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Abstract—Outlier detection over data streams is an important
task in data mining. It has various applications such as fraud
detection, public health, and computer network security. Many
approaches have been proposed for outlier detection over data
streams such as distance-,clustering-, density-, and learning-based
approaches. In this paper, we are interested in the density-
based outlier detection over data streams. Specifically, we propose
an improvement of DILOF, a recent density-based algorithm.
We observed that the main disadvantage of DILOF is that
its summarization method has many drawbacks such as it
takes a lot of time and the algorithm accuracy is significant
degradation. Our new algorithm is called DILOFC that utilizing
an efficient summarization method. Our performance study shows
that DILOFC outperforms DILOF in terms of total response time
and outlier detection accuracy.
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I. INTRODUCTION

Outlier detection (OD) is considered an important data
mining task. The objective of this task is to discover elements
(points) that show significant diversion from the expected be-
haviour called outliers. For example, consider the two dimen-
sional data points in Fig. 1. This dataset contains three normal
regions namely N1, N2, and N3. We can observe that data
points that are significantly far away from the three regions are
outliers. In this example o1, o2, o3, and o4 are outliers. The
prominent causes for outliers are malicious activity, change
in the environment, instrumentation error, and human error.
OD plays a significant role and has been useful for several
real-world applications such as intrusion detection systems,
interesting sensor events, credit-card fraud, law enforcement,
and medical diagnosis.

Outlier Detection raises significant challenges when a
stream-based environment is considered[1], [2], [3]. A data
stream potentially contains an infinite number of data points.
Memory limitations constrain the amount of data points that
can be held and processed at a given time. Moreover, no
information related to data points appearing in the data stream
are available before entering the memory. That is, the state of
the current data point as an outlier/inlier must be established
before dealing with subsequent data points. For example, in
wireless sensor networks, a limited memory is available at
each sensor node and outliers must be detected in reasonable
time. The communication cost of these networks is also an
essential factor. There are many approaches of outlier detection
over data stream such as clustering based outlier detection

Fig. 1. Running Example (Outliers).

[4],statistical based outlier detection [5], [6], distance based
outlier detection [7], [8], [9], [10][11], and density based
outlier detection [12], [13], [14] [15], [16]. In this paper,we
are interested in the density-based outlier detection over data
streams. Specifically, we propose an improvement of DILOF,
a recent density-based algorithm. Our new algorithm is called
DILOFC (Density Incremental LOF using summarization that
based on novel m-Center clustering algorithm). We observed
that the main problem in DILOF is that the summarization
method has drawbacks such as it takes a lot of time and the
algorithm accuracy is significant degradation. Note that DILOF
is one of the most known algorithm that apply density based
outlier detection approach. In density based outlier detection
approach, the density of each point is compared with the
density of its local neighbors. This approach is based on the
assumption that the density of the normal data point is the same
as the density of its neighbors and the density of outliers are
dissimilar to their local neighbors. For each point, the density
is computed by outlier score called LOF (Local Outlier Factor)
[17]. We will discuss LOF and DILOF in Sections II-A and
II-B respectively in details.

In the remaining sections, we discuss the problem def-
inition and related work in Section II. Section III presents
our proposed algorithm. We report the experimental results
in Section IV. Finally, Section V concludes the paper.
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II. PROBLEM DEFINITION AND RELATED WORK

Definition 2.1 A data stream is a possible infinite sequence
of data points P = {p1, p2, p3, ...., pn, ....}, where data point
pn is arrived at time pn.t

In previous definition, the data points are sorted by the
timestamp at which it arrives. Since data stream size is
unbounded thus data stream will be processed in a sliding
window, i.e. a collection of active data points. Window is small
enough to be held in the main memory. Windowing splits the
data stream into overlapping finite sets of data points (sliding
windows). The splitting can be done by arrival time of the
data points, namely, time-based windows or by the count of
the data points namely, count-based window. In this paper, we
focus on the count-based window.

Problem Definition
Given a data stream P = {p1, p2, ...., pn, ....}, the objective is
to calculate the LOF score for each data point pi and check
pi outlier or not with respect to the following constraints.

