j ]=A[ j ] ;

x

A[1]

A[2]

B[1]

B[2]

4.1

4.2

8.2

8.1

If flow dependence exists between loops L1 and L2 i.e., if
an instruction in L1 access a memory location M for ‘Write’
and the same location is accessed by an instruction in loop L2
for ‘Read’ then merging of loops is possible if M is accessed
for ‘Write’ and then for ‘Read’ even after fusion. In example
6(case i), L((x,A[1])) = 4.1 and L((A[1], B[1])) = 8.1 says
A[1] is updated in iteration 1 of instruction 4 and read in
iteration 1 of instruction 8. As a value is updated in first
loop and read in second loop in the same iteration, merging of
loops will not change the semantics of code. Therefore edges
L((u, v)) = n.i and L((v, w) = m.j where n ∈ L1 , m ∈ L2

Example 6 (case ii)

L1 : f o r (

1︷︸︸︷
i = 1 ;

2︷︸︸︷
i < 3 ;

3︷︸︸︷
i + + )

4 : x=x+A[ i ] ;

L2 : f o r (

5︷︸︸︷
j = 1 ;

6︷︸︸︷
j < 3 ;

7︷︸︸︷
j + + )

8 : B[ j ]= x ;

x

A[1]

A[2]

B[1]

B[2]

4.1
4.2

8.1

8.2

4.1

4.2

and j ≥ i in the graph represents flow dependence where
merging of loops is possible.

If flow dependence exists between loops L1 and L2 merg-
ing of loops is not possible if on fusing of loops ‘Write’
operation succeeds ‘Read’ on memory location M , which
changes the semantics of the code. In example 6(case ii), x
is accessed for ‘Write’ in first loop and for ‘Read’ in second
loop, which shows flow dependence. L((A[2], x)) = 4.2 and
L((x,B[1])) = 8.1 says, value of variable x to be written in
iteration 2 of instruction 4 is read in iteration 1 of instruction 8
i.e., value of x is read even before write operation. Therefore,
merging of loops L1 and L2 changes the semantics of the
code.

Theorem 6. Given program P with loops L1 with statements
{ir1 , ir2 , ...irn} and loop L2 with statements {is1 , is2 , ...ism}.
GP be the corresponding graph of P, GL1 and GL2 are the
sub-graphs of GP that corresponds to loops L1 and L2 respec-
tively. Let there exist edges L((u, v)) = irj .n and L((w, u)) =
isk .m such that irj ∈ L1, isk ∈ L2. i

1) L1 and L2 is said to have Anti dependence if isk >
irj .

2) L1 and L2 can be fused if m ≥ n and isk > irj .
3) L1 and L2 can not be fused if n ≥ m, i.e., an

outgoing edge from u of L1 have iteration number
greater than an incoming edge to u.

Proof: Let GL1 and GL2 be the sub-graphs of GP that
corresponds to loops L1 and L2 in P and there exist edges
L((u, v)) = irj .n and L((w, u) = isk .m in GP .

Hypothesis 1: There is an anti dependence if isk > irj .

=⇒ An incoming edge with label irj .n to node v means
variable v is Written in nth iteration of instruction irj . An
outgoing edge with label isk .m from node w to node u means
variable u is Written in mth iteration of instruction isk .

=⇒ The condition isk > irj means that first a value
is Read from u in nth iteration of instruction irj and then
Written from w to u in mth iteration of instruction isk .

=⇒ By Definition IV.7, there exists anti dependence
between statements isk and irj if Write operation succeeds
Read operation.

Hypothesis 2: L1 and L2 can be fused if m ≥ n and
isk > irj .
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=⇒ As m ≥ n and isk > irj , even after fusing
the statements isk and irj as Write operation succeeds Read
operation on variable u, semantics of code is unchanged.

=⇒ By definition IV.4, statements of loops L1 and L2
can be fused if the semantics of the code is intact.

Hypothesis 3: L1 and L2 can not be fused if n > m.

=⇒ Before fusing, in loop L1 Read operation is
performed on variable u in nth iteration of instruction irj . In
loop L2 variable u is Written in mth iteration of instruction
isk .

=⇒ If L1 and L2 are fused, as n > m, variable u is
Written in mth iteration of instruction isk even before u is
Read in nth iteration of instruction irj i.e., a new value is
written to u even before older value is Read.

=⇒ As semantics of code changes, loop fusion is not
possible if n > m.

Example 7 (case i)

L1 : f o r (

1︷︸︸︷
i = 1 ;

2︷︸︸︷
i < 3 ;

3︷︸︸︷
i + + )

4 : A[ i ]= x [ i ] ;

L2 : f o r (

5︷︸︸︷
j = 1 ;

6︷︸︸︷
j < 3 ;

7︷︸︸︷
j + + )

8 : x [ j ]=B[ j ] ;

x[1]

A[1]

A[2]

B[1]

B[2]

x[2]

4.1

4.2

8.1

8.2

Example 7 (Case ii)

L1 : f o r (

1︷︸︸︷
i = 1 ;

2︷︸︸︷
i < 3 ;

3︷︸︸︷
i + + )

4 : A[ i ]= x ;

L2 : f o r (

5︷︸︸︷
j = 1 ;

6︷︸︸︷
j < 3 ;

7︷︸︸︷
j + + )

8 : x=B[ j ] ;

x

A[1]

A[2]

B[1]

B[2]

4.2

8.2

8.24.1

If anti dependence exists between loops L1 and L2 i.e. if
an instruction in L1 access an memory location M for Read
and the same location is accessed by an instruction in loop
L2 for Write, merging of loops is possible if M is accessed
for Read first and then for Write even after fusing. In example
7(case i), L((x[2], A[4])) = 4.2 and L((B[2], x[2])) = 8.2
says x[2] is read in iteration 2 of instruction 4 and written in
iteration 1 of instruction 8. As the value is ‘Read’ in first loop
and ‘written’ in second loop in the same iteration, merging of
loops will not change the semantics of code. Therefore edges
L((u, v)) = n.i and L((w, u) = m.j where n ∈ L1 , m ∈
L2 and j ≥ i in the graph represents anti dependence where
merging is possible.

