
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

237 | P a g e

www.ijacsa.thesai.org

Statistical Analysis for Revealing Defects in Software

Projects: Systematic Literature Review

Alia Nabil Mahmoud
1
, Vítor Santos

2

Information Management” Systems Management and Information Technologies”

NOVA IMS – Information Management School, Universidade Nova de Lisboa, Lisboa, Portugal

Abstract—Defect detection in software is the procedure to

identify parts of software that may comprise defects. Software

companies always seek to improve the performance of software

projects in terms of quality and efficiency. They also seek to

deliver the soft-ware projects without any defects to the

communities and just in time. The early revelation of defects in

software projects is also tried to avoid failure of those projects,

save costs, team effort, and time. Therefore, these companies

need to build an intelligent model capable of detecting software

defects accurately and efficiently. The paper is organized as

follows. Section 2 presents the materials and methods, PRISMA,

search questions, and search strategy. Section 3 presents the

results with an analysis, and discussion, visualizing analysis and

analysis per topic. Section 4 presents the methodology. Finally, in

Section 5, the conclusion is discussed. The search string was

applied to all electronic repositories looking for papers published

between 2015 and 2021, which resulted in 627 publications. The

results focused on finding three important points by linking the

results of manuscript analysis and linking them to the results of

the bibliometric analysis. First, the results showed that the

number of defects and the number of lines of code are among the

most important factors used in revealing software defects.

Second, neural networks and regression analysis are among the

most important smart and statistical methods used for this

purpose. Finally, the accuracy metric and the error rate are

among the most important metrics used in comparisons between

the efficiency of statistical and intelligent models.

Keywords—Defects; software projects; statistical model; linear

regression; logistic regression

I. INTRODUCTION

Software companies aim to improve the quality of
software projects in terms of their accuracy and efficiency.
Software companies consume from 50% to 75% of the total
budget of software projects in finding and fixing defects in
those projects [1]. In the CHAOS report, many software
projects vary in size (small, medium, and large projects) and,
therefore, cost. These projects use many software
development methods such as waterfall and agile. Several
software projects failed due to the development and testing
phase, as shown in Table I. A standard software development
cycle has six phases, namely, planning, analysis, design,
implementation, testing, and maintenance. In the development
phase, developers modify source code that may lead to many
defects in a software project. In modifications, developers
should be careful not to produce any new defects in these
projects. The testing phase is crucial to software projects. It is
responsible for delivering the final project or product
efficiently to customers without any defects and in time. Many

factors, such as McCabe and Halstead, help developers find
and fix defects in those projects, as shown in Table II.
Nevertheless, there is difficulty in using these factors in
medium and large-scale projects. Thus, developers need a
statistical or intelligent model capable of predicting defects in
software projects accurately and efficiently.

Many reasons lead to the failure of software development
projects. These are the lack of experience of the project team,
lack of knowledge of the code language, insufficient
experience in the field, etc. Software defects in the
development phase are among the most critical problems
facing software companies because the many defects lead to
those projects' failure. The avoidance of software defects is to
gain clients' trust by providing a quality product. According to
the CHAOS report, many software projects still fail because of
the many reasons that have been mentioned earlier [2].
However, the direct reason for these projects' failure is the
emergence of many software defects, as shown in Table I [2].

It was performed a compressive study about the relevant
related work using PRISMA methodology. The PRISMA
explanation gives the minimum set of items for detailing a
precise audit. It comprises the four-phase flow diagram, which
permits us to utilize the Clarification and Elaboration
document to go through cases and clarifications and find the
meaning and method of reasoning for each item on the
checklist. For a clear understanding of PRISMA, perusing the
Clarification and Elaboration document is unequivocally
recommended. The PRISMA Stream Graph delineates the
stream of data through the diverse stages of a Precise Audit. It
maps out the number of records recognized, included, and
prohibited and the reasons for avoidances.

TABLE I. CHAOS REPORT BY AGILE VERSUS WATERFALL [2]

Size Method Successful Challenged Failed

All Size

Projects

Agile

(Scrum)
39% 52% 9%

Waterfall 11% 60% 20%

Large Size

Projects

Agile
(Scrum)

18% 29% 53%

Waterfall 3% 55% 42%

Medium

Size
Projects

Agile
(Scrum)

27% 62% 11%

Waterfall 7% 68% 25%

Small Size

Projects

Agile
(Scrum)

58% 38% 4%

Waterfall 44% 45% 11%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

238 | P a g e

www.ijacsa.thesai.org

TABLE II. SOFTWARE METRICS OF MCCABE AND HALSTEAD TO REVEAL

SOFTWARE DEFECTS [7]

Factor ID Factor Description

1 Loc McCabe‟s line count of code

2 v(g) McCabe „„cyclomatic complexity‟‟

3 eV(g) McCabe „„essential complexity‟‟

4 Iv(g) McCabe „„design complexity‟‟

5 N Halstead total operators + operands

6 V Halstead „„volume‟‟

7 L Halstead „„program length‟‟

8 D Halstead „„difficulty‟‟

9 I Halstead „„intelligence‟‟

10 E
Halstead „„effort‟‟: effort to write
program

11 B
Halstead „„Number of Delivered

Bugs‟‟

12 T
Halstead‟s time estimator: time to

write program

13 LOCode Halstead‟s line count

14 LOComment
Halstead‟s count of lines of
comments

15 LOBlank Halstead‟s count of blank line

16 LOCodeAndComment
Halstead‟s count of lines which

contain both code and comments

17 uniq_Op Unique operators

18 uniq_Opnd Unique operands

19 total_Op Total operators

20 total_Opnd Total operands

21 branchCount Of the flow graph

22 defects
Module has/has not one or more

reported defects

Many researchers, such as [3] and others [4]; [5] have
suggested many factors to detect software defects. However,
to date, there is no formal study to determine the critical
factors to help software companies detect software defects
with a reasonable degree of accuracy. Most researchers such
as [6] and others also used scientific methods and models to
detect software defects, but these models were weak in
accuracy and results. Thus, software companies need a formal
study to determine the critical factors to build a statistical
model capable of detecting software defects with high results
and accuracy.

The paper is organized as follows. Section 2 presents the
materials and methods, PRISMA, search questions, and search
strategy. Section 3 presents the results with an analysis, and
discussion, visualizing analysis and analysis per topic.
Section 4 presents the methodology. Finally, in Section 5, we
discuss the conclusion.

II. MATERIALS AND METHODS

The methodology is composed of three steps. First,
PRISMA was used to find appropriate manuscripts in our
research based on the manuscript title and the experimental

results of the manuscripts. Second, bibliometric analysis was
used to find the common terms that influence the revealing of
software defects in terms of critical factors, performance
metrics, and intelligent and statistical methods. Finally, the
manuscripts were analyzed in detail to extract the most
important factors and statistical methods used in detecting
software defects and linking them to the results of the
bibliometric analysis.