• We store only a small number of data points, m <<
|P |. Note that here m equals to the window size, |W |

• The outlier detection of coming data point pi, must be
done when pi arrives.

• The data distribution is unknown.

A. LOF (Local Outlier Factor), iLOF, and MILOF

LOF [17] is well-known algorithm for outlier detection in
static datasets. The objective of LOF is to calculate the LOF
score for each data point. Suppose the following:

• We have all data points,

• The count of the nearest neighbors is k,

• dist(x, y) is the Euclidean distance between the two
data points x and y,

• distk(x) is the Euclidean distance between a data
point x and its k nearest neighbor.

• Nk(x) is the set of the k-nearest neighbors of the data
point x.

According to the following definitions, we will compute
the LOF score for all data points.

Definition 2.2 Given two data points x and y, reachability
distance reach distk(x, y) is defined by

reach distk(x, y) = max{dist(x, y), distk(y)} (1)

Definition 2.3 Local reachability density of data point x,
lrdk ( x ) is given by

lrdk(x) = (
1

k

∑
y∈Nk(x)

reach distk(x, y))
−1 (2)

Definition 2.4 Local outlier factor of data point x,
LOFk(x) is given by

LOFk(x) =
1

k

∑
y∈Nk(x)

lrdk(y)

lrdk(x)
(3)

To check if data point x is outlier or not, we compare
its local outlier factor LOFk(x) with a given threshold T . If
LOFk(x) ≥ T then the data point x is classified as outlier.
Note that LOF algorithm is used to compute the LOF scores
of all data points only once. Recall LOF algorithm detects
outliers in static datasets

iLOF (incremental LOF) [18] was proposed for stream
datasets but it stores all data points in memory. Thus iLOF
requires a very large memory and is not applicable to stream
datasets whose size sharply increasing. Another algorithm
called MiLOF [19] was proposed to decrease the space com-
plexity. It stores in memory a small number of data points by
using k-means clustering [20] method to summarize old data
points. The accuracy of MILOF is inefficient since it uses k-
means for summarization which does not preserve the dataset
density. To overcome the drawbacks of MILOF, authors of [13]
proposed a new algorithm called DILOF (Density summarizing
Incremental LOF). Since our proposed algorithm is based on
DILOF, we will discuss DILOF algorithm in the next section
in details.

B. DILOF Algorithm

DILOF [13] is well-known algorithm for outlier detection
over data stream. It is density-based algorithm and applies
two steps as follows. The first one is Last Outlier-aware
Detection step, LOD which check if the incoming data point
x is outlier or not. This done by computing LOFk(x) on the
a variable window of data, W . Then the algorithm updates
the information of the old data points (lrdk and LOFk) that
exist in W and affected by inserting the data point x (i.e.
the data points whose neighbor information will be modified
when inserting the data point x). Note that the data point
x is inserted to W no matter whether it is an outlier or
inlier. Also skipping scheme strategy was proposed to detect
a long sequence of outliers. in other words, this scheme was
proposed to distinguish outliers from the data points in newly
emerging classes. This can be done by deleting the new outliers
from the window to preserve the low density region where
outliers are existed. The following formally outlines skipping
scheme strategy in details. First, DILOF computes dist1(p)
for each data point p ∈ M (Note that M is the set of data
points in memory). Then it computes the average of distance
avg dist1 =

∑|M |
j=1 dist1(pj). Let dist(o, pc) be the Euclidean

distance between the last detected outlier o and the current
data point pc. If avg dist1 > dist(o, pc) then set o to pc
and the data point pc is not inserted to W . In this case,
Skipping Schema parameter will be set to true.

The second step is Nonparametric Density Summariza-
tion step, NDS which decrease the memory consumption by
summarizing the old data points with respect to the dataset
density. In NDS, an estimator called nonparametric Renyi
divergence was used to specify the divergence between the
original data points and summary candidate of data points.
When the count of data points is equals to |W | data points,
NDS will summarize the oldest |W/2| data points to |W/4|
representative data points such that the density difference
between them is minimized. See Fig. 2.

