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Abstract—Defect detection in software is the procedure to 

identify parts of software that may comprise defects. Software 

companies always seek to improve the performance of software 

projects in terms of quality and efficiency. They also seek to 

deliver the soft-ware projects without any defects to the 

communities and just in time. The early revelation of defects in 

software projects is also tried to avoid failure of those projects, 

save costs, team effort, and time. Therefore, these companies 

need to build an intelligent model capable of detecting software 

defects accurately and efficiently. The paper is organized as 

follows. Section 2 presents the materials and methods, PRISMA, 

search questions, and search strategy. Section 3 presents the 

results with an analysis, and discussion, visualizing analysis and 

analysis per topic. Section 4 presents the methodology. Finally, in 

Section 5, the conclusion is discussed. The search string was 

applied to all electronic repositories looking for papers published 

between 2015 and 2021, which resulted in 627 publications. The 

results focused on finding three important points by linking the 

results of manuscript analysis and linking them to the results of 

the bibliometric analysis. First, the results showed that the 

number of defects and the number of lines of code are among the 

most important factors used in revealing software defects. 

Second, neural networks and regression analysis are among the 

most important smart and statistical methods used for this 

purpose. Finally, the accuracy metric and the error rate are 

among the most important metrics used in comparisons between 

the efficiency of statistical and intelligent models. 

Keywords—Defects; software projects; statistical model; linear 

regression; logistic regression 

I. INTRODUCTION 

Software companies aim to improve the quality of 
software projects in terms of their accuracy and efficiency. 
Software companies consume from 50% to 75% of the total 
budget of software projects in finding and fixing defects in 
those projects [1]. In the CHAOS report, many software 
projects vary in size (small, medium, and large projects) and, 
therefore, cost. These projects use many software 
development methods such as waterfall and agile. Several 
software projects failed due to the development and testing 
phase, as shown in Table I. A standard software development 
cycle has six phases, namely, planning, analysis, design, 
implementation, testing, and maintenance. In the development 
phase, developers modify source code that may lead to many 
defects in a software project. In modifications, developers 
should be careful not to produce any new defects in these 
projects. The testing phase is crucial to software projects. It is 
responsible for delivering the final project or product 
efficiently to customers without any defects and in time. Many 

factors, such as McCabe and Halstead, help developers find 
and fix defects in those projects, as shown in Table II. 
Nevertheless, there is difficulty in using these factors in 
medium and large-scale projects. Thus, developers need a 
statistical or intelligent model capable of predicting defects in 
software projects accurately and efficiently. 

Many reasons lead to the failure of software development 
projects. These are the lack of experience of the project team, 
lack of knowledge of the code language, insufficient 
experience in the field, etc. Software defects in the 
development phase are among the most critical problems 
facing software companies because the many defects lead to 
those projects' failure. The avoidance of software defects is to 
gain clients' trust by providing a quality product. According to 
the CHAOS report, many software projects still fail because of 
the many reasons that have been mentioned earlier [2]. 
However, the direct reason for these projects' failure is the 
emergence of many software defects, as shown in Table I [2]. 

It was performed a compressive study about the relevant 
related work using PRISMA methodology. The PRISMA 
explanation gives the minimum set of items for detailing a 
precise audit. It comprises the four-phase flow diagram, which 
permits us to utilize the Clarification and Elaboration 
document to go through cases and clarifications and find the 
meaning and method of reasoning for each item on the 
checklist. For a clear understanding of PRISMA, perusing the 
Clarification and Elaboration document is unequivocally 
recommended. The PRISMA Stream Graph delineates the 
stream of data through the diverse stages of a Precise Audit. It 
maps out the number of records recognized, included, and 
prohibited and the reasons for avoidances. 

TABLE I. CHAOS REPORT BY AGILE VERSUS WATERFALL [2] 

Size Method Successful Challenged  Failed 

All Size  

Projects 

Agile 

(Scrum) 
39% 52% 9% 

Waterfall 11% 60% 20% 

Large Size 

Projects 

Agile 
(Scrum) 

18% 29% 53% 

Waterfall 3% 55% 42% 

Medium 

Size 
Projects 

Agile 
(Scrum) 

27% 62% 11% 

Waterfall 7% 68% 25% 

Small Size 

Projects 

Agile 
(Scrum) 

58% 38% 4% 

Waterfall 44% 45% 11% 
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TABLE II. SOFTWARE METRICS OF MCCABE AND HALSTEAD TO REVEAL 

SOFTWARE DEFECTS [7] 

