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Abstract—Over the past decade, the steel continuous casting
problem has revolutionized in important and remarkable ways.
In this paper, we consider a multiple parallel device for the
steel continuous casting problem (SCC) known as one of the
hardest scheduling problem. The SCC problem is an important
NP-hard combinatorial optimization problem and can be seen
as three stages hybrid flowshop problem. We have proposed to
solve it a recurrent neural network (RNN) with LSTM cells that
we will executed in the cloud. For our problem, we consider
several machines at each stage that are the converter stage, the
refining stage and the continuous casting stage. We formulate the
mathematical model and implemented a RNN with LSTM cells to
approximately solve the problem. The proposed neural network
has been trained on a big dataSet, which contains 10 000 real use
cases and others generated randomly. The performances of the
proposed model are very interesting such that the success rate
is 93% and able to resolve large instances while the traditional
approaches are limited and fail to resolve very large instances.
We analyzed the results taking into account the quality of the
solution and the prediction time to highlight the performance of
the approach.

Keywords—Artificial intelligence; SCC Program; RNN; LSTM;
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I. INTRODUCTION

Iron and steel industry is the cornerstone of an
industrialized economy. Since it is capital and energy
intensive, companies have constantly laid great emphasis on
technological advances to be employed in the production
process in order both to increase productivity and to save
energy. Due to the complex production process and potential
constraints, the latter faces difficult planning and scheduling
problems. For example, in the scheduling problem, we
usually define a set of n resources, a set of m tasks and
a specific optimization goal, called makespan Solmax. The
classic flowshop (FS) considers scheduling a set of tasks
on one machine at each stage, while the hybrid flowshop
(HFS) aims to schedule a flow shop with multiple parallel
machines at each stage [1]. In the steelmaking industry,
we have three main stages principals for the production
that are the converters (CV), the refining stands (RS) and
the continuous castings (CC) stages. Each one can include
one or more devices, and each product is processed on
only one device in each stage. Fig. 1 summarized this
configuration, the SCC problem can be seen as a hybrid
flow shop. More generally, the goal of SCC is to determine
the sequence, timing, and system of equipment involved in
the entire production process. This problem is a NP-hard
combinatorial optimization and it is considered to be one
of the more difficult scheduling problems in the literature [30].

Fig. 1. The Principle Stage of the SCC.

The principal stages and constraints are as follows :

1) The length of stay is minimized,
2) The deadline must be met,
3) The continuity constraint must be satisfied.

We propose in this research, a system with three stage
Mi machines at each stage i(i = 1, . . . , 3), such that M1

identical parallel CV machines are available in the first stage
(denoted as CVM1

), M2 unify the parallel RS machines at
stage two (denoted as RSM2

) and M3 unrelated parallel CC
machines at stage three (denoted as CCM3

). In addition, we
consider the inter-sequence correlation setting time between
every two consecutive sequences λ to be processed on the same
CC machine with non-preemptive scheduling. Similarly to the
notation by [8], we write our system as a hybrid flowshop
(HFS) : CVM1 , RSM2 , CCM3 | λ ‖ Solmax. The first modeling
of the problem was considered as a special case of m-stages
HFS, which has irrelevant machines and related setup time,
which proved to be NP-Hard [14]. For example, [22] has
proven the NP hardness of a single machine with a set time.

Some recent research work have been developed to study
the steel making continuous casting problem. Most of the
developed models deal with high complexity, so solving them
as optimal is not always effective, especially for the large
instances problems. The most of the methods proposed for
the HFS problems are approximation methods, most of which
are meta-heuristics. The SCC problem is a special set time
scheduling problem, which is difficult to solve due to the high
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computational complexity [22]. The SCC problem is based on
a chronological step chain (the three stages: CV, RS, and CC),
where CV, RS, and CC devices are considered to be single,
and only one sequence of loads is processed on the machine
Mi according to the rules. Among the key rules of the SCC
problem, the charging will not start processing on the device
until the previous charge is completed. This architecture can be
represented by a neural network (forward propagation principle
[11]) which allows the automation of the problem SCC. To the
best of our knowledge, this is the first work that proposes a
model of artificial intelligence to solve the problem of SCC,
in particular a Recurrent Neural Network (RNN) with Long
Short-Term Memory (LSTM) cells.