Note that the previous two steps are repeated. LOD ex-
ecutes on every insertion of a data point. NDS is executed
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Fig. 2. NDS from Time t0 to Time tcurrent for a Two Dimensional Data.

when the number of data points in memory equals to |W |. In
experimental results of DILOF on real-world datasets, DILOF
significantly outperforms MiLOF with respect to accuracy and
execution time.

III. PROPOSED ALGORITHM

Since the summarization method of DILOF algorithm
taking many iterations to find its output. Therefore, the
summarization method of DILOF algorithm takes a lot of
time. Also, by using expensive experiments in many real
datasets, we found that the algorithm accuracy is significant
degradation. To overcome this issue, in this paper, we will
propose a new summarization method called sum m center
which will be injected in DILOF algorithm instead of its
current inefficient summarization method. The proposed
summarization method based on a new clustering technique
called m-center. First, we propose m-center clustering
algorithm then we will discuss the proposed summarization
method. The previous clustering algorithms such as k-means
require a large number of iterations to compute its output.
To address this problem, we propose m-center clustering
algorithm that is the partitioning representative, medoid, is
sampled from the original data. In this method, we efficiently
search for each cluster medoid as follows. In the first iteration
we will search for the medoid of the first cluster and in the
second iteration we will search for the medoid of the second
cluster and so on. So if we set the number of clusters as
k then we have only k iterations. In each iteration I we
will execute the following steps. For each data point p ∈
P (the set of all data points), we calculate its m nearest
neighbors set, mNN(p). Then we compute the distance
between p and each pj belongs to mNN(p) (here we will use
Euclidean Distance, dist(p, pj)) and compute the summation
sum dist(p) =

∑m
j=1 dist(p, pj). After that we select the

point pi ∈ P with minimum sum dist(p) as a medoid of the
cluster being processing CI then add all points in mNN(p)
to CI . Finally we remove each point p ∈ CI from P . Recall
we have k iterations, then we repeat the previous steps k − 1
times after the initial iteration. Now we have k clusters. If
there are remaining data points do not belong to any cluster
(i.e. after k iterations we have |P| ≠ ϕ), then we add each
remaining data point pr to its closest cluster based on the
distance between the medoid of each cluster and pr. Next

algorithm (Lines 1 - 13) outlines the m-center algorithm.

Algorithm: m-center(P, k,m, dt)
Input: P: the set of data points,

k: the number of clusters,
m: the size of the m nearest neighbors set of a specified
data point,
dt: distance threshold.

Output: C: k-clusters set;

1. for l = 1 to k do
2. for each data point pi ∈ P do
3. Compute the m nearest neighbors set of pi, mNN(pi),

such that |mNN(pi)| = m.
4. Compute sum dist(pi) =

∑m
j=1 dist(pi, pj),

where pj ∈ mNN(pi)
5. end for
6. Select px ∈ P where sum dist(px) has the smallest value.
7. Add the point px and the set mNN(pi) to cluster Cl

where px is the cluster medoid.
8. Remove the point px and the set mNN(pi) from P .
9. end for
10. for each remaining data point pr ∈ P do
11. Add pr to its closest cluster.
12. end for
13. Ctemp =

⋃k
l=1 Cl

14. Combine each nearest clusters set in Ctemp into one big
cluster CBh with respect to dt //Optimization

15. C =
⋃

h CBh

16. return C
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Fig. 3. Running Example (m-center Clustering Algorithm).