Factor ID  Factor Description 

1 Loc McCabe‟s line count of code 

2 v(g) McCabe „„cyclomatic complexity‟‟ 

3 eV(g) McCabe „„essential complexity‟‟ 

4 Iv(g) McCabe „„design complexity‟‟ 

5 N Halstead total operators + operands 

6 V Halstead „„volume‟‟ 

7 L Halstead „„program length‟‟ 

8 D Halstead „„difficulty‟‟ 

9 I Halstead „„intelligence‟‟ 

10 E 
Halstead „„effort‟‟: effort to write 
program 

11 B 
Halstead „„Number of Delivered 

Bugs‟‟ 

12 T 
Halstead‟s time estimator: time to 

write program 

13 LOCode Halstead‟s line count 

14 LOComment 
Halstead‟s count of lines of 
comments 

15 LOBlank Halstead‟s count of blank line 

16 LOCodeAndComment 
Halstead‟s count of lines which 

contain both code and comments 

17 uniq_Op Unique operators 

18 uniq_Opnd Unique operands 

19 total_Op Total operators 

20 total_Opnd Total operands 

21 branchCount Of the flow graph 

22 defects 
Module has/has not one or more 

reported defects 

Many researchers, such as [3] and others [4]; [5] have 
suggested many factors to detect software defects. However, 
to date, there is no formal study to determine the critical 
factors to help software companies detect software defects 
with a reasonable degree of accuracy. Most researchers such 
as [6] and others also used scientific methods and models to 
detect software defects, but these models were weak in 
accuracy and results. Thus, software companies need a formal 
study to determine the critical factors to build a statistical 
model capable of detecting software defects with high results 
and accuracy. 

The paper is organized as follows. Section 2 presents the 
materials and methods, PRISMA, search questions, and search 
strategy. Section 3 presents the results with an analysis, and 
discussion, visualizing analysis and analysis per topic. 
Section 4 presents the methodology. Finally, in Section 5, we 
discuss the conclusion. 

II. MATERIALS AND METHODS 

The methodology is composed of three steps. First, 
PRISMA was used to find appropriate manuscripts in our 
research based on the manuscript title and the experimental 

results of the manuscripts. Second, bibliometric analysis was 
used to find the common terms that influence the revealing of 
software defects in terms of critical factors, performance 
metrics, and intelligent and statistical methods. Finally, the 
manuscripts were analyzed in detail to extract the most 
important factors and statistical methods used in detecting 
software defects and linking them to the results of the 
bibliometric analysis. 

The systematic literature survey presents an evaluation of 
the scientific community's contributions to the topic of 
revealing software defects by using a rigorous and auditable 
methodology based on the PRISMA approach. 

The PRISMA method is composed of five phases, as 
follows: 

 Identification of relevant manuscripts of the domain or 
domains. 

 Screening of titles, abstracts, papers without 
experiments, and position papers. 

 Eligibility analysis. 

 Full-text screening exclusion. 

 Final papers to be analyzed in detail. 

It was also adopted a bibliometric map; the bibliometric 
map is used to find the relationships between common 
software defects domain terms [8]. To this end, three phases 
were followed, evaluating the following quantities: 

 Words frequency. 

 Most common words. 

 Frequency of these common words in the final 
manuscripts of the study. 

By following PRISMA [9].this section is structured in the 
following way: (1) our research questions, (2) followed paper 
search strategy, (3) bibliometric map, (4) inclusion and 
exclusion criteria, and (5) final paper selection. 

A. Research Questions 

The study aims to provide a state-of-the-art review of 
current research efforts in revealing software projects. It was 
started by introducing the reader to specific topics concerning 
research objectives and employed methods. Particularly, the 
survey addresses the following research questions, aiming to 
identify the adoption techniques that have been applied in the 
overall domain of revealing software defects: 

RQ1: What kinds of metrics have been adopted in software 
defects (SD)? 

RQ2: Which statistical or intelligent techniques have been 
adopted for SD? 

RQ3: What performance metrics have been adopted in the 
literature in the prediction of SD? 

B. Search Strategy 

A literature survey, generally, recommends searching 
several available journal and conference paper repositories to 
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determine if similar work has already been performed, aiding 
in locating potentially relevant studies. The papers counted 
were searched in two electronic repositories, Scopus, and Web 
of Science. This study's covered topics were multidisciplinary, 
including, Software, Computer Science, Engineering, 
Mathematics, Environmental Science, Telecommunications, 
and Multidisciplinary Sciences. However, both repositories 
were used. The analysis showed that most of the publications 
from Web of Science were in Scopus as well. A repeated 
search process was performed to identify publications that 
have in their titles, abstracts, or keywords the following 
expressions: "software-defects" (or software defects, or defect 
or projects defects), and "machine learning" in Fig. 1. 

Phase 1, the search string was applied to all electronic 
repositories looking for papers published between 2015 to 
2021, which resulted in 627 publications. 

Phase 2 followed a 5-step approach. In step 1, we excluded 
manuscripts based on titles (e.g., software defects, regression, 
and machine learning), which narrowed the set to 211 
publications. In step 2, we excluded manuscripts based on 
abstracts screening, which resulted in 117 publications. In the 
following step 3, we excluded manuscripts reporting research 
without experiments, resulting in 83 publications. 

Subsequently, in step 4 of phase 2, we excluded position 
manuscripts which gave us the final figure of 29 publications, 
as shown in Fig. 2. 

 

Fig. 1. Search query for Scientific Manuscripts to Extract the Best Studies in 

Software Defects. 

 

Fig. 2. Scientific Steps for Analyzing the Proposed Manuscripts “PRISMA 

Flow Chart”. 