The systematic literature survey presents an evaluation of
the scientific community's contributions to the topic of
revealing software defects by using a rigorous and auditable
methodology based on the PRISMA approach.

The PRISMA method is composed of five phases, as
follows:

 Identification of relevant manuscripts of the domain or
domains.

 Screening of titles, abstracts, papers without
experiments, and position papers.

 Eligibility analysis.

 Full-text screening exclusion.

 Final papers to be analyzed in detail.

It was also adopted a bibliometric map; the bibliometric
map is used to find the relationships between common
software defects domain terms [8]. To this end, three phases
were followed, evaluating the following quantities:

 Words frequency.

 Most common words.

 Frequency of these common words in the final
manuscripts of the study.

By following PRISMA [9].this section is structured in the
following way: (1) our research questions, (2) followed paper
search strategy, (3) bibliometric map, (4) inclusion and
exclusion criteria, and (5) final paper selection.

A. Research Questions

The study aims to provide a state-of-the-art review of
current research efforts in revealing software projects. It was
started by introducing the reader to specific topics concerning
research objectives and employed methods. Particularly, the
survey addresses the following research questions, aiming to
identify the adoption techniques that have been applied in the
overall domain of revealing software defects:

RQ1: What kinds of metrics have been adopted in software
defects (SD)?

RQ2: Which statistical or intelligent techniques have been
adopted for SD?

RQ3: What performance metrics have been adopted in the
literature in the prediction of SD?

B. Search Strategy

A literature survey, generally, recommends searching
several available journal and conference paper repositories to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

239 | P a g e

www.ijacsa.thesai.org

determine if similar work has already been performed, aiding
in locating potentially relevant studies. The papers counted
were searched in two electronic repositories, Scopus, and Web
of Science. This study's covered topics were multidisciplinary,
including, Software, Computer Science, Engineering,
Mathematics, Environmental Science, Telecommunications,
and Multidisciplinary Sciences. However, both repositories
were used. The analysis showed that most of the publications
from Web of Science were in Scopus as well. A repeated
search process was performed to identify publications that
have in their titles, abstracts, or keywords the following
expressions: "software-defects" (or software defects, or defect
or projects defects), and "machine learning" in Fig. 1.

Phase 1, the search string was applied to all electronic
repositories looking for papers published between 2015 to
2021, which resulted in 627 publications.

Phase 2 followed a 5-step approach. In step 1, we excluded
manuscripts based on titles (e.g., software defects, regression,
and machine learning), which narrowed the set to 211
publications. In step 2, we excluded manuscripts based on
abstracts screening, which resulted in 117 publications. In the
following step 3, we excluded manuscripts reporting research
without experiments, resulting in 83 publications.

Subsequently, in step 4 of phase 2, we excluded position
manuscripts which gave us the final figure of 29 publications,
as shown in Fig. 2.

Fig. 1. Search query for Scientific Manuscripts to Extract the Best Studies in

Software Defects.

Fig. 2. Scientific Steps for Analyzing the Proposed Manuscripts “PRISMA

Flow Chart”.

In phase 3, manuscripts underwent a full-text reading and
review, which lead to no exclusions (the result of phase 4).

As a result of our paper selection approach, the final list
included 29 manuscripts (phase 5), analyzed in detail in this
paper. These were further divided into the following four
categories, as shown in Tables III and IV.

 Regression analysis studies to reveal Software Defects.

 Studies of Software Defects Prediction.

TABLE III. REGRESSION ANALYSIS STUDIES TO REVEAL SOFTWARE

DEFECTS

No Ref Application Dimensions

Method of

Solution and

Performance

Metrics

1

S.N.
Umar[10

]

Software testing
defect

prediction

model-a
practical

approach

Total number of

test cases executed,
test team size,

allocated

development
effort, test case

execution effort,

and the total
number of

components

delivered

Multiple linear

regression. R

square and
standard error

2

(Dhiaudd
in &

Ibrahim,

2012)[11
]

A Prediction

Model for

System Testing
Defects using

Regression

Analysis

Software

complexity, test

process, errors, the
severity of the

defect, and validity

of defect

Multiple linear

regression.
Adjusted R

square

3

E. A.

FELIX

and et al

[12]

Integrated

Approach to
Software

Defect

Prediction

Defect
acceleration,

namely, the defect
density, defect

velocity, and

defect introduction
time

Statistical
analysis.

Adjusted R

square and

correlation

coefficient

4

D.

VERMA
and et al

[13]

Prediction of

defect density

for open source
software using

repository

metrics

software size,

number of

developers,
commits, and the

total number of

defects

Multiple linear

regression. R

square

5

D.

Sharma
and et al

[14]

Identification of

latent variables

using factor
analysis

and multiple

linear
regression for

software fault

prediction

Coupling between
object classes,

depth of

inheritance tree,
lack of cohesion of

methods, and

weighted methods
per class

Multiple linear
regression. R

square and

Adjusted R
square

6

O. Sari

and et al
[15]

Use of Logistic
Regression

Analysis for
Bug Prediction

Weighted method

count, depth of

inheritance tree,

lack of cohesion in
methods, number

of attributes, and
number of methods

Logistic

regression.
Standard error

7

G.

MAUSA
and et al

[16]

Software

Metrics as

Identifiers of
Defect

Occurrence

Severity

Software size,

number of code
lines, and the total

number of defects.

Correlation
coefficients and

logistic

regression.
Error rate

(software-defects OR defect OR projects) AND (OR “data mining”

OR forecasting OR “machine learning” OR “neural network" OR
“clustering" OR “artificial intelligence” OR “prediction” OR “predictive”
OR “statistical” OR analysis”)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

240 | P a g e

www.ijacsa.thesai.org

8

Peng H.

and et al

[17]

presented a

model for
predicting

defects in

software
projects

Software size,
number of code

lines, and the total

number of defects.

Logistic

regression.

Standard error

9

M.

Dhillon
and et al

[18]

An empirical

model for fault

prediction on
the basis

of regression

analysis

Weighted method

count, depth of
inheritance tree,

lack of cohesion in

methods, number
of attributes, and

number of methods

Logistic
regression.

Precision,

recall, and f1
measure

10

X. Chen
and et al

[19]

Multi-Objective

Effort-Aware
Just-in-Time

Software Defect

Prediction

diffusion [Number
of modified

subsystems], size

[line of codes],
history [The

number of unique

changes to the
modified files],

and finally,

experience
[Developer

experience].

Logistic
regression.