In the remainder, the article is organized as follows:
Section 2, presents a literature review on the works related
to the steelmaking industry in general and the continuous
casting in particular. Sections 3 and 4 detail the structure,
the sequences and charges, the constraints and formulate the
objective function and the mathematical model for the SCC.
Section 5 we present the construction of learning big data and
we describe our recurrent neural network with LSTM cells
for SCC. Section 6 is devoted to the numerical experiments.
We also discuss and comment the obtained results and show
the efficiency of the method. Finally, Section 7, presents a
conclusion that summarizes the study and gives some potential
perspectives for the developed approach to improve the current
results for the SCC.

II. RELATED WORK AND PROBLEM STATEMENT

Continuous casting is one of the most commonly used
processes in steel production and has received special attention
in the past ten years [31]. Several research works have been
developed, both exact and heuristic algorithms have been
elaborated to solve several SCC problem variants. The authors
in [28] reviewed several SCC models used in steelmaking
production, and other works considered mathematical and non-
mathematical techniques [3] to solve these variants. Optimiza-
tion methods such as genetic algorithm (GA) [33], taboo search
(TS) [14], mathematical model [32] or swarm intelligence
optimization [10] have been developed to optimize production.
The hybrid method [27] is also tailored for a continuous steel
plant.

Also exact MILP methods are proposed to unravel the
SCC. Usually, these methods can only solve small problem
instances with commercial solvers, but the real challenge is
to use smart and optimized methods to solve large instances.
The author in [29] proposed a MILP model for the production
order scheduling problem. This model describes a system with
more than two machines in each stage, and also more than two
sequences must be processed in the final stage, in addition
there is an inter-sequence setting time. This model is solved
by commercial solvers for relatively small instances. In [9]
a mathematical model of the process and a state-of-the-art
industrial control system are presented, and they mentioned
the importance of using a real-time computational model. In
[6], a method has been developed for a steelmaking plant with
2 converters, 2 refining stands, and 2 continuous casters. The
authors in [12] develop a discrete-time mixed-integer linear
programming (MILP) formulation for a new SCC scheduling
problem where different processing routes are used to produce

diversified and personalized slab products. The authors in [23]
developed a method to minimize the total delay and waste of
scheduling problems for different product types by minimizing
batches.

Scheduling problems are mainly NP-Hard optimization
problems ([5]). In order to overcome their complexity, heuris-
tics and approximation methods may proposed a solution for
this types of problems. In the literature approximation methods
were developed for SCC. In [18], heuristic-based combinatorial
auction technology is also used to solve the SCC containing 4
production orders and a 10-hour planning range. The authors
in [16] have developed approximate techniques to solve some
planning and scheduling problems of downstream production
lines. In [13], the authors have developed a soft-decision
based two-layered approach for strong uncertain scheduling.
The paper [26] presents an Improved Artificial Bee Colony
(IABC) algorithm for the SCC scheduling. Other uncertainty
optimizations have been developed for SCC, such as a novel
efficient solution algorithm using Augmented Lagrange mul-
tiplier method (e-ALM) through relaxation of the coupling
constraints and incorporation of penalty components [12].