In phase 3, manuscripts underwent a full-text reading and 
review, which lead to no exclusions (the result of phase 4).  

As a result of our paper selection approach, the final list 
included 29 manuscripts (phase 5), analyzed in detail in this 
paper. These were further divided into the following four 
categories, as shown in Tables III and IV. 

 Regression analysis studies to reveal Software Defects. 

 Studies of Software Defects Prediction. 

TABLE III. REGRESSION ANALYSIS STUDIES TO REVEAL SOFTWARE 

DEFECTS 

No Ref Application Dimensions 

Method of 

Solution and 

Performance 

Metrics 

1 

S.N. 
Umar[10

] 

Software testing 
defect 

prediction 

model-a 
practical 

approach 

Total number of 

test cases executed, 
test team size, 

allocated 

development 
effort, test case 

execution effort, 

and the total 
number of 

components 

delivered 

Multiple linear 

regression. R 

square and 
standard error 

2 

(Dhiaudd
in & 

Ibrahim, 

2012)[11
] 

A Prediction 

Model for 

System Testing 
Defects using 

Regression 

Analysis 

Software 

complexity, test 

process, errors, the 
severity of the 

defect, and validity 

of defect  

Multiple linear 

regression. 
Adjusted R 

square  

3 

E. A. 

FELIX 

and et al 

[12] 

Integrated 

Approach to 
Software 

Defect 

Prediction 

Defect 
acceleration, 

namely, the defect 
density, defect 

velocity, and 

defect introduction 
time 

Statistical 
analysis. 

Adjusted R 

square and 

correlation 

coefficient 

4 

D. 

VERMA 
and et al 

[13] 

Prediction of 

defect density 

for open source 
software using 

repository 

metrics 

software size, 

number of 

developers, 
commits, and the 

total number of 

defects  

Multiple linear 

regression. R 

square 

5 

D. 

Sharma 
and et al 

[14] 

Identification of 

latent variables 

using factor 
analysis 

and multiple 

linear 
regression for 

software fault 

prediction 

Coupling between 
object classes, 

depth of 

inheritance tree, 
lack of cohesion of 

methods, and 

weighted methods 
per class 

Multiple linear 
regression. R 

square and 

Adjusted R 
square 

6 

O. Sari 

and et al 
[15] 

Use of Logistic 
Regression 

Analysis for 
Bug Prediction 

Weighted method 

count, depth of 

inheritance tree, 

lack of cohesion in 
methods, number 

of attributes, and 
number of methods 

Logistic 

regression. 
Standard error 

7 

G. 

MAUSA 
and et al 

[16] 

Software 

Metrics as 

Identifiers of 
Defect 

Occurrence 

Severity 

Software size, 

number of code 
lines, and the total 

number of defects. 

Correlation 
coefficients and 

logistic 

regression. 
Error rate 

(software-defects OR defect OR projects) AND (OR “data mining” 

OR forecasting OR “machine learning” OR “neural network" OR 
“clustering" OR “artificial intelligence” OR “prediction” OR “predictive” 
OR “statistical” OR analysis”) 
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8 

Peng H. 

and et al 

[17] 

presented a 

model for 
predicting 

defects in 

software 
projects 

Software size, 
number of code 

lines, and the total 

number of defects. 

Logistic 

regression. 

Standard error 

9 

M. 

Dhillon 
and et al 

[18] 

An empirical 

model for fault 

prediction on 
the basis 

of regression 

analysis 

Weighted method 

count, depth of 
inheritance tree, 

lack of cohesion in 

methods, number 
of attributes, and 

number of methods  

Logistic 
regression.  

Precision, 

recall, and f1 
measure 

10 

X. Chen 
and et al 

[19] 

Multi-Objective 

Effort-Aware 
Just-in-Time 

Software Defect 

Prediction 

diffusion [Number 
of modified 

subsystems], size 

[line of codes], 
history [The 

number of unique 

changes to the 
modified files], 

and finally, 

experience 
[Developer 

experience]. 

Logistic 
regression.  

Accuracy  

TABLE IV. STUDIES OF SOFTWARE DEFECTS PREDICTION 

No Ref Application Dimensions 

Method of 

Solution and 

Performance 

Metrics 

1 
A. H. 

Yousef [7] 

Extracting 

software static 

defect models 
using 

data mining  

McCabe and 

Halstead 
metrics 

Data mining 

techniques. 
Accuracy, 

Precision, 

Recall, and F1 
score 

2 

Karuna P 

and et al 

[20]  
 

 

Statistical 

analysis of 
metrics for 

software 

quality 
improvement 

Violation of 

programming 
standards, error 

in data 

representation, 
error in design 

logic, and 

assorted error 
type  

Statistical 
analysis. Mean 

and standard 

deviation 

3 

Sukanya. V 

and et al 

[21] 

An enhanced 
evolutionary 

model for 

software defect 
prediction  

McCabe and 

Halstead 

metrics 

Enhanced 

genetic 
algorithm, 

genetic 

algorithm, and 
neural network. 