Example 3.1 Given two dimensional data point set
P = {p1, p2, p3, ....., p18, p19} = {(1, 1), (1, 2), (3, 2), (3, 1),
(2, 2), (7, 2), (6, 4), (8, 2), (8, 3), (2, 1), (7, 1), (6, 3), (9, 2),
(3, 3), (6, 1), (6, 2), (2, 3), (7, 3), (1, 3)}. Let k = 2 and m = 4.
Since k = 2 then we have two iterations. In the first iteration
we found that the point p3 = (2, 2) is the medoid of the first
cluster, C1, since mNN(p3) = {(1, 2), (2, 1), (2, 3), (3, 2)}
has minimum sum dist(p3) that is sum dist(p3) = 4. Then
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we remove p3 and mNN(p3) from P . In the second iteration
we found that the point p6 = (7, 2) is the medoid of the second
cluster, C2, since mNN(p6) = {(6, 2), (7, 1), (7, 3), (8, 2)}
has minimum sum dist(p6) that is sum dist(p6) =
4. Then we remove p6 and mNN(p6) from P . After
the two iterations we check if there exist a remaining
data points or not in P . In this example there are a
remaining data points. The count of remaining data points
is nine since we remove five data points in each iteration.
Therefore, we add each remaining data point to its closest
cluster. Now we have two clusters as follows C1 =
{(1, 1), (1, 2), (3, 2), (3, 1), (2, 2), (2, 1), (3, 3), (2, 3), (1, 3)}
and C2 = {(7, 2), (6, 4), (8, 2), (8, 3), (7, 1), (6, 3), (9, 2), (6, 1),
(6, 2), (7, 3)}. See Fig. 3

A. Optimization

In the previous example we set k = 2. If we set k = 3
or 4 then we have three or four clusters respectively. But our
original data has only two clusters. If we set k large than
the number of original clusters in our data then m-center will
cluster the data in inefficient way. Therefore, m-center will be
optimized as follows. In the case above, some clusters should
be merged efficiently. Which clusters will be merged?. The
answer is the nearest clusters will be merged. First we define
the nearest clusters as follows.

Definition 3.1 Given two clusters Ci and Cj with medoids
mi and mj respectively and distance threshold dt. Ci and Cj

are called nearest clusters to each other if dist(mi,mj) ≤ dt.

Definition 3.2 Clusters set, S, are called nearest clusters set
if every pair in S contains two nearest clusters.

Let k = 5 then we have five clusters C1, C2, C3, C4,
and C5. Assume after checking the nearest clusters we found
two sets of nearest clusters as follows the first nearest clusters
set is NC1 = {C1, C2, C3} and the second one is NC2 =
{C4, C5}. We will merge the clusters in the same nearest
cluster set into one big cluster. Therefore, we have two big
clusters CB1 = C1 ∪ C2 ∪ C3 and CB2 = C4 ∪ C5. Lines
14-16 in the m-center algorithm outlines our optimization.
Also next example illustrate this optimization.

Example 3.2 Given two dimensional data point set P with
size 32 data points as in Fig. 4. Let k = 5, m = 4 and
dt = 5. After applying m-center clustering method we have
five clusters, namely C1 with medoid m1 = (3, 4), C2 with
medoid m2 = (7, 5), C3 with medoid m3 = (7, 2), C4 with
medoid m4 = (17, 7), and C5 with medoid m5 = (16, 4). From
above optimization we have two nearest clusters set based on
the distance threshold dt = 5. The first nearest clusters set is
NC1 = {C1, C2, C3} since every pair in NC1 contains two
nearest clusters, for example C1 and C2 are nearest clusters
since dist(m1,m2) = 4.12 < 5 = dt. The second nearest
clusters set is NC2 = {C4, C5} since C4 and C5 are nearest
clusters with dist(m4,m5) = 3.16 < 5 = dt. Based on above
optimization, we will merge clusters in each nearest clusters
set into one big cluster as follows. CB1 =

⋃
C∈NC1 C = {C1,

C2, C3} and CB2 =
⋃

C∈NC2 C = {C4, C5}. Fig. 4 illustrates
our optimization.
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Fig. 4. Running Example (Optimization).

B. Summarization Step

In summarization step, we will delete a half of data points
in the window. Which half of data points will be deleted? we
will delete a half of data points according to two different
deletion methods. In the first deletion method, we keep in
each cluster CI only the half of data points which close to CI

medoid and delete the other half.If we apply the optimization
of merge clusters, the medoid of the big cluster CB will be
the average of the medoids of the small clusters that contained
by CB.