Accuracy

TABLE IV. STUDIES OF SOFTWARE DEFECTS PREDICTION

No Ref Application Dimensions

Method of

Solution and

Performance

Metrics

1
A. H.

Yousef [7]

Extracting

software static

defect models
using

data mining

McCabe and

Halstead
metrics

Data mining

techniques.
Accuracy,

Precision,

Recall, and F1
score

2

Karuna P

and et al

[20]

Statistical

analysis of
metrics for

software

quality
improvement

Violation of

programming
standards, error

in data

representation,
error in design

logic, and

assorted error
type

Statistical
analysis. Mean

and standard

deviation

3

Sukanya. V

and et al

[21]

An enhanced
evolutionary

model for

software defect
prediction

McCabe and

Halstead

metrics

Enhanced

genetic
algorithm,

genetic

algorithm, and
neural network.

Precision

4

Y. Koroglu

and et al

[22]

Defect

prediction on a
legacy

industrial

software: a

case

study on

software with
few defects

Product and

process metrics

Data mining

techniques.

AUC

5

L. KUMAR
and et al

[23]

An effective

fault prediction
model

developed

using an
extreme

learning

machine with

Complexity,

coupling,
cohesion, and

inheritance in

the code

Extreme

learning
machine with

various kernel

methods (e.g.,
Linear kernel,

Polynomial

kernel, and

various kernel

methods

Sigmoid kernel).

Accuracy

6

F. Zhang

and et al

[24]

Towards

building a

universal
defect

prediction

model

The weighted

method

programming
language, issue

tracking, total

lines of code,
total number of

files, the total

number of
commits, and

the total number

of developers

K-mean
clustering. AUC

7

A. Marandi

and et al
[25]

An approach of
statistical

methods for

improving
software

quality

Post-delivery
rework effort,

actual effort,
cost of the

appraisal, cost

of prevention,
and cost of

failure

Statistical

analysis.
Standard error

8

G.
RajBahadur

and et al

[26]

The impact of

using
regression

models to build

defect
classifiers

Object-oriented

metrics

Linear

regression,
logistic

regression,

random forest,
support vector

machine, and

neural network.
AUC

9

S. Rathore

and et al

[27]

Predicting the

number of
faults in a

software

system using
genetic

programming

Total number of

modules,

number of lines
of code, and

number of

faulty modules

Genetic

programming.
Recall and error

rate

10

M. Sirshar

and et al
[28]

Comparative

Analysis of

Software

Defect
Prediction

Techniques

Product and

process metrics

Neural Network,

Naive Bayes,

Deep Forest
technique. Error

rate

11

M. Rawat
and et al

[29]

Software

defect
prediction

models for

quality
improvement:

a literature

study

Object-oriented

code, product,

and process
metrics

Regression
models.

Accuracy

12
S. Feng and

et al [30]

Complexity-

based

Oversampling
Technique to

alleviate the

class
imbalance

problem in

software defect
prediction

Line of code,
number of

children, and

weighted
method per

class

Complexity-

based

Oversampling.
Error rate

13
S. Patil and

et al [31]

Predicting

software defect

type using
concept-based

classification

Interface,
syntax, and

standard [build-

config-install]

Concept-based

Classification.
F1 score

14

J.
Jiarpakdee

and et al

[32]

The impact of
automated

feature

selection

inconsistent

and correlated

Automated
Spearman

correlation.

Error rate

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

241 | P a g e

www.ijacsa.thesai.org

techniques

on the
interpretation

of defect

models

15

A. Bangash

and et al
[33]

On the time-

based

conclusion
stability of

cross-project

defect
prediction

models

Time, types of

the projects,

software
development

process

Mathews
Correlation

Coefficient. F-

score

16

S. Morasca
and et al

[34]

On the
assessment of

software defect

prediction
models via

ROC curves

Lines of code

and complexity

Receiver

Operating

Characteristic.
Error rate

III. RESULTS, ANALYSIS, AND DISCUSSION

This section introduces two main parts, which are
bibliometric analysis and analyzing previous works in detail.
The first part shows the relationships between common terms
in intelligence, statistical techniques, and performance metrics
used in the previous study. The second part seeks to find the
scientific gap between proposed manuscripts in this study to
build a novel model to overcome the issues for revealing
defects in software projects.

A. Visualizing Analysis

It was used VOS viewer ("VOS viewer," n.d.), a
Visualizing bibliometric network, to find common
terminology in two areas: software defects and statistical
techniques, across the 29 manuscripts under analysis. This tool
supported the study with visual information enabling us to
explore the relations between the domains of software defects
and statistical techniques. Moreover, it helped to find the most
common dimensions, clustering, and variety techniques able
to answer the research questions.

Fig. 3 represents the visualization of a network map that
displays the relations between the most popular terminology,
how it is linked. The larger node represents the popular
terminology in manuscripts, and the size of it represents the
number of times these words appeared in manuscripts. VOS
viewer splits the terminology into clusters according to the
relevance concerning each other.

It was performed the analysis on the title and abstract
using a binary counting method of 759 examined keywords
with a minimum threshold of 2 occurrences, resulting in 57
terminologies, as shown in the figure. The largest nodes
representing the important nodes of each cluster in the
network map are determined as" Regression" (red), "cluster"
(yellow), "software engineering" (green), "neural network"
(blue), and finally "software defect prediction" (purple).

Fig. 3. The Relationships between the Common Terms using the Bibliometric Map.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

242 | P a g e

www.ijacsa.thesai.org

Looking closer at the network map in Fig. 1, we can see
that the 5 clusters are connected between them; for instance,
the "regression" term is connected to "fault prediction model"
in the same red cluster, it connected to "cluster" and
"accuracy" in the yellow cluster, it is also connected to
"software engineering" and "recall" in the green cluster.
Finally, it is also connected to "neural network" and "feature
selection" in the blue cluster; it is also connected to "software
defect prediction "and "defect density." Besides, the term
"software engineering" in the green cluster is connected to
"cluster" in the yellow cluster, "regression" in the red cluster,
and "neural network" in the blue cluster. Moreover, the terms
"random forest" and "feature selection" are connected to
"neural network" in the blue cluster, "recall" and "software
engineering" in the green cluster, "cluster" in yellow cluster,
"regression" and "fault prediction model" in the red cluster
and "software defect prediction" and "defect density" in the
purple cluster.

Finally, by analyzing the network map in Fig. 1 was
possible to identify the important terms in each cluster, as
follows:

 In the red cluster: "regression" and "software prediction
model."

 In the yellow cluster: "cluster" and "accuracy."

 In the green cluster: "recall" and "software
engineering."

 In the blue cluster: "random forest", "feature selection"
and "neural network"

 In the purple cluster: "software defect prediction" and
"defect density."