Several evolutionary algorithms have also been developed
for SCC. In [20], we find the description several approaches for
computerized scheduling solutions. They include application
of techniques in operations research, artificial intelligence, and
a hybrid of these two. Nature-inspired optimization methods
have also been used in SCC. For example, in [7] the steel
industry has been modeled through a combination of a steady-
state heat transfer approach and a pareto-converging genetic
algorithm (PCGA). In [2], the authors developed a algorithm,
that is based on a combination of ant colony optimization
and non-linear optimization methods. The authors in [17]
have implemented a multi-objective GA to minimize penalties
for completion and lateness. In [24], the authors developed
a swarm heuristic method for SCC. In the paper of [25],
the authors develop a discrete-time mixed-integer linear pro-
gramming (MILP) formulation for a new SCC scheduling
problem where different processing routes are used to produce
diversified and personalized slab products. A multi-objective
hybrid genetic algorithm combined with local search was pre-
sented in [32], in which the enhanced evolutionary mechanisms
combined with the improved genetic operators and the local
search were also designed. Regarding this work, our approach
is based on an artificial neural network, where artificial neural
network, is a system whose design is originally schematically
inspired by the functioning of biological neurons. The idea has
no relation to the way a human being reacts, but to the way
of designing the data. It adapts and gives good results when
there is a lot of sample information (Features). To the best of
our knowledge, this is the first work that proposes a model of
artificial intelligence to solve the problem of SCC, in particular
a recurrent neural network with long short-term memory cells.

A. Problem Statement

The system processes the costs of different stages under the
continuity constraint (i = 1, . . . , 3). These sequences are pre-
ordered costs on the continuous castings machine, and their
costs are allocated to any converter machine. Since handling
and transportation operations occur in the entire process, the
transfer time between stages τi,i+1 (i = 1, 2) is considered.
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We also believe that all converters devices have the earliest
and latest start time for the first charge of a sequence with a
usable date. The working principle of the system is as follows:

• A sequence represent a set of charges dedicated to
one continuous casting machine, and has priority
constraints on fees;

• The processing time is limited for any converter, who
can be used in the first stage;

• There is a limited residence time (transmission) be-
tween the termination of charging in converter and the
start of continuous casting to comply with the required
temperature;

• Due to continuous constraints, there is no idle time
for the charges on the continuous casting;

• The processing time of the continuous casting stage
is a decision variable belonging to a given interval;

• The sequence start time at continuous casting is
bounded, and the delay between two consecutive se-
quences is the setup time we define.

The sorted total batch represents the industrial order book
so that the sequence can be assigned to the continuous casting.

1) Concept of Sequence and Continuity Constraints: The
sequence Seql3 is defined as a set of nSeql3

charges to be
used in the M3 casters CCl3 (l3 = 1, . . . ,M3). The relevant
constraints are summarized as follows:

1) The converter can be used in the first stage, there is
no specification, and it has a constant processing time
and availability date;

2) There is a transition time τi,i+1 between all stages i
(i = 1, 2);

3) The stay (transit) time of the charge j (the time
between the termination of the first stage i = 1 and
the start of the final stage) must not exceed a certain
value Tl3,j ;

4) No idle time is allowed between two consecutive
charges in the same sequence in the third stage
(continuous constraint);

5) The setting time depends on the sequence time;

III. CONTINUOUS CASTING OF THE ORDERED
SEQUENCES

This section describes all the data (sets, indexes, etc.),
parameters, and decision variables that describe the problem
being studied. For a given CCl3 , a pre-ordered dedicated
sequence Seql3 (Seql3 = 1, . . . , Sl3 ) is a list of nSeql3

charges
to continuously process on CCl3 with setup times.

Collections, constants, and indexes :
i : the index of the stage, i = 1, . . . , 3;
Mi : the number of the machines li at stage i (li = 1, . . . ,Mi);
Sl3 : the number of the sequences Seql3 to be processed on
the machine CCl3 ;
Seql3 : a sequence to process on CCl3 (Seql3 = 1, . . . , Sl3 );
nSeql3

= |Seql3 |: the number of charges (jobs) j of the
sequence Seql3 ;

nl3 =
∑Sl3

Seql3=1 nSeql3
: the total number of the charges to

process on CCl3 (l3 = 1, . . . ,M3);
n =

∑M3

l3=1 nl3 : the total number of the charges;
j : the charge index dedicated to the sequence Seql3 of CCl3 ,
j = 1, . . . , nl3 ;
l1 : the index of the first stage machine CVl1 , with
(l1 = 1, . . . ,M1);