Precision 

4 

Y. Koroglu 

and et al 

[22] 

Defect 

prediction on a 
legacy 

industrial 

software: a 

case 

study on 

software with 
few defects 

Product and 

process metrics  

Data mining 

techniques. 

AUC 

5 

L. KUMAR 
and et al 

[23] 

An effective 

fault prediction 
model 

developed 

using an 
extreme 

learning 

machine with 

Complexity, 

coupling, 
cohesion, and 

inheritance in 

the code 

Extreme 

learning 
machine with 

various kernel 

methods (e.g., 
Linear kernel, 

Polynomial 

kernel, and 

various kernel 

methods 

Sigmoid kernel). 

Accuracy 

6 

F. Zhang 

and et al 

[24] 

Towards 

building a 

universal 
defect 

prediction 

model 

The weighted 

method 

programming 
language, issue 

tracking, total 

lines of code, 
total number of 

files, the total 

number of 
commits, and 

the total number 

of developers  

K-mean 
clustering. AUC 

7 

A. Marandi 

and et al 
[25] 

An approach of 
statistical 

methods for 

improving 
software 

quality 

 

Post-delivery 
rework effort, 

actual effort, 
cost of the 

appraisal, cost 

of prevention, 
and cost of 

failure  

Statistical 

analysis. 
Standard error 

8 

G. 
RajBahadur 

and et al 

[26] 

The impact of 

using 
regression 

models to build 

defect 
classifiers 

Object-oriented 

metrics 

Linear 

regression, 
logistic 

regression, 

random forest, 
support vector 

machine, and 

neural network. 
AUC 

9 

S. Rathore 

and et al 

[27] 

Predicting the 

number of 
faults in a 

software 

system using 
genetic 

programming 

Total number of 

modules, 

number of lines 
of code, and 

number of 

faulty modules 

Genetic 

programming.  
Recall and error 

rate 

10 

M. Sirshar 

and et al 
[28]  

Comparative 

Analysis of 

Software 

Defect 
Prediction 

Techniques 

Product and 

process metrics 

Neural Network, 

Naive Bayes, 

Deep Forest 
technique. Error 

rate 

11 

M. Rawat 
and et al 

[29] 

Software 

defect 
prediction 

models for 

quality 
improvement: 

a literature 

study 

Object-oriented 

code, product, 

and process 
metrics 

Regression 
models. 

Accuracy 

12 
S. Feng and 

et al [30] 

Complexity-

based 

Oversampling 
Technique to 

alleviate the 

class 
imbalance 

problem in 

software defect 
prediction 

Line of code, 
number of 

children, and 

weighted 
method per 

class 

Complexity-

based 

Oversampling. 
Error rate 

13 
S. Patil and 

et al [31] 

Predicting 

software defect 

type using 
concept-based 

classification 

Interface, 
syntax, and 

standard [build-

config-install] 

Concept-based 

Classification. 
F1 score 

14 

J. 
Jiarpakdee 

and et al 

[32] 

The impact of 
automated 

feature 

selection 

inconsistent 

and correlated 

Automated 
Spearman 

correlation. 

Error rate 
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techniques 

on the 
interpretation 

of defect 

models 

15 

A. Bangash 

and et al 
[33] 

On the time-

based 

conclusion 
stability of 

cross-project 

defect 
prediction 

models 

Time, types of 

the projects, 

software 
development 

process 

Mathews 
Correlation 

Coefficient. F-

score 

16 

S. Morasca 
and et al 

[34] 

On the 
assessment of 

software defect 

prediction 
models via 

ROC curves 

Lines of code 

and complexity 

Receiver 

Operating 

Characteristic. 
Error rate 

III. RESULTS, ANALYSIS, AND DISCUSSION 

This section introduces two main parts, which are 
bibliometric analysis and analyzing previous works in detail. 
The first part shows the relationships between common terms 
in intelligence, statistical techniques, and performance metrics 
used in the previous study. The second part seeks to find the 
scientific gap between proposed manuscripts in this study to 
build a novel model to overcome the issues for revealing 
defects in software projects. 

A. Visualizing Analysis 

It was used VOS viewer ("VOS viewer," n.d.), a 
Visualizing bibliometric network, to find common 
terminology in two areas: software defects and statistical 
techniques, across the 29 manuscripts under analysis. This tool 
supported the study with visual information enabling us to 
explore the relations between the domains of software defects 
and statistical techniques. Moreover, it helped to find the most 
common dimensions, clustering, and variety techniques able 
to answer the research questions. 

Fig. 3 represents the visualization of a network map that 
displays the relations between the most popular terminology, 
how it is linked. The larger node represents the popular 
terminology in manuscripts, and the size of it represents the 
number of times these words appeared in manuscripts. VOS 
viewer splits the terminology into clusters according to the 
relevance concerning each other. 

It was performed the analysis on the title and abstract 
using a binary counting method of 759 examined keywords 
with a minimum threshold of 2 occurrences, resulting in 57 
terminologies, as shown in the figure. The largest nodes 
representing the important nodes of each cluster in the 
network map are determined as" Regression" (red), "cluster" 
(yellow), "software engineering" (green), "neural network" 
(blue), and finally "software defect prediction" (purple). 