B. Analysis per Topic

RQ1 drove to look for metrics, data sources, and critical
factors able to reveal software defects. Our review of papers
S1 to S26 allowed us to extract such critical factors.
Dimensions such as software status [No. of defects], OOP
[Depth of Inheritance Tree and No. of Methods], McCabe
Metrics [Line Count of Code], and Halstead Metrics [Effort to
Write Program and Time to Write Program] seem to be highly
considered when studying the revealing of software defects in
software companies. Table V shows the variety of metrics
used in predicting defects in software projects. The studies of
S1, S4, and S16 relied on team dimension (team size and the
number of developers) to predict software defects in software
projects. The studies of S2, S3, S4, S7, S8, S12, S15, and S26
relied on software status dimensions (software complexity,
number of defects, and software size) to detect defects in those
projects. Moreover, the studies of S5, S6, S9, S15, S16, S18,
and S21 relied on the OOP dimension (coupling between
object classes, depth of inheritance tree, number of methods)
also to reveal defects in those projects. Also, the studies of S7,
S8, S10, S11, S13, S16, S19, S22, and S26 relied on McCabe
metrics (line count of code, cyclomatic complexity, essential
complexity, and design complexity) to find the optimal
intelligent techniques to predict defects in software projects.
Finally, the studies of S1, S3, S11, S13, S16, S17, S25 relied
on Halstead Metrics (total operators + operands, effort to write
the program, number of delivered bugs, count of lines of
comments, and time to write a program) to forecast defects in
various software projects. We observed that four factors are
the most used in predicting defects in software projects. These
are the number of defects, depth of inheritance tree, number of
methods, and line count of code.

TABLE V. MAJOR FACTORS IN SOFTWARE DEFECT PROJECTS

Dimensions

Team Software status OOP McCabe Metrics Halstead Metrics

Other

Factors

S
iz

e

N
o

.
D

ev
el

o
p
er

s

so
ft

w
ar

e
co

m
p

le
x
it

y

N
o

.
o

f
D

ef
ec

ts

S
o

ft
w

ar
e

S
iz

e

C
o
u
p

li
n
g

 b
et

w
ee

n

O
b

je
ct

 c
la

ss
es

D
ep

th
 o

f
In

h
er

it
an

ce

T
re

e

N
o

.
o

f
M

et
h
o
d

s

L
in

e
C

o
u
n

t
o

f
C

o
d
e

C
y
cl

o
m

at
ic

 C
o

m
p

le
x

it
y

E
ss

en
ti

al
 C

o
m

p
le

x
it

y

D
es

ig
n

 C
o

m
p
le

x
it

y

T
o

ta
l

O
p
er

at
o

rs
 +

O
p

er
an

d
s

T
h

e
ef

fo
rt

 t
o

 W
ri

te

P
ro

g
ra

m

N
u

m
b
er

 o
f

D
el

iv
er

ed

B
u
g

s

C
o
u
n

t
o

f
L

in
es

 o
f

C
o

m
m

en
ts

T
im

e
to

 W
ri

te
 P

ro
g

ra
m

S
.N

.
U

m
a

r

[1
0

]
S

1

Software

testing defect
prediction

model-a

practical

✓ - - - - - - - - - - - - ✓ ✓ - - ✓

M
.D

.
S

u
ff

ia
n

a
n

d
 e

t
a
l

S
2

[1
1

]

A Prediction
Model for

System

Testing
Defects using

Regression

Analysis

- - ✓ ✓ - - - - - - - - - - - - - ✓

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

243 | P a g e

www.ijacsa.thesai.org

E
.

A
.
F

E
L

IX

a
n

d
 e

t
a
l.

 S
3

[1
2

]

Integrated

Approach to
Software

Defect

Prediction

- - - ✓ - - - - - - - - - - - - ✓ ✓

D
.

V
E

R
M

A
 a

n
d

e
t

a
l.

 S
4

 [
1

3
]

Prediction of
defect density

for open

source
software

using

repository
metrics

- ✓ - ✓ ✓ - - - - - - - - - - - - -

D
.

S
h

a
rm

a
 a

n
d

 e
t

a
l.

 S
5

[1
4

]

Identification

of latent
variables

using factor

analysis and
multiple

linear

regression for

software fault

prediction

- - - - - ✓ ✓ ✓ - - - - - - - - - ✓

O
.

S
a
r
i

a
n

d

e
t

a
l.

 S
6

 [
1

5
] Use of

Logistic

Regression

Analysis for
Bug

Prediction

- - - - - - ✓ ✓ - - - - - - - - - -

G
.

M
A

U
S

A

a
n

d
 e

t
a
l.

 S
7

[1
6

]

Software

Metrics as

Identifiers of
Defect

Occurrence

Severity

- - - ✓ ✓ - - - ✓ - - - - - - - - -

P
e
n

g
 H

.
a

n
d

e
t

a
l.

 s
8

 [
1
7

] presented a

model for
predicting

defects in

software
projects

- - - ✓ ✓ - - - ✓ - - - - - - - - -

M
.

D
h

il
lo

n
 a

n
d

e
t

a
l

s9
 [

1
8

]

An empirical
model for

fault

prediction on
the basis

of regression

analysis

- - - - - - ✓ ✓ - - - - - - - - - ✓

X
.

C
h

e
n

 a
n

d
 e

t

a
l.

 s
1

0
 [

1
9

]

An empirical
model for

fault

prediction on
the basis

of regression

analysis

- - - - - - - - ✓ - - - - - - - - ✓

A
.

H
.

Y
o

u
se

f

s1
1
 [

7
]

Extracting

software

static defect

models using

data mining

- - - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

K
a

r
u

n
a

 P

a
n

d
 e

t
a
l.

 s
1
2

[2
0

]

Statistical

analysis of
metrics for

software

quality
improvement

- - - ✓ - - - - - - - - - - - - - ✓

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

244 | P a g e

www.ijacsa.thesai.org

S
u

k
a

n
y
a

.V

a
n

d
 e

t
a
l

s1
3

[2
1

]

An enhanced

evolutionary
model for

software

defect
prediction

- - - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

Y
.

K
o
r
o
g
lu

 a
n

d
 e

t

a
l

s1
4

 [
2

2
]

Defect
prediction on

a legacy

industrial
software: a

case study on

software with
few defects

- - - - - - - - - - - - - - - - - ✓

L
.

K
U

M
A

R
 a

n
d

 e
t

a
l.

 s
1
5

[2
3

]

An effective

fault
prediction

model

developed
using an

extreme

learning

machine with

various

kernel
methods

- - ✓ - - ✓ ✓ - - - - - - - - - - -

F
.