The consider assumptions :
ωl1 : position of a charge on CVl1 , ωl1 = 1, . . . ,Πl1 ;
l1 = 1, . . . ,M1 − 1

Πl1 =

∑M3

l3=1
nl3

+1

M1
;

ωM1 : position of a charge on the last machine CVM1 ,
ωM1

= 1, . . . ,ΠM1
;

ΠM1 =

∑M3

l3=1
nl3

M1
;

Settings and parameters
pro1 : processing time (constant) for a charge j on any one
of the CVl1 at the 1st stage;
pro2

l2
: processing time for a charge j on the RSl2 ;

[Pmin
l3,j

, Pmax
l3,j

] : the interval of pro3
l3,j

is dedicated to the
processing time of the cost j of CCl3 ;
[λmin

Seql3
, λmax

Seql3
] : the interval between sequences depends on

the setup time λSeql3
.

datel1 : available date of CVl1 ;
Tl3,j : maximum allowed sojourn time for a charge j between
the termination of any processing in CVl3 and the start of
processing in CCl3 (j = 1, . . . , nl3 , li = 1, . . . ,Mi, i = 1, 3);
τ12 (resp. τ23) : transfer time required between CVl1 (stage 1)
and RSl2 (stage 2) (resp. RSl2 (stage 2) and CCl2 (stage 3)).

Decision variables
The model considers continuous and binary decision variables.
For any l3 = 1, . . . ,M3:
xil3,j : start time of the charge j dedicated to CCl3 at stage i
(i = 1, 2, 3) for j = 1, . . . , nl3 ,
pro3

l3,j
: processing time dedicated to the charge j of CCl3

at the 3rd stage for j = 1, . . . , nl3 ,
λSeql3

: setup time between two consecutive sequences,
(Seq−1)l3 and Seql3 to process at CCl3 , that occurs between
the charge n(Seq−1)l3

and the charge lSeql3
.

yl3j,ωl1
=

{
1 if charge j dedicated to CCl3

is assigned to a position ωl1 in CVl1
0 otherwise

j = 1, . . . , nl3 , ωl1 = 1, . . . ,Πl1 , l1 = 1, . . . ,M1.

IV. THE MATHEMATICAL MODEL FOR THE SCC

In the research problem, we intend to maximize productiv-
ity, that is, minimize the manufacturing span (Solmax) and the
sequence-dependent setup time, which represents the required
duration between two consecutive sequences.

Our modeling method uses the position of the sequence
charge and the priority defined by the processing start time of
stage 1 (CV). We are also considering pre-orders for charging
CC machines in the third stage.
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A. The Constraints

We may remember that due to the high complexity of
its structure and function, this problem is subject to several
constraints that we detailed below:

M1∑
l1=1

Πl1∑
ωl1

=1

yl3j,ωl1
= 1; j = 1, . . . , nl3 , l3 = 1, . . . ,M3 (1)

M3∑
l3=1

nl3∑
j=1

yl3j,ωl1
= 1; ωl1 = 1, . . . ,Πl1 , l3 = 1, . . . ,M3

and
M3∑
l3=1

y1
1,1 = 1

(2)

yl3j+1,t(l1=1)+1 ≤
M1−1∑
l1=1

tl1∑
ωl1

=1

yl3j,ωl1
; j = 1, . . . , nl3 ,

tl1 = 1, . . . ,Πl1 − 1

(3)

yl3j+1,tlM1

≤
M1∑
l1=1

tl1∑
ωl1

=1

yl3j,ωl1
− yl3j,tlM1

; j = 1, . . . , nl3 − 1,

tl1 = 1, . . . ,Πl1 ;
(4)

z1
l3,j =

M1∑
l1=1

Πl1∑
ωl1

=1

(datel1+pro1(ωl1−1))yl3j,ωl1
; j = 1, . . . , nl3 ;