 

Fig. 3. The Relationships between the Common Terms using the Bibliometric Map. 
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Looking closer at the network map in Fig. 1, we can see 
that the 5 clusters are connected between them; for instance, 
the "regression" term is connected to "fault prediction model" 
in the same red cluster, it connected to "cluster" and 
"accuracy" in the yellow cluster, it is also connected to 
"software engineering" and "recall" in the green cluster. 
Finally, it is also connected to "neural network" and "feature 
selection" in the blue cluster; it is also connected to "software 
defect prediction "and "defect density." Besides, the term 
"software engineering" in the green cluster is connected to 
"cluster" in the yellow cluster, "regression" in the red cluster, 
and "neural network" in the blue cluster. Moreover, the terms 
"random forest" and "feature selection" are connected to 
"neural network" in the blue cluster, "recall" and "software 
engineering" in the green cluster, "cluster" in yellow cluster, 
"regression" and "fault prediction model" in the red cluster 
and "software defect prediction" and "defect density" in the 
purple cluster. 

Finally, by analyzing the network map in Fig. 1 was 
possible to identify the important terms in each cluster, as 
follows: 

 In the red cluster: "regression" and "software prediction 
model." 

 In the yellow cluster: "cluster" and "accuracy." 

 In the green cluster: "recall" and "software 
engineering." 

 In the blue cluster: "random forest", "feature selection" 
and "neural network" 

 In the purple cluster: "software defect prediction" and 
"defect density." 

B. Analysis per Topic 

RQ1 drove to look for metrics, data sources, and critical 
factors able to reveal software defects. Our review of papers 
S1 to S26 allowed us to extract such critical factors. 
Dimensions such as software status [No. of defects], OOP 
[Depth of Inheritance Tree and No. of Methods], McCabe 
Metrics [Line Count of Code], and Halstead Metrics [Effort to 
Write Program and Time to Write Program] seem to be highly 
considered when studying the revealing of software defects in 
software companies. Table V shows the variety of metrics 
used in predicting defects in software projects. The studies of 
S1, S4, and S16 relied on team dimension (team size and the 
number of developers) to predict software defects in software 
projects. The studies of S2, S3, S4, S7, S8, S12, S15, and S26 
relied on software status dimensions (software complexity, 
number of defects, and software size) to detect defects in those 
projects. Moreover, the studies of S5, S6, S9, S15, S16, S18, 
and S21 relied on the OOP dimension (coupling between 
object classes, depth of inheritance tree, number of methods) 
also to reveal defects in those projects. Also, the studies of S7, 
S8, S10, S11, S13, S16, S19, S22, and S26 relied on McCabe 
metrics (line count of code, cyclomatic complexity, essential 
complexity, and design complexity) to find the optimal 
intelligent techniques to predict defects in software projects. 
Finally, the studies of S1, S3, S11, S13, S16, S17, S25 relied 
on Halstead Metrics (total operators + operands, effort to write 
the program, number of delivered bugs, count of lines of 
comments, and time to write a program) to forecast defects in 
various software projects. We observed that four factors are 
the most used in predicting defects in software projects. These 
are the number of defects, depth of inheritance tree, number of 
methods, and line count of code. 

TABLE V. MAJOR FACTORS IN SOFTWARE DEFECT PROJECTS 

Dimensions 

  
Team Software status OOP McCabe Metrics Halstead Metrics 

Other 

Factors 
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While addressing RQ2, we examined the techniques 
applicable in predicting defects in software projects. With this 
goal, we analyzed manuscripts S1 to S26 and noticed that 
techniques such as multiple linear regression, logistic 
regression, and machine learning are the most adopted, as 
shown in Table VI. Moreover, multiple linear regression was 
adopted by 23% of the analyzed manuscripts, whereas 
statistical analysis and data mining were the choices in 27% of 
manuscripts. Logistic regression accounted for 27% of the 
revised manuscripts. Also, machine learning techniques 
accounted for 19% of the revised manuscripts. Finally, the 
remaining 4% corresponded to the other intelligent techniques. 
We noticed four points. 

 Firstly, the studies (S1, S2, S4, S5, and S21) relied on 
multiple linear regression where S1 presented a model to 
predict defects in software projects to enhance the quality of 
software testing. This study seeks to find a suitable model to 
predict software defects to save effort, costs, and software 
companies' time. The results of this study show that R square 
and standard errors are 0.91 and 5.90%, respectively. S2 
presented a model for predicting defects in software projects 
to improve the testing process in those projects. Besides, the 
adjusted R square in multiple linear regression is 90%. S4 
presented a framework to predict defect density in open-
source software projects. The results of this study show that 

the R square in multiple linear regression is 0.86. S5 presented 
a model to predict faults in software projects. Furthermore, the 
results of this study show that R square and adjusted R square 
are 83% and 80%, respectively. S21 presented a review study 
to detect defects in a software project. It also seeks to find an 
optimal model to detect defects efficiently to save costs and 
time. Also, this study confirmed that regression models have 
achieved high results in terms of accuracy in detecting defects 
of software projects. 