Z
h

a
n

g

a
n

d
 e

t
a
l.

 s
1
6

[2
4

]

Towards

building a
universal

defect

prediction
model

- ✓ - - - - - ✓ ✓ - - - - - - ✓ - -

A
.

M
a
r
a

n
d

i

a
n

d
 e

t
a
l

s1
7

[2
5

]

An approach
of statistical

methods for

improving
software

quality

- - - - - - - - - - - - - ✓ - - - ✓

G
.

R
a

jB
a

h
a

d
u

r

a
n

d
 e

t
a
l

s1
8

[2
6

]

The impact of

using

regression
models to

build defect

classifiers

- - - - - ✓ ✓ ✓ - - - - - - - - - -

S
.

R
a

th
o
r
e

a
n

d

e
t

a
l.

 s
1
9

 [
2

7
]

Predicting the

number of
faults in a

software

system using
genetic

programming

- - - - - - - - ✓ - - - - - - - - -

M
.

S
ir

sh
a
r

a
n

d
 e

t
a
l.

 s
2
0

[2
8

]

Comparative

Analysis of
Software

Defect

Prediction
Techniques

- - - - - - - - - - - - - - - - - ✓

M
.

R
a

w
a

t
a

n
d

 e
t

a
l.

 s
2

1
 [

2
9

] Software

defect

prediction

models for
quality

improvement:

a literature
study

- - - - - ✓ ✓ ✓ - - - - - - - - - ✓

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

245 | P a g e

www.ijacsa.thesai.org

S
.

F
e
n

g
 a

n
d

 e
t

a
l.

s2
2
 [

3
0

]
Software

defect
prediction

models for

quality
improvement:

a literature

study

- - - - - - - - ✓ - - - - - - - - ✓

S
.

P
a

ti
l

a
n

d
 e

t
a

l.

s2
3
 [

3
1

]

Software

defect

prediction
models for

quality

improvement:
a literature

study

- - - - - - - - - - - - - - - - - ✓

J
.
J

ia
r
p

a
k

d
ee

 a
n

d

e
t

a
l

s2
4
 [

3
2

]

Software
defect

prediction

models for
quality

improvement:

a literature
study

- - - - - - - - - - - - - - - - - ✓

A
.

B
a

n
g
a

sh
 a

n
d

 e
t

a
l.

 s
2

5
 [

3
3

]

Software

defect

prediction
models for

quality

improvement:
a literature

study

- - - - - - - - - - - - - - - - ✓ ✓

S
.

M
o
r
a

sc
a

 a
n

d
 e

t

a
l

s2
6

 [
3

4
]

Software
defect

prediction

models for
quality

improvement:

a literature
study

- - ✓ - - - - - ✓ - - - - - - - - -

While addressing RQ2, we examined the techniques
applicable in predicting defects in software projects. With this
goal, we analyzed manuscripts S1 to S26 and noticed that
techniques such as multiple linear regression, logistic
regression, and machine learning are the most adopted, as
shown in Table VI. Moreover, multiple linear regression was
adopted by 23% of the analyzed manuscripts, whereas
statistical analysis and data mining were the choices in 27% of
manuscripts. Logistic regression accounted for 27% of the
revised manuscripts. Also, machine learning techniques
accounted for 19% of the revised manuscripts. Finally, the
remaining 4% corresponded to the other intelligent techniques.
We noticed four points.

 Firstly, the studies (S1, S2, S4, S5, and S21) relied on
multiple linear regression where S1 presented a model to
predict defects in software projects to enhance the quality of
software testing. This study seeks to find a suitable model to
predict software defects to save effort, costs, and software
companies' time. The results of this study show that R square
and standard errors are 0.91 and 5.90%, respectively. S2
presented a model for predicting defects in software projects
to improve the testing process in those projects. Besides, the
adjusted R square in multiple linear regression is 90%. S4
presented a framework to predict defect density in open-
source software projects. The results of this study show that

the R square in multiple linear regression is 0.86. S5 presented
a model to predict faults in software projects. Furthermore, the
results of this study show that R square and adjusted R square
are 83% and 80%, respectively. S21 presented a review study
to detect defects in a software project. It also seeks to find an
optimal model to detect defects efficiently to save costs and
time. Also, this study confirmed that regression models have
achieved high results in terms of accuracy in detecting defects
of software projects.

Secondly, the studies (S6, S7, S8, S9, and S10) relied on
logistic regression, where S6 presented an approach to
improve the quality of software projects by detecting bugs in
software projects efficiently. Also, the standard error in the
proposed statistical technique is 0.24. S7 presented a study to
detect defects in software projects in the early stage to save
effort, money, and time. This study also depends on statistical
techniques such as correlation coefficients and logistic
regression. The results show that the accuracy in logistic
regression is 91.2%, and the correlation coefficient is 0.95. S8
presented a model for predicting defects in software projects.
The result of this study shows that the standard error in
logistic regression is 0.19. S9 presented an empirical model to
predict fault in software projects. This study also depends on
the binary logistic regression technique to predict defects in
software projects. The results also show that the precision,
recall, and f1 measures are 0.65, 0.9, and 0.79. S10 presented

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

246 | P a g e

www.ijacsa.thesai.org

a study to predict software defects by using logistic regression
just in time. The results of this study show that the proposed
technique is better than the state-of-the-art methods in terms
of accuracy. The accuracy of the proposed technique is 0.73.

TABLE VI. INTELLIGENT AND STATISTICAL TECHNIQUES IN SOFTWARE

DEFECT PROJECT

NO

Multiple

Linear

Regression

Logistic

Regress

ion

Statistica

l

Analysis

Data

Minin

g

Machine

Learnin

g

Othe

r

S1 ✓ - - - - -

S2 ✓ - - - - -

S3 - - ✓ - - -

S4 ✓ - - - - -

S5 ✓ - - - - -

S6 - ✓ - - - -

S7 - ✓ - - - ✓

S8 - ✓ - - - -

S9 - ✓ - - - -

S10 - ✓ - - - -

S11 - - - ✓ - -

S12 - - ✓ - - -

S13 - - - - ✓ ✓

S14 - - - ✓ - -

S15 - - - - ✓ ✓

S16 - - - - ✓ -

S17 - - ✓ - - -

S18 ✓ ✓ - - ✓ -

S19 - - - - - ✓

S20 - - - - ✓ -

S21 ✓ ✓ - - - -

S22 - - - - - ✓

S23 - - - - - ✓

S24 - - ✓ - - -

S25 - - ✓ - - -

S26 - - - - - ✓

Thirdly, the studies (S3, S11, S12, S14, S17, S24, S25)
relied on statistical analysis and data mining techniques where
S3 presented an approach to forecasting defects in software
projects. It also depends on statistical regression such as
multiple linear regression to predict defects in those projects.
Besides, the adjusted R square in statistical regression is
98.6%, and the correlation coefficient is 0.98. S11 presented a
model to extract software static defects by using data mining
techniques. The results of this study show that the accuracy in
Association Rules, Decision Tree, Naive Bayes, and Neural
Network is 77.2%, 76.6%, 73.2%, and 73.2%, respectively.
Thus, Association Rules is better than Decision Tree, Naive
Bayes, and Neural Network in terms of accuracy. S12
presented a study to improve the quality of software projects
using statistical analysis. The results of this study were

evaluated in terms of projection of errors (total errors) and
cumulative projection of severity errors (e.g., series, moderate
and minor). It also shows that total errors in 2016 are more
than in 2015 by 1.5%.

