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Abstract—Because of their algebraic structure and simple 
hardware implementation, linear codes as class of error-
correcting codes, are used in a multitude of situations such as 
Compact disk, backland bar code, satellite and wireless 
communication, storage systems, ISBN numbers and so more. 
Nevertheless, the design of linear codes with high minimum 
Hamming distance to a given dimension and length of the code, 
remains an open challenge in coding theory. In this work, we 
propose a code construction method for constructing good binary 
linear codes from popular ones, while using the Hadamard 
matrix. The proposed method takes advantage of the 
MacWilliams identity for computing the weight distribution, to 
overcome the problem of computing the minimum Hamming 
distance for larger dimensions. 
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I. INTRODUCTION 
The basic digital communication chain includes a source, a 

communication channel, and a receiver. The message is sent 
from the source to the receiver through a channel. Unless there 
is an ideal channel, interference will corrupt the message and 
cause errors, which can be controlled by an error-correcting 
code. Thus, inner code redundancy is added to the original 
message downstream of the source. In fact, this redundancy 
upstream of the receiver is used to correct potential errors 
without retransmission. 

In his fundamental article [1], Shannon showed via his 
channel coding theorem, the existence of error-correcting 
codes (ECC), theoretically allowing to transmit data in a 
channel with a small probability of error, whatever the noise 
level in the channel. However, the theorem does not specify 
how to create these codes. Thus the issue of implementing 
good error-correcting codes remains open in the field of 
information theory [2]. Great effort has been constantly 
devoted to constructing error-correcting codes to totally or 
almost achieve the channel capacity, following Shannon's 
work. In this way, Arikan developed the first codes (polar 
codes) with proven capacity, explicit construction, and low 
coding and decoding complexity [3], with the implementation 
of their multi-kernel designs [4]. This paper’s inspiration 
comes from the coding process of polar code. 

It is difficult to construct explicitly good codes with the 
best properties. Therefore, working with the already existing 
codes, with good properties, could be one of construction 

alternatives [5]. Thus to determine if the code would be good 
enough, Markus Grassl made a bounds database [6] for the 
minimum distance of linear block codes over 𝐺𝐹(𝑞) , with 
𝑞 ≤ 9, for given length and dimension, including construction 
details. Hence, if its parameters allow the current bounds to be 
achieved, the code is called 'good'. 

One of the most recent methods to construct good binary 
linear block codes is presented in [7]. It consists in 
constructing linear codes from the Hadamard matrix and 
Bose–Chaudhuri–Hocquenghem (BCH) codes [8]. However, 
this method suffers from the problem of computing the 
minimal Hamming distance for higher code dimensions and it 
is used only for BCH codes. In this paper, a new method to 
produce good binary linear bloc codes based on the Hadamard 
matrix and some popular error-correcting codes often used in 
coding theory [9], [10] is presented. it allows to design many 
good binary linear block codes with considerable error-
correcting capability. This method extends the approach 
presented in [7] for larger dimensions by exploiting the 
MacWilliams identity to overcome the problem of computing 
the minimal distance on the one hand, and to confirm the 
technique for codes other than BCH codes [8] on the other 
hand. 

The remainder of this paper is structured as follows. In the 
next section, we detail some of the concepts required in this 
work, such as linear block codes, dual code of linear block 
code, MacWilliams identity, and Hadamard matrices. We 
present a new method of searching good binary linear codes in 
the third section. In the fourth section, we improve the 
proposed method by the set of good binary linear block codes 
found. Finally, we give an interpretation of the results before 
concluding the paper. 