(5)

z2
l3,j ≥ z

1
l3,j + pro1 + τ12; j = 1, . . . , nl3 ; (6)

z3
l3,j ≥ z

2
l3,j+pro2

l2+τ23; j = 1, . . . , nl3 ; l2 = 1, . . . ,M2; (7)

z2
l3,j+1 ≥ z2

l3,j + pro2
l2 ; j = 1, . . . , nl3 − 1; l2 = 1, . . . ,M2;

(8)

z3
l3,j+1 = z3

l3,j + pro3
l3,j ;

∀j /∈ {n1, n1 + n2, . . . ,

Sl3∑
Seql3=1

nSeql3
},∀ l3 = 1, . . . ,M3;

(9)

z3
l3,j+1 ≥ z3

l3,j + pro3
l3,j + λr;

∀j =

r∑
Seql3=1

nSeql3
, r = 1, . . . , Sl3 − 1;

(10)

Pmin
l3,j ≤ pro

3
l3,j ≤ P

max
l3,j ; j = 1, . . . , nl3 (11)

z3
l3,j − (z1

l3,j + pro1) ≤ Tl3,j ; j = 1, . . . , nl1 (12)

λmin
Seql3

≤ λSeql3
≤ λmax

Seql3
;Seql3 = 1, . . . , Sl3 − 1 (13)

The constraint (1) represents that the charge j is allocated
to only one converter machine and is located in only one
position ωl1 . The constraint (2) represents that the converter
CVl1 must process the charge j once and only once at a
specific position ωl1 (l1 = 1, ..,M1). In addition, must assign
the charge j = 1 to the first position of the converter CV1

(l1 = 1). The constraint (3) demand that the charge (j+1) must
be affected on the CV1 converter where (l1 = 1) at the position
(t1 = 1) only if the charge j is to process at any of the positions
in 1, . . . , tl1 , on one of the M1 − 1 first converters CVl1 . The
same way, for two consecutive charges j and j + 1, for the
last converter CVM1

, constraint (4) has the same meaning. The
constraint (5) is set for the start time to process the charges in
the converter stage (CVl1 ; l1 = 1, . . . ,M1). Constraints (6)-
(7) represent the sequencing in the same charge, exactly for
two consecutive operations. The last operation can be started
after the first operation reaches its end time and the charge
has been brought to the next stage. In addition, constraint (6)
(resp. (7)) represents the priority rules between CVl1 and RSl2
(between RSl2 and CCl3 (respectively)). The constraint (8)
means that for two consecutive charges to process on the same
refining stand (RSl2 ), the second charge can only be processed
when the first one has reached its end time. The constraint (9)
represents the continuity constraints for all the sequences. The
constraint (10) defines the inter-sequence correlation setting
time between two consecutive sequences to be processed on
the same continuous casting machine (CCl3 ). Constraint (11)
defines the limit of the third stage charging processing time
on the machine CCl3 . The constraint (12) means that the stay
time (transport) of the charge is finite, and (13) defines the
boundary of the set time between the sequence of the third
stage. They set the necessary preparation time before the first
charging of the sequence after the last charging end time of
the previous sequence on the same machine in the third stage.

B. The Objective Function

We define makespan (Solmax) as a function representing
the time required to completely process all sequence sets (from
the start time of the first charge in the first stage to the
termination time of the last charge at the third stage with their
inter-sequence dependent setup times.

The objective function we consider for the problem has the
following mathematical form:

Solmax = max
1≤l3≤M3

{λSl3
+ z3

l3,Sl3
+ pro3

l3,Sl3
}

In order to maximize productivity and the goal is to
minimize completion time, we have defined the following
goals:

Minimize Solmax = min max
1≤l3≤M3

{λSl3
+z3

l3,Sl3
+pro3

l3,Sl3
}

In this form, the problem is non-linear. Therefore, in order
to avoid this situation, we define a new non-negative decision
variable z so that we can obtain a new objective (linear) equal
to minimizing z and add new constraints:

λSl3
+ z3

l3,Sl3
+ pro3

l3,Sl3
≤ z ∀l3 = 1, . . . ,M3
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V. THE PROPOSED CONTRIBUTION TO SOLVE THE SCC

Several evolutionary algorithms are developed to solve
complex optimization problems, among them we cite [21]. But
the real challenge for the SCC problem is to solve instances
with an approach intelligent and optimal. Here we develop
an adapted neural networks to the SCC with inter-sequence
setup times at the last stage using LSTM cells. The adapted
neural network trained on a large database of 10 000 use cases
solved with CPLEX based on the mathematical model that we
presented in the first part of this article.