Moreover, most severity errors are minor types. S14
presented a study to predict defects in legacy industrial
software using data mining techniques. The results of this
study show that the area under the curve (AUC) in Random
Forest, Logistic Regression, Decision Tree, Naive Bayes, and
a combination of Random Forest + Logistic regression is 0.73,
0.72, 0.66, 0.67, and 0.75. Thus, a combination of Random
Forest + Logistic regression is better than Random Forest,
Logistic Regression, Decision Tree, Naive Bayes. S17
presented an approach to improve software quality and cost
minimization using statistical analysis. The results of this
study were evaluated in terms of standard error. The standard
error in the statistical model is 0.13. S24 presented a study to
evaluate the impact of automated feature selection techniques
on the interpretation of defect models. This study investigated
12 automated feature selection techniques in terms of
consistency, correlation, performance, computational cost. By
analyzing 14 publicly-available defect datasets, the results
showed that the most important inconsistent metrics are highly
correlated with the automated Spearman correlation of 0.85–1.
S25 presented a study to predict defects in software models.
This study applied the Mathews Correlation Coefficient-MCC
to avoid defects in software models. MCC in F-score is less
than 0.01. Therefore, the proposed technique is better than the
state-of-the-art methods in terms of MCC.

Fourthly, the studies (S13, S15, S16, S18, S20) relied on
machine learning techniques where S13 presented a model to
predict software defects by using an enhanced genetic
algorithm. The results of this study were evaluated in terms of
precision. It also confirmed that precision in enhanced genetic
algorithm, genetic algorithm, and neural network is 0.93, 0.81,
and 0.80, respectively. Thus, the enhanced genetic algorithm
is better than the genetic algorithm and neural network. S15
presented a model to predict effective faults in software
projects using extreme learning machines with various kernel
methods (e.g., Linear kernel, Polynomial kernel, and Sigmoid
kernel). The results of this study were evaluated in terms of
accuracy metrics. The accuracy in the linear kernel,
Polynomial kernel, and Sigmoid kernel is 0.88, 0.93, and 0.91.
Thus, an extreme learning machine using the Polynomial
kernel is better than linear kernel and Sigmoid kernel. S16
presented a model to predict universal defects in software
projects using clustering techniques. The results of this study
were evaluated in terms of AUC. The AUC in K-mean
clustering is 0.76. S18 presented a model to detect defects in a
software project. This study depends on object-oriented
metrics. It also relies on many intelligent techniques such as
linear regression (LR), logistic regression (LG), random forest
(RF), support vector machine (SVM), and neural network
(NN). The results of this study were evaluated in terms of
AUC. The AUC in LR, LG, RF, SVM and NN is 0.86, 0.94,
0.91, 0.90 and 0.90. Thus, LG is better than LR, RF, SVM,
and NN. S20 presented a review analysis to predict defects in
a software project. This study depends on many metrics, such
as product and process metrics. It also introduced a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

247 | P a g e

www.ijacsa.thesai.org

comparative analysis between Neural Network, Naive Bayes,
Deep Forest technique. This study relies on previous works in
the analysis of these techniques. Besides, this study confirmed
that Deep Forest is better than Neural Network, Naive Bayes
in terms of error rate.

Fifthly, the studies (S19, S22, S23, and S26) relied on
other intelligent and statistical techniques where S19
presented an approach to predict many faults in a software
system by using a genetic algorithm. The results of this study
were evaluated in terms of error rate and recall. The error rate
and recall in the genetic algorithm are 0.11, 0.91, respectively.
S22 presented a new technique in software defect prediction
by Complexity-based Oversampling. This paper relied on
three main factors: a line of code, number of children, and
weighted method per class. By analyzing the results, the
proposed technique is better than the other oversampling
techniques under the statistical Wilcoxon rank-sum test and
Cliff's effect size. S23 presented a framework to predict
software defect type using concept-based classification. This
paper's main objective is to minimize the labeled training
data's dependence for automation of the software defect type
classification task. The results show that the proposed
framework outperforms the state-of-the-art semi-supervised
[LeDEx] in terms of the F1 score. F1 score in the proposed
framework and LeDEx is 63.16% and 62.30%, respectively.
S26 presented a study to assess the software prediction model
by using Receiver Operating Characteristic. The results
showed that the proposed technique is better than all other
state-of-the-art methods in terms of recall and accuracy by 0.4
and 0.8, respectively.

The literature study also analyzed the performance
evaluation metrics in the scope of our RQ3. Results are shown
in Table VII and Table VIII. 21% of the selected manuscripts
(S10,11,15, 9, 13, and 21) adopted accuracy and precision.
21% of them (S9, 11, 19, 23, and 25) selected only recall and
F1 score. The error rate was used by 30% of the analyzed
manuscripts (S1, 6, 7, 8, 17, 19, 20, 22, 24, and 26). 15% of
the manuscripts adopted the R Square measure (S1, 2, 3, 4,
and 5). We also realized that 13% (S12 S14, S16, and S18) did
not use any defined evaluation metric.

Our research helped us to determine several research gaps.
It was only possible to identified a few manuscripts (S11 and
S13) tackling specific metrics impacting defects in software
projects. For example, some studies (S5, S6, S9, S18, and
S21) are concentrated on the OOP metric in general, with no
mention of the line count of code and the number of
developers. There are only simple manuscripts (S14, S20, S23,
and S24) regarding finding defects in all types of software
projects (small, medium, and large projects). However,
stakeholders in software companies seem to find this topic
pertinent and are willing not only to enhance software
efficiency in those projects but interested to predict early
defects in software projects to save costs and money. The
results of this survey also showed a significant gap in the field
of "intelligent and statistical models," particularly relating to
the automatic prediction of defects in software projects. Some
of the most promising algorithms are not yet being utilized.

Only a few studies (S18 and S21) tackle the application of
"hybrid statistical and intelligent techniques, for instance,
logistic regression with multiple linear regression and
regression analysis with deep learning," which is a promising
technique for forecasting defects in software projects.
Moreover, there is a lack of official studies to identify critical
factors that influence defects in software projects.