II. NOTATION AND PRELIMINARIES 
In digital transmission, binary error-correcting codes 

denoted as [𝑙𝑙, 𝑒𝑒,𝑑𝑑𝑚𝑖𝑛], can be employed to limit the incidence 
of word errors. Converting a 𝑒𝑒-bit word to an 𝑙𝑙-bit codeword 
(𝑙𝑙 > 𝑒𝑒), is the coding process. This conversion creates a code 
𝐶𝐶  with 2𝑘  𝑙𝑙 -bit codewords chosen from a set of 2𝑛 
codewords. it has three main parameters: the length of 
codeword 𝑙𝑙, the dimension of coded block message 𝑒𝑒 and the 
minimum Hamming distance between codewords 𝑑𝑑𝑚𝑖𝑛 . This 
minimum distance ensures that a codeword will not be 
transformed, due to noise, into another codeword, and it 
allows to get the error correction capability. 
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A. Linear Block Codes Theory 
A binary linear code is a sub-vector space over 𝔽2𝑛  with 

dimension 𝑒𝑒. The code is a set of 2𝑘 codewords, each one is a 
linear combination of the 𝑒𝑒  basis vectors, that form a 𝑒𝑒 ∗ 𝑙𝑙 
generator matrix, 𝐺 ∈ 𝔽2𝑘∗𝑛 . In other words, the codeword 
space 𝒱 of the code can be obtained as follow: 

𝒱 = {𝑒𝑒 = 𝑢 ∗ 𝐺|𝑢 ∈ 𝔽2𝑘}             (1) 

Where 𝑢 = (𝑢0,𝑢1, … ,𝑢𝑘)  is called the message to be 
sent, and 𝑒𝑒 = (𝑒𝑒0, 𝑒𝑒1, … , 𝑒𝑒𝑛)  is the codeword produced after 
encoding the message 𝑢. 

The one-to-one correspondence between messages and 
codewords is a fundamental force of block codes; thus, a 
message is successfully retrieved if the decoder identifies its 
equivalent codeword. So, the minimum Hamming distance 
parameter of a code allows defining a difference limit between 
two valid codewords. It is the outcome of: 

𝑑𝑑𝑚𝑖𝑛(𝐶𝐶) = min{𝑑𝑑(𝑒𝑒, 𝑒𝑒′): 𝑒𝑒, 𝑒𝑒′ ∈ 𝐶𝐶 𝑝𝑝𝑙𝑙𝑑𝑑 𝑒𝑒 ≠ 𝑒𝑒′}           (2) 

In the case of binary linear block codes, the minimum 
Hamming distance is equivalent to the smallest non-zero 
weight of a codeword of 𝐶𝐶, so that the weight of a codeword 𝑒𝑒 
is the number of its non-zero symbols. It is defined as: 

𝑤(𝑒𝑒𝑖) = �1 𝑖𝑖𝑓 𝑒𝑒𝑖 ≠ 0
0 𝑖𝑖𝑓 𝑒𝑒𝑖 = 0 ⟹𝑤(𝑒𝑒) = ∑ 𝑤(𝑒𝑒𝑖)𝑛

𝑖=1           (3) 

Another way to define a linear code is to use a matrix 
𝐻𝐻 ∈ 𝔽2

𝑛∗(𝑛−𝑘) called parity-check matrix, which yields: 

𝐶𝐶 = {(𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛) | (𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛) ∗ 𝐻𝐻T = 0}          (4) 

So, for each linear block code 𝐶𝐶(𝑙𝑙, 𝑒𝑒,𝑑𝑑𝑚𝑖𝑛) defined by its 
generator matrix whose rows structure a basis of a linear 
vector subspace, another linear block code exists. It is called 
dual code 𝐶𝐶⊥, known by length 𝑙𝑙, dimension (𝑙𝑙 − 𝑒𝑒), and the 
vector space consisting of all orthogonal vectors (codewords) 
with the linear code 𝐶𝐶 vectors. This means that two n-tuples 𝑒𝑒 
and 𝑝𝑝 are orthogonal if their inner product is zero: 

(𝑒𝑒,𝑝𝑝) =  ∑ (𝑒𝑒𝑖 ,𝑝𝑝𝑖) = 0𝑛
𝑖=1              (5) 