In the following we detail the evolutionary strategy that we
have adopted for this problem but before that we will explain
what deep learning is and why exactly the use of the recurrent
neural network (RNN) in particular LSTM.

A. Deep Learning

Machine learning is a field of study of artificial intelligence
that gives computers the ability to learn from data, that is,
to improve their performance at solving tasks without being
explicitly programmed. In several areas of machine learning
research, it is about creating neural networks.

Deep learning can be defined as special kind of neural
networks composed of multiple layers. These networks are
better than traditional neural network in persisting the infor-
mation from previous event. Recurrent neural network is one
such machine that has a combination of networks in loop.
The networks in loop allow the information to persist. Each
network in the loop takes input and information from previous
network performs the specified operation and produces output
along with passing the information to next network. Some
applications require only recent information while others may
ask for more from past, exactly the case of the SCC problem.
The common recurrent neural networks lag in learning as the
gap between required previous information and the point of
requirement increases to a large extent. But fortunately Long
Short Term Memory Networks [15], a special form of RNN
are capable in learning such scenarios.

B. LSTM Neural Networks

Long-term memory (LSTM) is an alternative solution pro-
posed in [15]: the traditional architecture of a Recurrent Neural
Network (RNN) that is based on a simple activation function
is modified in such a way that the vanishing gradient prob-
lem is explicitly avoided, while the learning method remains
unchangeable. For more information on this architecture ([4]).
But what are the strengths of LSTM ? why the LSTM will be
effective to solve the steel continuous casting problem ?

A LSTM neuron network is made up of several cell that
have not just one activation function but rather three that are
represented as an input gate, a forget gate and an output
gate. Each cell remembers the state of the problem treat in
several time intervals, and the three gates regulate the flow
of information in and out of the cell. The LSTM network is
very suitable for classification, processing and prediction based
on time series data, because there may be lags of unknown
duration between important events in the time series. This is
what is needed to schedule tasks between the three stages (CV,
RS and CC) of the SCC problem. Also as we explained, LSTM

was developed to deal with the explosion and disappearance
of gradients that may be encountered when training traditional
RNNs. Fig. 2 shows the internal architecture of a LSTM cell.

Fig. 2. The Internal Architecture of a LSTM Cell [4].

- Forget gate: It is the power of forgetting information.
Unlike the classic neural network where it must to memorize
all the information in a long sequence, a LSTM has the power
to forget unnecessary information that will probably not be
used in the prediction. In the LSTM the power to forget non-
useful information is represented by the function ft = α(Wf ∗
[ht−1, xt] + bf ), where α is a sigmoid function, Wf is the
weights and [ht−1, xt] is the concatenation of the two vectors
ht−1 and xt.

- Input gate: is responsible for adding relevant information
and providing new information. The function that allows this
is Ct = Ct−1 ∗ ft + it ∗At where it = α(Wi ∗ [ht−1, xt] + bi
and At = tanh(Wc ∗ [ht−1, xt] + bc).

- Output gate: This last operation allows to define the
current state of the unit. So far, we have forgotten informations,
and we have added new informations to the memory. We still
need to define the state of the current cell, which represents
the output of this cell and which will be the input of the next
cell. This is summarized by the following functions: ht =
α(Wo ∗ [ht−1, xt] + bo) ∗ tanh(Ct).