Secondly, the studies (S6, S7, S8, S9, and S10) relied on 
logistic regression, where S6 presented an approach to 
improve the quality of software projects by detecting bugs in 
software projects efficiently. Also, the standard error in the 
proposed statistical technique is 0.24. S7 presented a study to 
detect defects in software projects in the early stage to save 
effort, money, and time. This study also depends on statistical 
techniques such as correlation coefficients and logistic 
regression. The results show that the accuracy in logistic 
regression is 91.2%, and the correlation coefficient is 0.95. S8 
presented a model for predicting defects in software projects. 
The result of this study shows that the standard error in 
logistic regression is 0.19. S9 presented an empirical model to 
predict fault in software projects. This study also depends on 
the binary logistic regression technique to predict defects in 
software projects. The results also show that the precision, 
recall, and f1 measures are 0.65, 0.9, and 0.79. S10 presented 
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a study to predict software defects by using logistic regression 
just in time. The results of this study show that the proposed 
technique is better than the state-of-the-art methods in terms 
of accuracy. The accuracy of the proposed technique is 0.73. 

TABLE VI. INTELLIGENT AND STATISTICAL TECHNIQUES IN SOFTWARE 

DEFECT PROJECT 

NO 

Multiple 

Linear 

Regression 

Logistic 

Regress

ion 

Statistica

l 

Analysis 

Data 

Minin

g 

Machine 

Learnin

g 

Othe

r 

S1 ✓ - - - - - 

S2 ✓ - - - - - 

S3 - - ✓ - - - 

S4 ✓ - - - - - 

S5 ✓ - - - - - 

S6 - ✓ - - - - 

S7 - ✓ - - - ✓ 

S8 - ✓ - - - - 

S9 - ✓ - - - - 

S10 - ✓ - - - - 

S11 - - - ✓ - - 

S12 - - ✓ - - - 

S13 - - - - ✓ ✓ 

S14 - - - ✓ - - 

S15 - - - - ✓ ✓ 

S16 - - - - ✓ - 

S17 - - ✓ - - - 

S18 ✓ ✓ - - ✓ - 

S19 - - - - - ✓ 

S20 - - - - ✓ - 

S21 ✓ ✓ - - - - 

S22 - - - - - ✓ 

S23 - - - - - ✓ 

S24 - - ✓ - - - 

S25 - - ✓ - - - 

S26 - - - - - ✓ 

Thirdly, the studies (S3, S11, S12, S14, S17, S24, S25) 
relied on statistical analysis and data mining techniques where 
S3 presented an approach to forecasting defects in software 
projects. It also depends on statistical regression such as 
multiple linear regression to predict defects in those projects. 
Besides, the adjusted R square in statistical regression is 
98.6%, and the correlation coefficient is 0.98. S11 presented a 
model to extract software static defects by using data mining 
techniques. The results of this study show that the accuracy in 
Association Rules, Decision Tree, Naive Bayes, and Neural 
Network is 77.2%, 76.6%, 73.2%, and 73.2%, respectively. 
Thus, Association Rules is better than Decision Tree, Naive 
Bayes, and Neural Network in terms of accuracy. S12 
presented a study to improve the quality of software projects 
using statistical analysis. The results of this study were 

evaluated in terms of projection of errors (total errors) and 
cumulative projection of severity errors (e.g., series, moderate 
and minor). It also shows that total errors in 2016 are more 
than in 2015 by 1.5%. 

Moreover, most severity errors are minor types. S14 
presented a study to predict defects in legacy industrial 
software using data mining techniques. The results of this 
study show that the area under the curve (AUC) in Random 
Forest, Logistic Regression, Decision Tree, Naive Bayes, and 
a combination of Random Forest + Logistic regression is 0.73, 
0.72, 0.66, 0.67, and 0.75. Thus, a combination of Random 
Forest + Logistic regression is better than Random Forest, 
Logistic Regression, Decision Tree, Naive Bayes. S17 
presented an approach to improve software quality and cost 
minimization using statistical analysis. The results of this 
study were evaluated in terms of standard error. The standard 
error in the statistical model is 0.13. S24 presented a study to 
evaluate the impact of automated feature selection techniques 
on the interpretation of defect models. This study investigated 
12 automated feature selection techniques in terms of 
consistency, correlation, performance, computational cost. By 
analyzing 14 publicly-available defect datasets, the results 
showed that the most important inconsistent metrics are highly 
correlated with the automated Spearman correlation of 0.85–1. 
S25 presented a study to predict defects in software models. 
This study applied the Mathews Correlation Coefficient-MCC 
to avoid defects in software models. MCC in F-score is less 
than 0.01. Therefore, the proposed technique is better than the 
state-of-the-art methods in terms of MCC. 