TABLE VII. SAMPLE OF PERFORMANCE METRICS RATE IN PREVIOUS

WORK

 Performance Metrics Rate

1 Accuracy and precision 21%

2 Recall and F1 Score 21%

3 Error Rate 30%

4 R Square Measure 15%

5 Other 13%

TABLE VIII. MAJORITY OF PERFORMANCE METRICS USED IN SOFTWARE

DEFECT PROJECTS

NO
Accura

cy

Precisio

n

Recal

l

F1

scor

e

Erro

r

Rate

R-

Squar

e

Othe

r

S1 - - - - ✓ ✓ -

S2 - - - - - ✓ -

S3 - - - - - ✓ -

S4 - - - - - ✓ -

S5 - - - - - ✓ -

S6 - - - - ✓ - -

S7 - - - - ✓ - -

S8 - - - - ✓ - -

S9 - ✓ ✓ ✓ - - -

S10 ✓ - - - - - -

S11 ✓ ✓ ✓ ✓ - - -

S12 - - - - - - ✓

S13 - ✓ - - - - -

S14 - - - - - - ✓

S15 ✓ - - - - -

S16 - - - - - - ✓

S17 - - - - ✓ -

S18 - - - - - - ✓

S19 - - ✓ - ✓ - -

S20 - - - - ✓ - -

S21 ✓ - - - - - -

S22 - - - - ✓ - -

S23 - - - ✓ - - -

S24 - - - - ✓ - -

S25 - - - ✓ - - -

S26 - - - - ✓ - -

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

248 | P a g e

www.ijacsa.thesai.org

IV. PROPOSED MODEL

Proposal of a new proposed model based on a statistical
model able to predict defects in software projects. This section
presents an approach for a statistical model able to predict
defects in software projects. The proposed model has been
used in several scientific data science researches like is the
case of [7]. As shown in Fig. 4, the detailed the proposed
model will cover the following phases:

 State-of-the-art analysis: Review the literature to
extract important metrics, data sources, mathematical
and computational approaches used for predicting
defects of software projects.

 Data collection: data is collected from the NASA data
sets online. We have two reasons to select the NASA
Data set. The first reason is it is too hard to collect
huge data from software companies to reveal the
defects in software projects. The second reason for
selecting Nasa is based on its vast and high-quality
data. It explains the static measures and other variables
that are used to detect static defects in software
projects. It also shows a binary variable indicating
whether the module is defective or not.

 Data Analysis and Pre-Processing: Analyze the data in
detail and, if necessary, transform it to expose its
information content better. Different mathematical
techniques may be used, namely, outlier removal,
discretization, reduction of the number of variables,
and/or dimensionality (adopting regression models).

 Feature selection: determine critical metrics and detect
defects that will be adopted in the proposed IST study
by using logistic regression and multiple linear
regression. Create a mapping between logistic
regression and multiple linear regression to determine
the final list of critical metrics capable of predicting
defects in software projects.

 Build a model: present a statistical model capable of
predicting defects in software projects using multiple
linear regression and logistic regression.

 Training and verification model: train the model with
data set and verify its ability to predict defects in
software projects.

 Also, we will present a comparison between logistic
regression and multiple linear regression by using the
final list of critical metrics to determine which one is
better than the other in terms of accuracy, precision,
recall, F1 measure, and error rate.

Following this holistic approach, we built a methodology
composed of five phases, as shown in Fig. 4.

Fig. 4. A Proposed Statistical Model for Software Defects Prediction.

V. CONCLUSION

This paper presented a systematic review on the topic of
revealing defects in software projects, concentrating on
finding replies to our research questions, a diplomatic map
was used to find the most used terminology in the statistical
technique‟s software projects domains. By following a Prisma
approach in our systematic review, we started by determining
627 papers and ended with VP analyses of 26 papers. The
research questions covered three major points. Firstly, we
identified the factors of our metrics that influence revealing
defects in software projects. Secondly, we concentrated our
research on identifying the production techniques used in the
context. After, we determined the evaluation criteria used by
those techniques. Thus, there is still a chance for enhancement
regarding our topic to use statistical and intelligent techniques
to reveal defects in software projects.

Finally, a new methodology based on a statistical model
able to predict defects in software projects was proposed.

This study succeeded in identifying the critical factors that
affect the detection of defects in the programs. Statistical
analysis is executed by four methods, which are MLR-CDF,
MLR-PLSDF, LR-CDF, and LR-PLSDF. LR-CDF
outperforms on all the proposed methods in order to accuracy
and standard error. In addition, LR-CDF outperforms on state-
of-the-art methods (Association rule, Decision tree, Naive
Bayes, and neural network) related to the accuracy by 9.1%,
10.3%, 13.1%, and 13.1%, respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

249 | P a g e

www.ijacsa.thesai.org

The study has some limitations. it was restricted by the
search keywords selected and the time of the manuscripts (last
six years). In addition, it utilized a fixed number of electronic
sources. Furthermore, this study only handled English
scientific papers, and we cannot warranty to have picked all
the worthy substance for our review.

It is recommended as future work to utilize other
techniques in terms of improving the model accuracy and
identifying critical factors for revealing defects in software
projects.

REFERENCES

[1] Y. Koroglu et al., “Defect prediction on a legacy industrial software: A
case study on software with few defects,” Proc. - Int. Conf. Softw. Eng.,
vol. 17-May-201, pp. 14–20, 2016, doi: 10.1145/2896839.2896843.

[2] A. Abdelaziz Mohamed, N. Ramadan Darwish, and H. Ahmed Hefny,
“Towards a Machine Learning Model for Predicting Failure of Agile
Software Projects,” Int. J. Comput. Appl., vol. 168, no. 6, pp. 975–8887,
2017.

[3] M. Sirshar, “Comparative Analysis of Software Defect Prediction
Techniques,” no. December, p. 456頁、453頁、603頁, 2019.

[4] D. Sharma and P. Chandra, “Identification of latent variables using,
factor analysis and multiple linear regression for software fault
prediction,” Int. J. Syst. Assur. Eng. Manag., vol. 10, no. 6, pp. 1453–
1473, 2019, doi: 10.1007/s13198-019-00896-5.

[5] V. S. Sukanya and S. Saraswathy, “An Enhanced Evolutionary Model
for Software Defect Prediction,” vol. 7, no. 10, pp. 15323–15328, 2017.

[6] S. S. Rathore and S. Kumar, “Predicting number of faults in software
system using genetic programming,” Procedia Comput. Sci., vol. 62, no.
Scse, pp. 303–311, 2015, doi: 10.1016/j.procs.2015.08.454.