In the second deletion method, the unuseful old data points
that do not effect the data density will be deleted that is we
keep the half of data points in each cluster that preserve the
cluster density and delete the other half. In other words, we
delete a half of data points such that these data points are old
and its LOF score is high. In experimental evaluation section,
we will compare the two deletion methods. Next algorithm
outlines the summarization step, sum m center.

Algorithm: sum m-center(P, k,m, dt)
Input: P: the set of data points,

k: the number of clusters,
m: the size of the m nearest neighbors set of a specified

data point,
dt: distance threshold.

Output: S: summary of k clusters;

1. C = m-center(P, k,m, dt)
2. if Enable first deletion method
3. for each cluster x in C
4. Delete half of data points in x that are far from the

medoid of x
5. S = C
6. if Enable second deletion method
7. for each cluster x in C
8. Delete half of data points in x that are old and its

LOF score is high
9. S = C
10. return S
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C. DILOFC Pseudocode

Recall, the adaptive algorithm is called DILOFC . The next
algorithm outlines DILOFC . For each data point pi coming
from stream we do the following. If we enable the skipping
scheme and the return value is true then we continue to the
next data point (lines 3-5). See section II-B for more details
about skipping scheme strategy. Otherwise, we add pi to the
set of data points in memory, M (line 6) . Then we compute
LOF score of pi according to equations 1, 2, and 3 and add pi
to the set of outliers, O, if LOF score of pi is greater than LOF
threshold, T (lines 7-10). At the same time, we update LOF
score of each data point pj in the reverse neighbour set of pi
and if the data point pj transformed from outlier to inlier, we
remove it from O (lines 11-16). If the size of data points in
memory,|M | reach the window size |W |, we call the function,
sum m center, to summarize the oldest |W |/2 data points in
M . Then we replace the oldest |W |/2 data points in M by the
outputted summary of sum m center function lines (17-22).

Algorithm: DILOFC

Input: Infinite data stream P = {p1, p2, ...., pn, ....},
T : LOF threshold,
|W |: Window size,
k: the number of clusters,
m: the size of the m nearest neighbors set of a specified

data point,
dt: distance threshold.

Output: The set of outliers in P , namely O.

1. M = ϕ //the set of data points in memory
2. O = ϕ
3. while incoming data point pi from stream do
4. if Enable Skipping Schema Strategy and

Skipping Schema = TRUE
5. continue
6. M = M ∪ {pi}
7. Compute the LOF score of pi according to equations

1, 2, and 3
8. if LOF (pi) > T then
9. O = O ∪ {pi}
10. end if
11. for each data point pj in the set of reverse mNN(pi) do
12. Update the LOF score of pj
13. if pj transfered from outlier to inlier then
14. O = O − {pj}
15. end if
16. end for
17. if |M | = |W | then
18. Let M ′ be the oldest |W |/2 data points in M
19. S = sum m center(M ′, k,m, dt)

//Summarization Step, where |S| = |M ′|/2
20. M = M −M ′

21. M = M ∪ S
22. end if
23. end while

D. Time Complexity

Note that the summarization step is one of the main
operations in the outlier detection algorithms over data streams.
Therefore, in this section, we analyze the time complexity
of m-center method for summarization step in the proposed
algorithm, DILOFC . The time complexity of m-center is
O(|W |km), where |W | is the window size, k is the number
of clusters, and m is the size of the nearest neighbors set
of a specified data point. While the time complexity of
summarization step in DILOF algorithm is O((|W |/2)2) [13]
and the time complexity of summarization step in MILOF
algorithm is O(IDk|W |/2) [19], where I is the maximum
count of iterations, D is the dimensionality of dataset, and k
is the number of clusters.