If 𝐺 = [𝐼𝑘 | 𝑃𝑃]  is the generator matrix of a linear code 
𝐶𝐶(𝑙𝑙, 𝑒𝑒,𝑑𝑑𝑚𝑖𝑛) in the systematic form, then the generator matrix 
of its dual code is called parity-check matrix, such as: 

 𝐻𝐻 = [𝑃𝑃⊥ | 𝐼𝑛−𝑘]              (6) 

B. Weight Distribution and MacWilliams Identity 
As mentioned above, the minimum distance is the lower 

weight 𝑤(𝑒𝑒) as defined in (3), of a nonzero codeword among 
all of the 2𝑘 codewords in linear code. The importance of this 
parameter lays in the error correction capacity of the code 
through 𝑑𝑑𝑚𝑖𝑛 = 2𝑙𝑙 + 1, where 𝑙𝑙 denotes the number of errors 
that the code is capable of correcting. However, the minimum 
distance does not give an idea about the other codewords’ 
weight. 

Acquiring knowledge of a code's weight distribution is 
essential and allows the computation of its analytical 
performance [11]. The weight distribution of an error-
correcting code is a vector of size 𝑙𝑙  whose 𝑖𝑖𝑡ℎ  element 

indicates the number of codewords having the weight (𝑖𝑖 − 1). 
Otherwise, the weight distribution can be expressed in 
polynomial form as follows: 

𝑊(𝑧) = 𝑤0 + 𝑤1𝑧 + ⋯+ 𝑤𝑛−1𝑧𝑛−1           (7) 

where 𝑤𝑖  is the number of codewords with weight 𝑖𝑖 
obtained by (3). 

Although the weight distribution does not inherently 
identify a code, it provides useful information that has both 
practical and theoretical significance. MacWilliams equation 
[12], a series of linear relations between the weight 
distributions of a code and its dual, is one of the most 
fundamental conclusion in weight distributions. 

Let 𝐶𝐶 be a (𝑙𝑙, 𝑒𝑒,𝑑𝑑)𝑞 linear code over 𝔽𝑞𝑛 with enumerator 
polynomial 𝑊(𝑧) = ∑ 𝑤𝑖𝑧𝑖𝑛

𝑖=0 , and let 𝑊⊥(𝑧)  be the 
enumerator polynomial of the dual code 𝐶𝐶⊥. Then: 

𝑊⊥(𝑧) = 𝑞−𝑘(1 + (𝑞 − 1)𝑧)𝑛𝑊( 1−𝑧
1+(𝑞−1)𝑧

)           (8) 

C. Hadamard Matrix 
The Hadamard matrix 𝐻𝐻𝑚 is a square matrix of order 𝑚𝑚, 

with 𝑚𝑚 being a power of 2, and entries in {−1, +1} as 

𝐻𝐻𝑚𝐻𝐻𝑚T = 𝑚𝑚𝐼𝑚              (9) 

Sylvester presented the first examples of these matrices in 
1867 [13], before naming them Hadamard matrices in 1893 
[14], after Hadamard who generalized them for orders other 
than 2𝑚 . Many employments for these matrices have been 
found in telecommunications and signal processing. In fact, 
the use of Hadamard matrices to construct efficient error-
correcting codes is one of the reasons that increased interest in 
discovering new Hadamard matrice constructions. 

In a binary case, we can replace {−1, +1} of 𝐻𝐻𝑚 by {1,0} 
then 𝐻𝐻𝑚 is obtained by the following technique: 

𝐻𝐻1 = [0] ≡ [1] 

𝐻𝐻2 = �0 0
0 1� ≡ �1 1

1 0� 

𝐻𝐻𝑚 = 𝐻𝐻2 ⊗𝐻𝐻𝑚 2⁄            (10) 

where ⊗ denotes the Kronecker product. 

The orthogonality of the Hadamard matrix (9) guarantees 
that each permutation of rows or columns yields another 
Hadamard matrix [15]. 