C. The Evolutionary Strategy: Training Data, Network Archi-
tecture and Choice of Parameters

The proposed neural network will be used as a heuristic
to solve the SCC with smart solutions. For this a LSTM is
applied to approach the objective function. The proposal to
solve the SCC problem is explained in Fig. 3. The system
generates a data set in the domain of variables to train a
neural network. The objective function of the optimization
problem is redefined with the multilayer neural network that
transforms the function, allowing to generate a polynomial
equation to solve the optimization problem. To define a neural
network, it is necessary to establish parameters, such as the
training data, the type of neural network, connections, number
of layers, activation functions, propagation rules, etc.

Various methods exist to train these networks to produce
a specific output for a specific input. Among the current
training methods, we have error propagation, which consists
of adjusting the network by adapting the weights of each
neuron. The use of the partial derivative makes it possible to
know in which direction we must modify the weights of our
neural network to have the requested output. Also a genetic
algorithms are used to train a neural network [19]. By training
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Fig. 3. The Evolutionary Strategy for the SCC.

these networks on a set of data for which the correct output
is known, the network will return the appropriate results for
similar data. We trained our LSTM on data from 10 000 use
cases (instances), where the correct output was generated by
the CPLEX based on the mathematical model that we proposed
above.

Regarding the architecture, there are several architectures
in the literature, but just some differences between them in
the neural network language model. The architecture that we
propose to solve the steel continuous casting problem was
obtained after several tests and it is the one that which gave
best results. It can be summarized as follows:

Input sequence represents the input of our LSTM, in our
implementation it is encoded by an encoding from 1 to Sl3
where Sl3 is number of the sequences Seql3 to process on
the machine CCl3 . Note that the sequenes are generated in
128 batches with 5% diversity, where the purpose of adding
diversity in the learning stage is to give flexibility to the model
and to avoid overfitting. The model predicts the assignment of
sequence loads from different stages (CV, RS and CC) with
continuity constraints.

The network topology, an architecture with three hidden
layers has been applied, each with 256 LSTM units. Each
cell LSTM use the ”relu” activation function (to have faster
convergence compared to other activation functions as tanh or
sigmoid). However the output layer, the ”softmax” activation
function is used to generate the correct normalized probability
value in order to select sequential charges in different stages
(CV, RS and CC).

As a learning criterion, Adam optimizers is used with a
precision of 0,001.

The following algorithm summarizes the main steps :

VI. EXPERIMENTAL TESTS

All experiments were performed on the Google colab under
GPU, namely CPLEX 12.6 was used to determine the optimal

Algorithm 1 : The proposed LSTM model.

- According to the unified law on [0;1], the weights are
initialized by random drawing.
- Codage : list all sequence charges, represent each one by
a number from 1 to Sl3 .
- Creating a LSTM network : create four layers, where the
three hidden layers have 256 LSTM units for each one. The
output layer uses the ”softmax” activation function to predict
the sequence charges of different stages (CV, RS, and CC)
with continuity constraints.
while counter ≤ iterMax do

1. Generate 128 batches with 5% noise.
2. Train the model.
3. The learning rate of the Adam optimizer is 0.001.
4. Update each weight

end while

solutions for the SCC instances in order to prepare the training
data and also to compare with the results of the LSTM.

A. The Learning and Test Rate:

The learning rate gives an idea of the quality of the model.
In Fig. 4, we present a graph that represents the learning rate
(93%) and the test rate (91%) per epoch.

As can be seen from the convergence of the cost function
(Fig. 5), our model performed well and the fact that there is
not a large discrepancy between the loss of the training and
the loss of the test allows us to conclude that we do not have
an overfitting. We have also to mention that the learning rate
is 93% and the test rate is 91%.

B. Test Instances

For the instances taken form the literature, we compare
our LSTM with the CPLEX solutions, the proposed RNN with
LSTM cells has improved the total makespan Solmax and was
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Fig. 4. The Learning and Test Rate per Epoch.

Fig. 5. Convergence of the Cost Function per Epoch.

up to 1000 times faster than the CPLEX on CPU as shown in
Table I.