The time complexity of our summarization step, m-center,
is the best one due to O(|W |km) << O((|W |/2)2) <<
O(IDC|W |/2). For instance, if we handle the KDD Cup
99 http dataset where , for DILOFC , k is 11 and m is 5
and for MILOF, I is 100 (defualt value for MILOF), D
is 3, and k is 11 with |W | = 700 for all algorithms, then
we have |W |km = 38500 << 122500 = (|W |/2)2 <<
1155000 = IDk|W |/2.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of DILOFC

on four real datasets. we compare the performance of DILOFC

with the DILOF [13]. Here, MiLOF [19] was exculded from
this experiment since the experiment results of DILOF showed
that DILOF has better performance than MILOF. All experi-
ments were performed on a PC with Intel i5-6700 2.4 GHz,
8G memory running Windows 10 64-bit operating system.
DILOFC was implemented in standard C++ with STL library
support. In next section, we discuss the datasets and experi-
ment settings.

TABLE I. PROPERTIES OF THE FOUR REAL-WORLD DATASETS

Dataset # Data Points Dimension # Classes

UCI Vowel 1,456 12 11
UCI Pendigit 3,498 16 10

KDD Cup 99 smtp 95,156 3 Unknown
KDD Cup 99 http 567,479 3 Unknown

A. Dataset and Experiment Settings

DILOFC performance was evaluated by applying it to four
real-world datasets. Table I listed the properties of the four
datasets. For the two datasets, KDD Cup 99 smtp and KDD
Cup 99 http, the number of classes is set to 10 since the number
of classes of theses datasets is unknown. The hyper-parameters
of DILOF, η and λ are set to 0.3 and 0.001 respectively for all
datasets. We set the default values of the parameter t that used
in DILOF (t-nearest neighbors in DILOF) as the following.
we set t to 19 for UCI Vowel and 8 for the three datasets UCI
Pendigit, KDD Cup 99 smtp, and KDD Cup 99 http.

For our algorithm DILOFC , the two parameters m (number
of nearest neighbors) and k (number of cluster) are set to 5 and
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11, respectively, for the three datasets UCI Pendigit, KDD Cup
99 smtp, and KDD Cup 99 http. For the dataset UCI Vowel, k
and m are set to 10 and 11, respectively. For the parameter dt
(distance threshold for merging clusters) is set to 3.3 for the
three datasets UCI Vowel, KDD Cup 99 smtp, and KDD Cup
99 http. For the dataset UCI Pendigit, dt is set to 2.4.

Recall, DILOFC and DILOF apply the summarization
method when the count of data points equal to window
size, |W |. Therefore, the performance of outlier detection
is measured with different values of |W |. Since the two
datasets, UCI Vowel and UCI Pendigit, contain a small number
of data points, we selected a small window size for them
|W | = {100, 120, 140, 160, 180, 200}. Since the two datasets,
KDD Cup 99 smtp and KDD Cup 99 http, contain a large
number of data points, we selected a large window size for
them |W | = {100, 200, 300, 400, 500, 600, 700}. The LOF
Thresholds were set to {0.1, 1.0, 1.1, 1.15, 1.2, 1.3, 1.4, 1.6,
2.0, 3.0} as in DILOF. For each LOF Threshold, we compute
false positive rate and true positive rate then AUC in ROC
space was computed for DILOFC and DILOF.

B. Effects of Optimization and Deletion Methods

In this experiment, we show the effect of optimization
(merge clusters) and the two different deletion methods. For
this purpose, we implemented four versions of DILOFC ,
namely, DILOFC1 that does not use the optimization of merge
clusters and use the first deletion method, DILOFC2 that does
not use the optimization of merge clusters and use the second
deletion method, DILOFC3 that uses the optimization of merge
clusters and use the first deletion method, DILOFC4 that uses
the optimization of merge clusters and use the second deletion
method.
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Fig. 5. Outlier Detection Accuracy with Respect to Window Size (Four
Versions).

1) Outlier Detection Accuracy: Fig. 5 reports the outlier
detection accuracy obtained by running the four versions on
two datasets (UCI Vowel: Fig. 5(a) and KDD Cup 99 smtp:
Fig. 5(b)). In UCI Vowel dataset, we can see that DILOFC4

always has high accuracy compared with the other versions
except for window size 100 and 120, where DILOFC2 shows
the best accuracy. In KDD Cup 99 smtp dataset, we can see
that DILOFC4 always has high or same accuracy compared
with the other versions except for window size 300, where
DILOFC2 shows the best accuracy.
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Fig. 6. Total Response Time with Respect to Window Size (Four Versions).