Fourthly, the studies (S13, S15, S16, S18, S20) relied on 
machine learning techniques where S13 presented a model to 
predict software defects by using an enhanced genetic 
algorithm. The results of this study were evaluated in terms of 
precision. It also confirmed that precision in enhanced genetic 
algorithm, genetic algorithm, and neural network is 0.93, 0.81, 
and 0.80, respectively. Thus, the enhanced genetic algorithm 
is better than the genetic algorithm and neural network. S15 
presented a model to predict effective faults in software 
projects using extreme learning machines with various kernel 
methods (e.g., Linear kernel, Polynomial kernel, and Sigmoid 
kernel). The results of this study were evaluated in terms of 
accuracy metrics. The accuracy in the linear kernel, 
Polynomial kernel, and Sigmoid kernel is 0.88, 0.93, and 0.91. 
Thus, an extreme learning machine using the Polynomial 
kernel is better than linear kernel and Sigmoid kernel. S16 
presented a model to predict universal defects in software 
projects using clustering techniques. The results of this study 
were evaluated in terms of AUC. The AUC in K-mean 
clustering is 0.76. S18 presented a model to detect defects in a 
software project. This study depends on object-oriented 
metrics. It also relies on many intelligent techniques such as 
linear regression (LR), logistic regression (LG), random forest 
(RF), support vector machine (SVM), and neural network 
(NN). The results of this study were evaluated in terms of 
AUC. The AUC in LR, LG, RF, SVM and NN is 0.86, 0.94, 
0.91, 0.90 and 0.90. Thus, LG is better than LR, RF, SVM, 
and NN. S20 presented a review analysis to predict defects in 
a software project. This study depends on many metrics, such 
as product and process metrics. It also introduced a 
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comparative analysis between Neural Network, Naive Bayes, 
Deep Forest technique. This study relies on previous works in 
the analysis of these techniques. Besides, this study confirmed 
that Deep Forest is better than Neural Network, Naive Bayes 
in terms of error rate. 

Fifthly, the studies (S19, S22, S23, and S26) relied on 
other intelligent and statistical techniques where S19 
presented an approach to predict many faults in a software 
system by using a genetic algorithm. The results of this study 
were evaluated in terms of error rate and recall. The error rate 
and recall in the genetic algorithm are 0.11, 0.91, respectively. 
S22 presented a new technique in software defect prediction 
by Complexity-based Oversampling. This paper relied on 
three main factors: a line of code, number of children, and 
weighted method per class. By analyzing the results, the 
proposed technique is better than the other oversampling 
techniques under the statistical Wilcoxon rank-sum test and 
Cliff's effect size. S23 presented a framework to predict 
software defect type using concept-based classification. This 
paper's main objective is to minimize the labeled training 
data's dependence for automation of the software defect type 
classification task. The results show that the proposed 
framework outperforms the state-of-the-art semi-supervised 
[LeDEx] in terms of the F1 score. F1 score in the proposed 
framework and LeDEx is 63.16% and 62.30%, respectively. 
S26 presented a study to assess the software prediction model 
by using Receiver Operating Characteristic. The results 
showed that the proposed technique is better than all other 
state-of-the-art methods in terms of recall and accuracy by 0.4 
and 0.8, respectively. 

The literature study also analyzed the performance 
evaluation metrics in the scope of our RQ3. Results are shown 
in Table VII and Table VIII. 21% of the selected manuscripts 
(S10,11,15, 9, 13, and 21) adopted accuracy and precision. 
21% of them (S9, 11, 19, 23, and 25) selected only recall and 
F1 score. The error rate was used by 30% of the analyzed 
manuscripts (S1, 6, 7, 8, 17, 19, 20, 22, 24, and 26). 15% of 
the manuscripts adopted the R Square measure (S1, 2, 3, 4, 
and 5). We also realized that 13% (S12 S14, S16, and S18) did 
not use any defined evaluation metric. 

Our research helped us to determine several research gaps. 
It was only possible to identified a few manuscripts (S11 and 
S13) tackling specific metrics impacting defects in software 
projects. For example, some studies (S5, S6, S9, S18, and 
S21) are concentrated on the OOP metric in general, with no 
mention of the line count of code and the number of 
developers. There are only simple manuscripts (S14, S20, S23, 
and S24) regarding finding defects in all types of software 
projects (small, medium, and large projects). However, 
stakeholders in software companies seem to find this topic 
pertinent and are willing not only to enhance software 
efficiency in those projects but interested to predict early 
defects in software projects to save costs and money. The 
results of this survey also showed a significant gap in the field 
of "intelligent and statistical models," particularly relating to 
the automatic prediction of defects in software projects. Some 
of the most promising algorithms are not yet being utilized. 

Only a few studies (S18 and S21) tackle the application of 
"hybrid statistical and intelligent techniques, for instance, 
logistic regression with multiple linear regression and 
regression analysis with deep learning," which is a promising 
technique for forecasting defects in software projects. 
Moreover, there is a lack of official studies to identify critical 
factors that influence defects in software projects. 