Table II shows our tests on randomly generated large
instances for which no solution is known. These instances
span a large number of charges until 10 CC machines at the
last stage. As an example, for the following batches size of
a 4 CC system [30,25,20,25][25,30,15,25,15] [30,35,30,20,30
[40,20,55] (number of charges per each sequence) with dif-
ferent [λmin

Seql3
, λmax

Seql3
] ranges of setup times, the CPLEX fails

to solve it. However, the LSTM runs it on 1.42 seconds and
gave a solution with Solmax = 6330,13. This allows us to say
that the obtained numerical results show the efficiency of the
proposed recurrent neural network with LSTM cells with a
total success of solving all the instances.

VII. CONCLUSION

In this paper, we have implemented a recurrent neural
network with LSTM cells in order to solve the SCC with
intersequence dependent setup times and dedicated machines
at the last stage known as one of the harder problem in

TABLE I. RESULTS FOR DIFFERENT SEQUENCES SIZES WITH 3 CC AND
FOR SEVERAL INTERVALS [λmin

Seql3
, λmax

Seql3
]

Order: [.][.][.][.] Solmax

CPLEX
Time
CPU
(s)

Solmax

LSTM
Time
LSTM(s)

[15, 10, 12][5, 5, 5] 1559.00 5.75 1133.23 1.0
[15, 14, 30][5, 5, 5] 1807.01 16.55 1721.10 1.3
[10, 13, 17, 8][5, 5, 5, 5, 5] 1756.72 540.99 1440.67 1.5
[18, 11, 23, 15, 27]
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5] 2506,04 2105.31 2420 1.7
[5][5][5] 427.58 1.09 281.39 0.17
[10, 10][10, 10][10, 10] 706.07 21.45 651.26 1.1
[5, 15, 5, 10][10, 10, 10, 5]
[5, 5, 5, 5] 1239.34 790.23 1075.37 1.68
[5, 10, 5, 10, 5][10, 10, 10, 5, 5] 1678.23 3367.86 1210.16 1.69
[5, 5, 5, 5, 5]
[10, 20, 5, 30][20, 5, 10, 5] - - 2910.54 1.57
[15, 5, 10, 10]
[20, 10, 5, 40][30, 20, 15][20, 15] - - 3372.58 1.63
[35, 15, 25][10, 19, 15, 4, 5] - - 3375.44 1.93
[8, 35, 17]
[15, 15, 25][20, 14, 25, 11, 5] - - 4841.10 2.32
[15, 35, 17, 10, 30]

TABLE II. RESULTS ON SEQUENCES SIZES UNTIL 10 CC

Number
of CC

Total number
of charges

Solmax

(LSTM)
Time (s)

4 280 4320.28 1.21
4 340 4550.91 2.30
4 470 6330,13 2.42
4 520 6955.39 3.26
4 600 7615.39 3.62
5 235 3872.15 1.12
5 315 4226.28 3.15
5 400 4712.15 3.91
5 625 6980.50 5.76
5 865 10101.45 6.74
6 366 4821.67 3.12
6 515 6316.53 4.75
6 700 7005.22 5.36
8 450 5924.67 3.48
8 635 6473.31 6.85
8 965 8567.92 7.83
10 368 2365.86 2.10
10 823 8391.50 6.34
10 1256 10341.19 8.90

scheduling. Especially, we have shown that with RNN with
LSTM cells, one can tackle very large instances arising in
complex industrial systems where the number of sequences,
of charges or of any devices type (CV, RS or CC) is bigger
than 10. Better solutions are obtained with better quality and
execution time. The performances of the proposed model are
very interesting such that the success rate is 93% and able
to resolve large instances while the traditional approaches are
limited and fail to resolve very large instances.

One of the future works that we intend to develop is to
generalize the approach on a cluster of GPUs in order to deal
with more complex and robust cases and to enable solving
very large size instances in order to improve the quality of
the up to day known solutions. Also, we intend to generalize
our approach to similar SCC problems in particular or to solve
very complex hybrid flowshops in general. Another feature that
could also be envisaged is the lagrangean relaxation for typical
hard constraints that we could relax.
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