III. NEW METHOD TO FIND GOOD BINARY LINEAR CODES 
In [7], a method based on the outcome of the Kronecker 

product, between the Hadamard matrix and the redundant part 
of a generator matrix of a Bose, Ray-Chaudhuri et 
Hocquenghem (BCH) code is presented, to construct good 
binary linear codes. It allows us, from a (𝑙𝑙, 𝑒𝑒,𝑑𝑑𝑚𝑖𝑛)  BCH 
code and a Hadamard matrix of order 𝑚𝑚, to build good binary 
linear codes having a given dimension 𝑒𝑒’ < 20  and length 
𝑙𝑙′ = 𝑚𝑚 ∗ 𝑙𝑙 . However, for higher dimensions, this approach 
has a problem to calculate the minimum Hamming distance, it 
is one of the open problems [16] in the field of information 
theory for large dimensions. 
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So for dimensions 𝑒𝑒’ > 20, the method presented in [7] 
remains restricted according to the performance of a simple 
computer to calculate the minimum distance for codes with 
dimensions greater than 20. In this work, we practically took 
advantage of the dual properties of linear block codes and 
MacWilliams identity as it can be seen in figure 1 and outlined 
in the steps bellow, in order to fix this issue and validate the 
process by constructing good codes with high dimensions. 

 
Fig. 1. New Method to Find Good Binary Linear Codes using MacWilliams 
Identity to Reduce the Complexity of the Minimum Distance Computation. 

The technique consists of treating the minimum Hamming 
distance computation problem of the larger dimensions by 
searching good binary linear codes via their dual codes, with 
small dimensions, and calculating the weight distribution 
obtained using the identity of MacWilliams identity as 
described in (8). By definition, the minimum Hamming 
distance of a linear code corresponds to the smallest weight of 
its codewords, so it is obvious to extract the minimum 
distance of a linear code from its weight distribution, it 
corresponds to the index of the first non-null element of the 
weight distribution of a linear code (first element excluded, 
because it corresponds to the zero’s codeword). 

The details of the method we propose to improve the 
dimensions of the constructed good binary linear codes are 
developed in the following steps. Let’s use: 

• 𝑷: 𝑙𝑙 ∗ (𝑙𝑙 − 𝑒𝑒) matrix extracted from a generator matrix 
of the popular used code in the systematic form. 

• 𝑳𝑳𝑩: Lower bound is the best-known minimum distance 
found in all pre-existing works. 

• 𝑯𝒎: Hadamard matrix of order 𝑚𝑚. 

• 𝒌𝒌’: Dimension of the desired code to be built. 

• 𝑯: Parity check matrix constructed as described in (6). 

• 𝑪𝑪⊥: Dual code constructed from the parity check matrix 
𝑯. 

• 𝒑𝒂𝒇𝒇𝒇𝒇𝒇𝒇𝒚𝑪𝑪𝒉𝒇𝒇𝒄𝒌𝒌𝑴𝒂𝒇𝒇𝒇𝒇𝒇𝒇𝒙():  Function to transform a 
generator matrix to parity check matrix. 

• 𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇  the matrix A after the elimination of 
unnecessary rows (rows whose weight is less than LB). 

Inputs: 𝑃𝑃, 𝑒𝑒’, 𝐿𝐿𝐿𝐿 
Outputs: List of (n′, 𝑒𝑒’,𝑑𝑑’) binary linear codes. 

Step1: Perform the kronecker product between the 𝑷 and 𝑯𝐦. 
Step2: Insert the rows of the step1 result whose weight is less than 

𝑳𝑳𝑩 in 𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇. 
Step3: Generate matrices from the output of step 2 by combining 𝒌𝒌′ 

rows. 
Step4: From step 3, for each matrix 𝑮: 

- Extract the parity matrix 𝑯 from 𝑮. 
- Build a dual code by 𝑯. 
- Compute the weight distribution of the dual code  
- Apply (8) on the weight distribution already computed. 
- 𝒇𝒇′ is the index of the first not null element in the 

weight distribution obtained by (8). 