2) Total Response Time: Fig. 6 reports the total response
time (sec) obtained by running the four versions on two
datasets (UCI Vowel: Fig. 6(a) and KDD Cup 99 smtp: Fig.
6(b)). In UCI Vowel dataset, we can see that DILOFC4 always
has less time compared with the other versions. In KDD Cup
99 smtp dataset, we can see that DILOFC4 always has less
time compared with the other versions except for window size
100 and 120, where DILOFC2 shows the best execution time.

C. DILOFC against DILOF

From section IV-B, we showed that DILOFC4 has the
best performace among the other versions of the proposed
algorithm with respect to outlier detection accuracy and total
response time. Therefore, in this experiment, we will use
DILOFC4 version and we will call it as DILOFC for abbre-
viation. Here, we compare DILOFC against DILOF on the
four datasets, namely, UCI Vowel, UCI Pendigit, KDD Cup 99
smtp, and KDD Cup 99 http with respect to outlier detection
accuracy and total response time. See next two sections.

1) Outlier Detection Accuracy: Fig. 7 shows the outlier
detection accuracy of DILOFC and DILOF with respect to the
window size using the four datasets (UCI Vowel: Fig. 7(a), UCI
Pendigit: Fig. 7(b), KDD Cup 99 smtp: Fig. 7(c), and KDD
Cup 99 http: Fig. 7(d)). In UCI Vowel dataset, DILOFC shows
higher accuracy than DILOF at all window sizes. For example,
at window size 200, the accuracy of DILOFC is 95% whereas
the accuracy of DILOF is 91%. In UCI Pendigit dataset,
DILOFC and DILOF have approximately the same accuracy.
In KDD Cup 99 smtp dataset, DILOFC shows higher accuracy
than DILOF at most cases (for example, at window size 700,
the accuracy of DILOFC is 86% whereas the accuracy of
DILOF is 73%) except for window size 600, where accuracy
of DILOFC is 86% whereas the accuracy of DILOF is 88%.
In KDD Cup 99 smtp dataset, DILOFC shows higher accuracy
than DILOF at all window sizes (for example, at window size
700, the accuracy of DILOFC is 83% whereas the accuracy of
DILOF is 75%).

2) Total Response Time: Fig. 8 shows the total respose time
(sec) of DILOFC and DILOF with respect to the window size
using the four datasets (UCI Vowel: Fig. 8(a), UCI Pendigit:
Fig. 8(b), KDD Cup 99 smtp: Fig. 8(c), and KDD Cup 99
http: Fig. 8(d)). DILOFC shows the best execution time on all
datasets. On UCI Vowel dataset, UCI Pendigit dataset, KDD
Cup 99 smtp, and KDD Cup 99 http, DILOFC outperforms
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Fig. 7. Outlier Detection Accuracy with Respect to Window Size (DILOF vs. DILOFC ).
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Fig. 8. Total Response Time with Respect to Window Size (DILOF vs. DILOFC ).

DILOF by four factors, three factors, more than two factors,
and approximately two factors respectively.

V. CONCLUSION

Outlier detection over data streams is one important task in
data mining. In this paper, we proposed an efficient algorithm
called DILOFC for outlier detection over data streams. Our
algorithm used the density based approach. It based on DILOF
which is the state-of-the-art density-based algorithm for outlier
detection over data streams. Our modification in DILOF as
follows. We replace the inefficient summarization method of
DILOF by a new efficient summarization method that based
on a new clustering technique called m-center. Note that, the
time complexity of our summarization method is very small
compared to the time complexity of DILOF summarization
method. We also optimize m-center clustering technique by
merging the nearest clusters. Via an extensive evaluation on
real datasets, we show that DILOFC outperforms the state-of-
the-art competitor, DILOF by over two factors. Also DILOFC

achieves very high accuracy for detecting outliers. As future
work, we plan to evaluate our method in a real sensor network.
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