TABLE VII. SAMPLE OF PERFORMANCE METRICS RATE IN PREVIOUS 

WORK 

 Performance Metrics Rate 

1 Accuracy and precision 21% 

2 Recall and F1 Score 21% 

3 Error Rate 30% 

4 R Square Measure 15% 

5 Other 13% 

TABLE VIII. MAJORITY OF PERFORMANCE METRICS USED IN SOFTWARE 

DEFECT PROJECTS 

NO 
Accura

cy 

Precisio

n 

Recal

l 

F1 

scor

e 

Erro

r 

Rate 

R- 

Squar

e 

Othe

r 

S1 - - - - ✓ ✓ - 

S2 - - - - - ✓ - 

S3 - - - - - ✓ - 

S4 - - - - - ✓ - 

S5 - - - - - ✓ - 

S6 - - - - ✓ - - 

S7 - - - - ✓ - - 

S8 - - - - ✓ - - 

S9 - ✓ ✓ ✓ - - - 

S10 ✓ - - - - - - 

S11 ✓ ✓ ✓ ✓ - - - 

S12 - - - - - - ✓ 

S13 - ✓ - - - - - 

S14 - - - - - - ✓ 

S15 ✓ - - - - -  

S16 - - - - - - ✓ 

S17 - - - - ✓ -  

S18 - - - - - - ✓ 

S19 - - ✓ - ✓ - - 

S20 - - - - ✓ - - 

S21 ✓ - - - - - - 

S22 - - - - ✓ - - 

S23 - - - ✓ - - - 

S24 - - - - ✓ - - 

S25 - - - ✓ - - - 

S26 - - - - ✓ - - 
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IV. PROPOSED MODEL 

Proposal of a new proposed model based on a statistical 
model able to predict defects in software projects. This section 
presents an approach for a statistical model able to predict 
defects in software projects. The proposed model has been 
used in several scientific data science researches like is the 
case of [7]. As shown in Fig. 4, the detailed the proposed 
model will cover the following phases: 

 State-of-the-art analysis: Review the literature to 
extract important metrics, data sources, mathematical 
and computational approaches used for predicting 
defects of software projects. 

 Data collection: data is collected from the NASA data 
sets online. We have two reasons to select the NASA 
Data set. The first reason is it is too hard to collect 
huge data from software companies to reveal the 
defects in software projects. The second reason for 
selecting Nasa is based on its vast and high-quality 
data. It explains the static measures and other variables 
that are used to detect static defects in software 
projects. It also shows a binary variable indicating 
whether the module is defective or not. 

 Data Analysis and Pre-Processing: Analyze the data in 
detail and, if necessary, transform it to expose its 
information content better. Different mathematical 
techniques may be used, namely, outlier removal, 
discretization, reduction of the number of variables, 
and/or dimensionality (adopting regression models). 

 Feature selection: determine critical metrics and detect 
defects that will be adopted in the proposed IST study 
by using logistic regression and multiple linear 
regression. Create a mapping between logistic 
regression and multiple linear regression to determine 
the final list of critical metrics capable of predicting 
defects in software projects. 

 Build a model: present a statistical model capable of 
predicting defects in software projects using multiple 
linear regression and logistic regression. 

 Training and verification model: train the model with 
data set and verify its ability to predict defects in 
software projects. 

 Also, we will present a comparison between logistic 
regression and multiple linear regression by using the 
final list of critical metrics to determine which one is 
better than the other in terms of accuracy, precision, 
recall, F1 measure, and error rate. 

Following this holistic approach, we built a methodology 
composed of five phases, as shown in Fig. 4. 

 

Fig. 4. A Proposed Statistical Model for Software Defects Prediction. 

V. CONCLUSION 

This paper presented a systematic review on the topic of 
revealing defects in software projects, concentrating on 
finding replies to our research questions, a diplomatic map 
was used to find the most used terminology in the statistical 
technique‟s software projects domains. By following a Prisma 
approach in our systematic review, we started by determining 
627 papers and ended with VP analyses of 26 papers. The 
research questions covered three major points. Firstly, we 
identified the factors of our metrics that influence revealing 
defects in software projects. Secondly, we concentrated our 
research on identifying the production techniques used in the 
context. After, we determined the evaluation criteria used by 
those techniques. Thus, there is still a chance for enhancement 
regarding our topic to use statistical and intelligent techniques 
to reveal defects in software projects. 

Finally, a new methodology based on a statistical model 
able to predict defects in software projects was proposed. 

This study succeeded in identifying the critical factors that 
affect the detection of defects in the programs. Statistical 
analysis is executed by four methods, which are MLR-CDF, 
MLR-PLSDF, LR-CDF, and LR-PLSDF. LR-CDF 
outperforms on all the proposed methods in order to accuracy 
and standard error. In addition, LR-CDF outperforms on state-
of-the-art methods (Association rule, Decision tree, Naive 
Bayes, and neural network) related to the accuracy by 9.1%, 
10.3%, 13.1%, and 13.1%, respectively. 
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The study has some limitations. it was restricted by the 
search keywords selected and the time of the manuscripts (last 
six years). In addition, it utilized a fixed number of electronic 
sources. Furthermore, this study only handled English 
scientific papers, and we cannot warranty to have picked all 
the worthy substance for our review. 

It is recommended as future work to utilize other 
techniques in terms of improving the model accuracy and 
identifying critical factors for revealing defects in software 
projects. 
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