Step5: If 𝒇𝒇’ ≥ 𝑳𝑳𝑩 then add the code to the list of (𝐧′ = 𝒎(𝒏 −
𝒌𝒌),𝒌𝒌’,𝒇𝒇’) good binary linear codes. 

Let's give an example: Consider, the matrix 𝐴𝐴  derived 
from the Kronecker product between the Hadamard matrix of 
order 𝑚𝑚 = 4 and the redundant part matrix 𝑃𝑃 extracted from 
the generator matrix of (7,4,3) BCH code. i.e. 

𝐴𝐴 = �

1 1 0
0 1 1
1 1 1
1 0 1

 �⊗�

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

� 

 

 

                                                                                                                                              

 

Perform the Kronecker product 

𝐴𝐴 =  𝑃𝑃 ∗  𝐻𝐻𝑚𝑚  

Insert the rows of 𝑨𝑨 with a weight 
greater than LB in 𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 

Build a list 𝑳𝑳 of matrix from 𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇  
by combining 𝒌𝒌’ rows 

 𝑖𝑖 =  0 

𝑖𝑖 <  𝐿𝐿. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 

End 

Build a binary linear code 𝑪𝑪 from 𝐻𝐻 

Compute the weight distribution for 
𝐶𝐶 

 𝑖𝑖 = 𝑖𝑖 + 1 

Start 

 𝑑𝑑𝑚𝑚𝑖𝑖𝑙𝑙 ≥ 𝐿𝐿𝐿𝐿 

Add 𝑪𝑪⊥ to the list of good 
binary linear codes 

𝐻𝐻 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝𝐶𝐶ℎ𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑒𝑒(𝐿𝐿[𝑖𝑖]) 

Apply MacWilliams identity on the 
weight distribution polynomial 

𝑑𝑑𝑚𝑚𝑖𝑖𝑙𝑙  is the index of the first non-null 
element of the result of macwilliams 

identity (first element excluded) 
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𝐴𝐴 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 1 1 1 1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1
1 0 1 0 0 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 1 0 0 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

𝑙𝑙′ = 12  is the length of suspect codes that can be 
constructed. Although the minimum distance of a linear code 
is equal to the minimum weight of the code, and the rows of a 
generator matrix are also codewords, it is consequently 
necessary to eliminate the rows whose weight is less than the 
lower bound (LB). Note 𝐴𝐴𝐹𝑖𝑙𝑡𝑟𝑒𝑑  the matrix 𝐴𝐴  after the 
elimination of unnecessary rows. 

𝐴𝐴𝑓𝑖𝑙𝑡𝑟𝑒𝑑 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 1 1 1 1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1
1 0 1 0 0 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0 1 1 0 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

          (11) 

For example, to build a code with dimension 𝑒𝑒′ = 8 , 
proceeding to the construction of a code with 𝑒𝑒′ = 4. In other 
words, it would be sufficient to check-in a space of size 24 
instead of searching in a space of dimension 28. From [17], 
the best-known minimum distance (LB) for 𝑙𝑙’ = 12  and 
𝑒𝑒’ = 8  is 3, so 𝐴𝐴𝑓𝑖𝑙𝑡𝑟𝑒𝑑  will be obtained by eliminating all 
rows with a weight less than 3 as defined in (11). 

By combining 4 rows of 𝐴𝐴𝑓𝑖𝑙𝑡𝑟𝑒𝑑 as a generator matrix of a 
suspect (12,4,x) code, calculating the weight distribution of 
the code and applying the MacWilliams identity, codes with 
the following weight distribution is obtained: 

[1, 0, 0, 16, 39, 48, 48, 48, 39, 16, 0, 0, 1] 

Which means that the minimum distance of the linear code 
is 3 and it contains 16 codewords of weight 3. 

IV. EXPERIMENTAL RESULTS 
Three types of results are presented in this section; the first 

one is obtained by the new method mentioned in the previous 
section, the second is an extension of [7] for the Golay and 
Reed-Muller codes, and the third one is based on the codes of 
the first result. All programs have been implemented in GAP 
via the GUAVA package over 𝔽2 and 𝔽3 [18]. 

