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Abstract—Swarm robotic systems control multiple robots in
a coordinated manner for using this flexible coordination to
solve complex tasks in various environments. Such systems can
utilize the individual capabilities of robots scattered within the
swarm as well as the collective capabilities of the assembled
robots. By coordinating these capabilities, swarms can solve tasks
with a range of purposes, including carrying out rough sweeps
of the overall environment using scattered robots or detailed
observation of a part of the environment using assembled robots.
This study developed a self-organization method for constructing
regular groups of robots from scattered robots to achieve coor-
dination between individual and collective states. An approach
that integrates elements of self-organization with different input
information requires centralized control to manage them. To
provide this self-organization without centralized control, we
focus on using the phase-field method and cellular automata to
facilitate crystal growth that produces ordered structures from
scattered particles. We formulate a method for arranging robots
in a self-organizing manner based on the geometrical regularities
of tile-able lattices (honeycomb, square, and hexagonal lattices) on
a two-dimensional plane, demonstrate the process undertaken in
carrying out the proposed method, and quantitatively evaluate the
effectiveness of the lattice-based geometrical regularity approach.
The proposed method contributes to carrying out tasks with a
range of purposes by organizing states with either individual or
collective capabilities of robot groups.

Keywords—Multi-robot systems; self-organization; distributed
control; crystal growth

I. INTRODUCTION

Swarm robotic systems, which apply swarm intelligence
through the control of multiple homogeneous robots, have the
features of scalability, flexibility, and robustness [1]. In recent
years, researchers have assessed techniques for the practical
application of such systems [2], [3]. Changing the manner
in which the swarm is embodied can enable the robots to
process multiple small tasks using parallel capabilities as well
as medium- to large-scale tasks using collective capabilities.
This gives the robot swarm advantages relative to single
robots in carrying out large-scale/wide-area tasks such as
surveillance and environment exploration and cooperative tasks
such as multi-shape object transportation [4]. In this study,
we examined a robot swarm-based-transporting application
that manages individual and collective capabilities simultane-
ously to enable parallel transportation of small objects that
depends on the performance of a single robot and cooperative
transportation of heavy or large objects that exceeds their
performances by robot groups.

When a swarm system performs multiple similar tasks, the
swarm divides into multiple robot groups to carry out the
tasks in parallel. However, only this simple group structure
is not suitable for performing some tasks. Considering the
transporting task as an example, groups with scales, shapes,
and structures should be constructed such that they satisfy the
size, shape, and weight of an transported object, and the system
should self-organize its groups based on the given conditions.

The self-organization of a swarm robot system involves
aggregation, pattern formation, and self-assembly [5]. Aggre-
gation is a method for allocating robots to several groups
from a set of scattered robots or dividing a robot swarm into
several groups. Several methods have been proposed for the
allocation of robots based on external factors such as task
value and distance [6], [7] and the division of robot swarms
based on internal factors such as the number of tasks given
by the host system [8], [9]. Allocation approaches allow for
the flocking of scattered robots after information relevant to
the tasks has been gathered from the environment; division
approaches enable robots to work in rough groups to explore
an environment. Pattern formation is a method for arranging
robots in pre-designed shapes. In this approach, the robot
swarm will often construct designed formations from pre-
aggregated arbitrary shapes. The robots to be added will then
search for the edge of the target group or region and converge
to positions suitable for enlarging the pattern designed on a
2D plane [10] or in 3D space [11], or the edge of a designed
region [12]. Recently, a method focusing on reaction-diffusion
systems for morphogenesis through growth was proposed as
a pattern strategy [13], [14]. This approach is expected to
facilitate large-scale distributed patterning because it can adapt
to changing self-healing defects caused by the partial failure
of the robot swarm or changes in the environmental geometry.
Self-assembly is the third method for maintaining either phys-
ical or cyber positioning between organized robots. Physical
connections using grippers [15], magnets [16], and welding
[17] as well as virtual connections using networks and non-
contact sensors [18], [19] have been proposed to facilitate self-
assembly through the fabrication of rigid or elastic body-like
swarms without physical constraints, respectively. In pattern
formation and self-assembly, the environment-adaptive struc-
ture [14], [17] produces groups suitable for foundation shapes
and structural loads that self-organize via flexible coupling by
controlling the reinforcement around heavily loaded robots. By
contrast, lattice-based structures [11], [18] produce groups with
geometrical regularities among robots. Depending on the geo-
metrical conditions, dense or sparse groups can be constructed,
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allowing a lattice-based structure to adapt to changes in robot
density, that is, the number of robots required to carry out tasks
such as coordinative transportation or observation. Thus, the
implementation of self-organization requires the integration of
each elemental method. This complicates the configuration of
robots and systems.

In robot groups for transporting—which is the objective
of this study—ordered arrangement enables the robots to
efficiently support heavy or light objects on agerage by chang-
ing their density. Self-organization through these elemental
technologies can be used to produce such an arrangement from
scattered robots. However, this approach requires centralized
control management because the information that must be
used differs by task. To solve this self-organization challenge
without centralized control, we focus on crystal growth, a
natural phenomenon that produces lattice-based structures such
as snowflakes, salt, and ores from scattered particles. This
paper proposes a self-organization method for constructing
groups of crystalline (ordered) robot arrangements from scat-
tered robots without the use of centralized control. To this
end, we formulate an autonomous distributed control model
for introducing crystal growth into swarm robotic systems to
induce enlargement.