If anti dependence exists between loops L1 and L2 merging
of loops is not possible if a memory location M which is
accessed for ‘Read’ in L1 and then for ‘Write’ in L2 is
not preserved after fusing. Example 7(case ii) shows the anti

dependence where memory location x is accessed for ‘Write’
many times in first loop and for ‘Read’ in second loop, merging
of loops is not possible.

If Loop carried forward dependence exists between loops
L1 and L2 merging of loops is possible. In Example 8,
L((x,A[1])) = 5.1 and L((A[1], B[2])) = 9.2 says memory
location A[1] is written in iteration 1 of instruction 5 and is
read in iteration 2 of instruction 9. As a value computed in
iteration i of first loop is accessed in iteration j of second loop
where j ≥ i, merging of loops will not change the semantics
of the code.

Example 8
(a) (b)

1 : A[ 0 ] = 5 ;

L1 : f o r (

2︷︸︸︷
i = 1 ;

3︷︸︸︷
i < 3 ;

4︷︸︸︷
i + + )

5 : A[ i ]= x ;

L2 : f o r (

6︷︸︸︷
j = 1 ;

7︷︸︸︷
j < 3 ;

8︷︸︸︷
j + + )

9 : B[ j ]=A[ j − 1 ] ;

A[0]

A[1]

A[2]

B[1]

B[2]

PR

x

1

9.1

9.2

5.1

5.2

If Loop carried backward dependence exists between
loops L1 and L2 merging of loops is not possible. If a memory
location is accessed by an iteration of a statement Si in loop
L1 and the same location is accessed by previous iterations
of statement Sj in loop L2, when such statements are merged
Sj in L2 will access the memory location first and then Si

which will change the order of execution. As semantics of
code will change, fusing of loops is not possible if loop carried
backward dependence is present between L1 and L2.

In Example 9, L((x,A[2])) = 4.2 and L((A[2], B[1])) =
8.1 says memory location A[2] is written in iteration 2 of
instruction 4 and is read in iteration 1 of instruction 8 i.e.,
memory location A[2] is read even before it is updated. As
a value computed in iteration i of first loop is accessed in
iteration j of second loop where j < i, merging of loops can
change the semantics of the code.

Example 9
(a) (b)

L1 : f o r (

1︷︸︸︷
i = 1 ;

2︷︸︸︷
i < 3 ;

3︷︸︸︷
i + + )

4 : A[ i ]= x ;

L2 : f o r (

5︷︸︸︷
j = 1 ;

6︷︸︸︷
j < 3 ;

7︷︸︸︷
j + + )

8 : B[ j ]=A[ j + 1 ] ;

xA[1]

A[2]

B[1]

B[2]A[3]

8.1

4.1

4.2

9.2

Thus, we conclude that fusion of two loops L1 and L2
is possible though the above discussed dependencies such
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as flow dependence(case i), loop carried dependence, anti
dependence(case i) exists between the statements of the loops.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a model to perform var-
ious optimizations like loop invariant code motion, live range
analysis, node splitting and loop fusion through a graphical
representation of the program called as Data Dependence Iden-
tifier (DDI). For each of the optimization we have investigated
on the condition that has to be satisfied by DDI (graphical
representation of the program P ) so that optimizations can be
performed which leads to an effective parallelization of P .

All the optimizations that were discussed are justified as
well as validated conceptually with a sequence of rigorous
theorems. These theoretical proofs also serve the purpose of
the correctness of proposed algorithms with which one could
easily perform the optimizations of a program.

Salient Features: Though there are many graphical repre-
sentations for a program, our graphical representation referred
as DDI is a unique graphical representation in the state that the
variables of P are used as nodes and the edges between the
nodes reflect the nature of access (read/write) of the variables
from the memory.

Thus, salient features of our work are:

• a novel graphical representation of a program.

• performing almost all the optimizations with one
model DDI.

Future Work: The optimization procedures are the main
components of parallelization process. With our DDI model,
in this paper we have just established the performance of
various optimization procedures. Validating the optimization
procedures with the benchmarked programs may not yield
any significant insight on the performance of optimization
procedures with DDI. The reason being that, performance of
the various components of a machine may not yield any useful
information on the performance of the machine built with those
components. For this reason, experimental validation of a full
DDI based parallelizer is proposed as future work and to be
taken as separate work.

Further, one can initiate investigating DDI for extending the
DDI as an optimizer, to as parallelizer. Extension of the DDI
as a full fledged parallelizer and the empirical comparison of

the DDI based parallelizer with the contemporary parallelizers
are the two major works worthful to be considered as future
works in the direction of the present paper.
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