A. Results Obtained using the MacWilliams Identity 
The method as defined in [7], through a computer 

calcuations with Intel(R) Core(TM) i5-4210U RAM 4 CPU 
@1.70GHz configuration, does not permit to generate good 

binary linear codes with a dimension greater than 20. But, for 
dimensions greater than 20 and using the same computer, the 
new approach helps us to verify the validity of the concept, for 
dimensions greater than 20, and it allowed us to find new good 
binary linear codes. Table 1 describes the set of good binary 
linear codes with larger dimensions(𝑒𝑒 > 20), built using BCH 
codes by applying the presented approach. 

In [7], it is focused on the construction of good binary 
linear codes from the Hadamard matrix and BCH codes. In 
this work, we tried to apply the approach for other codes with 
good properties. Table 2 describes the good codes constructed 
from Golay code (23,12). 

Applicability of the technique for Reed-Muller codes 
produced satisfactory results, as shown in table 3. 

TABLE I. GOOD BINARY LINEAR CODES USING BCH CODES 

Rate Code [𝒏,𝒌𝒌,𝒇𝒇] 𝒇𝒇𝒎𝒂𝒈𝒎𝒂 Lower bound 
0,86 [30,26,2] 2 2 
0,9 [30,27,2] 2 2 
0,93 [30,28,2] 2 2 
0,71 [32,23,4] 4 4 
0,75 [32,24,3] 3 4 
0,84 [32,27,2] 2 2 
0,87 [32,28,2] 2 2 
0,69 [36,25,4] 4 5 
0,72 [36,26,4] 4 4 
0,78 [37,29,3] 3 4 
0,76 [38,29,4] 4 4 
0,55 [40,22,7] 7 8 
0,6 [40,24,7] 7 7 
0,62 [40,25,6] 6 6 
0,72 [40,29,4] 4 5 
0,75 [40,30,3] 3 4 
0,78 [60,47,6] 6 6 
0,83 [60,50,3] 3 4 
0,81 [60,49,4] 4 4 
0,84 [78,66,4] 4 4 

TABLE II. GOOD BINARY LINEAR CODES USING GOLAY CODE 

Rate Code [𝒏,𝒌𝒌,𝒇𝒇] 𝒇𝒇𝒎𝒂𝒈𝒎𝒂 Lower bound 
0,86 [22,14,4] 4 4 
0,68 [22,15,4] 3 4 
0,9 [22,17,3] 3 3 
0,93 [22,18,2] 2 2 
0,71 [22,20,2] 2 2 

TABLE III. GOOD BINARY LINEAR CODES USING REED-MULLER CODES 

Rate Code [𝒏,𝒌𝒌,𝒇𝒇] 𝒇𝒇𝒎𝒂𝒈𝒎𝒂 Lower bound 
0,5 [16,8,5] 5 5 
0,56 [16,9,3] 3 4 
0,75 [16,12,2] 2 2 
0,81 [16,13,2] 2 2 
0,63 [22,14,4] 4 4 
0,59 [22,13,4] 4 5 
0,81 [22,18,2] 2 2 
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B. Good Extended and Punctured Binary Linear Codes 
Extending and puncturing code are two methods of code 

construction [19], which maintain the code dimension 𝑒𝑒 while 
varying its length 𝑙𝑙. In the case of extending code, parity bits 
are added, which can contribute to increase a minimum 
distance. Whereas puncturing removes parity bits, which can 
lead to decrease a minimum distance. Let us 𝐶𝐶𝑒𝑥𝑡(𝑙𝑙 + 1, 𝑒𝑒) a 
binary linear code  who is the extended code of the linear 
𝐶𝐶(𝑙𝑙, 𝑒𝑒) . The extension is completed by adding a new 
coordinate (parity check bit) to each codeword of 𝐶𝐶 so that the 
codeword length goes up. Put differently, each codeword 
𝑣𝑒𝑥𝑡 = (𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣𝑛+1)  of the extended code 𝐶𝐶𝑒𝑥𝑡  is 
generated by attaching a coordinate to the codeword 𝑣 =
(𝑣1, 𝑣2, … , 𝑣𝑛)  from  𝐶𝐶 , in order that  𝑣𝑛+1 = ∑ 𝑣𝑖𝑛

𝑖=1 , where 
sum is modulo 2 addition in binary case. 