[7] A. H. Yousef, “Extracting software static defect models using data
mining,” Ain Shams Eng. J., vol. 6, no. 1, pp. 133–144, 2015, doi:
10.1016/j.asej.2014.09.007.

[8] J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo, and M.
J. Cobo, “Software tools for conducting bibliometric analysis in science:
An up-to-date review,” Prof. la Inf., vol. 29, no. 1, pp. 1–20, 2020, doi:
10.3145/epi.2020.ene.03.

[9] D. Moher et al., “Preferred reporting items for systematic reviews and
meta-analyses: The PRISMA statement,” PLoS Medicine, vol. 6, no. 7.
2009, doi: 10.1371/journal.pmed.1000097.

[10] S. N. U., “Software Testing Defect Prediction Model - a Practical
Approach,” Int. J. Res. Eng. Technol., vol. 02, no. 05, pp. 741–745,
2013, doi: 10.15623/ijret.2013.0205001.

[11] M. Dhiauddin and S. Ibrahim, “A Prediction Model for System Testing
Defects using Regression Analysis,” Int. J. Soft Comput. Softw. Eng.,
vol. 2, no. 7, pp. 55–68, 2012, doi: 10.7321/jscse.v2.n7.6.

[12] E. A. Felix and S. P. Lee, “Integrated Approach to Software Defect
Prediction,” IEEE Access, vol. 5, pp. 21524–21547, 2017, doi:
10.1109/ACCESS.2017.2759180.

[13] D. Verma and S. Kumar, “Prediction of defect density for open source
software using repository metrics,” J. Web Eng., vol. 16, no. 3–4, pp.
294–311, 2017.

[14] D. Sharma and P. Chandra, “Identification of latent variables using,
factor analysis and multiple linear regression for software fault
prediction,” Int. J. Syst. Assur. Eng. Manag., vol. 10, no. 6, pp. 1453–
1473, 2019, doi: 10.1007/s13198-019-00896-5.

[15] O. Sari and O. Kalipsiz, “Bug prediction for an ATM monitoring
software use of logistic regression analysis for bug prediction,” ICEIS
2015 - 17th Int. Conf. Enterp. Inf. Syst. Proc., vol. 2, pp. 382–387, 2015,
doi: 10.5220/0005382803820387.

[16] G. Mauša, T. G. Grbac, L. Brezočnik, V. Podgorelec, and M. Heričko,
“Software metrics as identifiers of defect occurrence severity,” CEUR
Workshop Proc., vol. 2508, no. September, pp. 22–25, 2019.

[17] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on
software defect prediction with a simplified metric set,” Inf. Softw.
Technol., vol. 59, no. February, pp. 170–190, 2015, doi:
10.1016/j.infsof.2014.11.006.

[18] M. K. Dhillon, P. B. Singh, and P. J. Singh, “Empirical Model for Fault
Prediction On the Basis of Regression Analysis,” Int. J. Sci. Res., vol. 5,
no. 6, pp. 163–168, 2016, doi: 10.21275/v5i6.nov164139.

[19] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “MULTI: Multi-objective
effort-aware just-in-time software defect prediction,” Inf. Softw.
Technol., vol. 93, pp. 1–13, 2018, doi: 10.1016/j.infsof.2017.08.004.

[20] N. Of, “S Tatistical a Nalysis of R Ainfall I Nsurance,” vol. 89, no. 5,
pp. 1248–1254, 2007, doi: 10.1111/j.1467-8276.2007.01092.x.

[21] V. S. Sukanya and S. Saraswathy, “An Enhanced Evolutionary Model
for Software Defect Prediction,” vol. 7, no. 10, pp. 15323–15328, 2017.

[22] Y. Koroglu et al., “Defect prediction on a legacy industrial software: A
case study on software with few defects,” Proc. - Int. Conf. Softw. Eng.,
vol. 17-May-201, pp. 14–20, 2016, doi: 10.1145/2896839.2896843.

[23] L. Kumar, A. Tirkey, and S. K. Rath, “An effective fault prediction
model developed using an extreme learning machine with various kernel
methods,” Front. Inf. Technol. Electron. Eng., vol. 19, no. 7, pp. 864–
888, 2018, doi: 10.1631/FITEE.1601501.

[24] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a
universal defect prediction model with rank transformed predictors,”
Empir. Softw. Eng., vol. 21, no. 5, pp. 2107–2145, 2016, doi:
10.1007/s10664-015-9396-2.

[25] A. K. Marandi and D. A. Khan, “An approach of statistical methods for
improve software quality and cost minimization,” Int. J. Appl. Eng.
Res., vol. 12, no. 6, pp. 1054–1061, 2017.

[26] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The impact
of using regression models to build defect classifiers,” IEEE Int. Work.
Conf. Min. Softw. Repos., pp. 135–145, 2017, doi:
10.1109/MSR.2017.4.

[27] S. S. Rathore and S. Kumar, “Predicting number of faults in software
system using genetic programming,” Procedia Comput. Sci., vol. 62, no.
Scse, pp. 303–311, 2015, doi: 10.1016/j.procs.2015.08.454.

[28] M. Sirshar, “Comparative Analysis of Software Defect Prediction
Techniques,” no. December, p. 456頁、453頁、603頁, 2019.

[29] M. S. Rawat and S. K. Dubey, “Software Defect Prediction Models for
Quality Improvement: A Literature Study,” Int. J. Comput. Sci. Issues,
vol. 9, no. 5, pp. 288–296, 2012.

[30] S. Feng et al., “COSTE: Complexity-based OverSampling TEchnique to
alleviate the class imbalance problem in software defect prediction,” Inf.
Softw. Technol., vol. 129, no. September 2020, p. 106432, 2020, doi:
10.1016/j.infsof.2020.106432.

[31] S. Patil and B. Ravindran, “Predicting software defect type using
concept-based classification,” Empir. Softw. Eng., vol. 25, no. 2, pp.
1341–1378, 2020, doi: 10.1007/s10664-019-09779-6.

[32] J. Jiarpakdee, C. Tantithamthavorn, and C. Treude, “The impact of
automated feature selection techniques on the interpretation of defect
models,” Empir. Softw. Eng., vol. 25, no. 5, pp. 3590–3638, 2020, doi:
10.1007/s10664-020-09848-1.

[33] A. A. Bangash, H. Sahar, A. Hindle, and K. Ali, “On the time-based
conclusion stability of cross-project defect prediction models,” Empir.
Softw. Eng., 2020, doi: 10.1007/s10664-020-09878-9.

[34] S. Morasca and L. Lavazza, “On the assessment of software defect
prediction models via ROC curves,” Empir. Softw. Eng., vol. 25, no. 5,
pp. 3977–4019, 2020, doi: 10.1007/s10664-020-09861-4.