In this reflection, new good codes were defined by 
applying the extending and puncturing to the good codes 
mentioned in Tables 1, 2, and 3, as well as to the codes 
contained in related previous work [7]. Table 4 shows all the 
good extended and punctured binary linear codes found. 

C. Interpretation 
Lately, error-correcting code designers have been 

concerned with finding a high code rate which is defined as 
the ratio of the number of information symbols 𝑒𝑒 to the length 
of codeword 𝑙𝑙, to take maximum advantage of the capacity of 
the channel. 

In this work, the focus is on error-correcting codes with a 
rate greater than 0.5. Most of the constructed codes have a 
minimum Hamming distance equal to the lower bound, 
allowing us to identify them as well as good binary linear 
error-correcting codes. In some of the results above, for given 
𝑙𝑙′ and 𝑒𝑒′, most of the codes are found with the same wanted 
minimum distance (𝐿𝐿𝐿𝐿) existing in [6], and the chosen one is 
the one with the smallest number of codewords with minimum 
weight in the weight distribution. However, it should be 
mentioned that just a few codes with the lower limit have been 
reported in the literature for the codes that did not achieve the 
𝐿𝐿𝐿𝐿, and that the research discovered multiple different codes 
with the lower limit (𝐿𝐿𝐿𝐿 − 1). 

In comparison to the results obtained in [7], the technique 
provided in this paper allows us to construct good binary 
linear codes with larger dimensions and good properties. 
Unlike previous research, instead of shedding light on BCH 
codes only, the strategy yields positive outcomes for a variety 
of different codes, such as Golay and Reed-Muller codes. 

All of the good codes discovered in this and previous 
research have been validated in software, designed to solve 
algebra problems MAGMA [20], [21], which supports several 
coding theories. 

The exponential explosion of possible combinations, from 
𝐴𝐴𝑓𝑖𝑙𝑡𝑟𝑒𝑑 , of suspect codes for higher dimensions continues to 
be a problem of finding good codes observed during this 
work. This issue will continue to be a source of reflection in 
the future. The main objective of this simulation is to 
demonstrate that the proposed methodology is applicable to 
larger dimensions as well as codes other than used codes. 

TABLE IV. GOOD EXTENDED AND PUNCTURED BINARY LINEAR CODES 

Rate Code [𝒏,𝒌𝒌,𝒇𝒇] 𝒇𝒇𝒎𝒂𝒈𝒎𝒂 Lower bound 
0,54 [11,6,4] 4 4 
0,61 [13,8,4] 4 4 
0,52 [17,9,4] 4 5 
0,63 [19,12,4] 4 4 
0,65 [23,15,4] 4 4 
0,73 [23,17,4] 4 4 
0,72 [33,24,4] 4 4 
0,53 [41,22,7] 8 8 
0,83 [59,49,4] 4 4 
0,81 [61,50,4] 4 4 

V. CONCLUSION 
In this paper, an extension of the method of constructing 

good linear codes from BCH codes and Hadamard matrices, 
stated in the literature to higher dimensions and for other 
popular codes. In this way, a set of good binary linear block 
codes were discovered by exploring the duality of linear codes 
and MacWilliams identity on the one hand, and by extending 
and puncturing the discovered results on the other. The 
majority of the found codes match the bound of the existing 
codes in the literature. The search issue for good error-
correcting code search problem is very large for most standard 
search techniques. In this case, and to overcome the problem 
of the exponential explosion of the number of combinations, 
genetic algorithms can be an efficient way to find good 
solutions in a relatively short time, and it can be a research 
direction for future work. 
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