In the process of crystal growth, particles find the surfaces
of existing crystals through solidification and deposition and
then adhere to positions on those crystals determined by
existing meteorological conditions and molecular properties,
thereby continually increasing the number of crystal layers
and enlarging the crystal structure [20]. In this manner, crystal
growth constitutes a self-organizational process. There are two
existing mathematical tools for predicting and reproducing
crystal growth: the phase-field method and cellular automata.
The phase-field method describes the changes in a crystal
surface during growth by calculating the state transitions of
particles using scalar values that denote the stochastic state
between the solid and liquid phases instead of independent
thermodynamic states. Cellular automata reproduce the com-
plex systems underpinning phenomena such as crystal growth
and the formation of traffic jams. In this approach, rulesets
for updating the states of cells in terms of discrete neigh-
boring states are applied over discrete space-time intervals to
reproduce macroscopic phenomena. By combining the state
transitions of particles under the phase-field method with the
growth rules of cellular automata, we seek to apply crystal
growth to swarm robotic systems. To this end, we propose a
self-organization method (Fig. 1) for constructing groups with
a crystalline structure from scattered robots based on local
information obtained from contact between robots.

The remainder of this paper is structured as follows.

Goal configurationInitial scattered state Self-organization process

Fig. 1. Self-organizing a Regularly Arranged Group from Scattered Robots.

Section II defines the configuration of robots and robot swarms
and sets the problem of the self-organizing task. Sections III
and IV describe, respectively, a behavioral model for robots
based on state transition using the phase-field method and a
layer-forming method based on cellular automata under several
lattice conditions and with different coverages. In Section V,
we describe the results of a robot swarm self-organization
simulation based on the proposed method and quantitatively
verify that the robot swarm can construct lattices with layers
at arbitrary scales. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT

In this study, we considered a swarm comprising N -unit
homogeneous mobile robots. Each robot is equipped with
a ranging sensor and local wireless communicator and can
move in any direction on a two-dimensional plane within an
upper velocity limit of v [m/s]. Each mounted sensor and
communicator interfaces with the sensors and communicators
on other robots and can be used to observe obstacles directly
on lattices tiled on the two-dimensional plane, as shown in
Fig. 2. To prevent errors in measuring the distances between
robots, the robots cluster into groups with circular perimeters
of diameter σ [m]. Under this condition, we define rij as the
relative distance vector between the i-th robot and the j-th
neighboring robot it observes. Each robot updates its velocity
control value and communicable state based on the relative
distance vectors and the exchanged state for a given interval
using asynchronous timing. The robots move according to the
calculated velocity control values.

For constructing a group of robots to navigate various
lattices from randomly arranged states on a two-dimensional
plane, a landmark robot is designated to collect other robots
around an observed target. The other robots find the land-
mark robot through environment exploration and converge
on positions that enlarge the group uniformly. The resulting
organized group is a regular structure based on the geometrical
regularities of honeycomb, square, or hexagonal lattices that
can tile a two-dimensional plane at equally spaced intervals.
In this process, if the robots are not oriented so that they face
in the same direction, the group cannot construct the lattice
recursively; therefore, the angular references of the robots are
all assumed to be aligned along the same direction.

III. BEHAVIORAL CONTROL OF ROBOT

To carry out the proposed self-organization process, the
robots must utilize the following functionalities: environmental
exploration to move individually, surface exploration to find

Honeycomb lattice Square lattice Hexagonal lattice

Fig. 2. Structures of Tile-able Lattices on a Two-dimensional Plane.
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Fig. 3. Illustration of Output Behavioral Vector According to the Order
Parameter Value when (left) φ is Close to Zero and (right) φ is Close to One.

adherable sites on the organized group, and maintenance of the
lattice. In addition, the magnitudes of these controls must be
altered according to the individual robot’s progress. To achieve
these behavioral transitions, we apply a phase-field method to
represent the state probability between the solid and liquid
phases.

The phase-field method involves the application of a
reaction-diffusion equation that combines diffusion based on
the state difference between a particle and its neighbors with
a reaction based on the particle’s state to formulate the path
of surface movement in crystal growth. The following simple
surface movement model is used:

dφ

dt
= ∇2φ+ 8φ(1− φ)(φ− 0.5 + β) (1)

where φ is an order parameter denoting the phase of the
particle, which is a continuum value between zero (liquid
phase) and one (solid phase), and β is the reaction rate, which
is a constant parameter that solidifies under the condition
β > 0.

When a robot exchanges order parameter information with
other organized robots, it updates its internal state as reflected
by this equation to proceed with its solidification and transi-
tion, depending on its order parameter value, from environment
exploration via object-reflecting to surface exploration via
edge-following, as shown in Fig. 3. Through this solidification
process, the robots exploring an environment find sites of
adherence on the organized group.

Each robot recognizes other robots that have been orga-
nized based on the construction state of the lattice, sj0, which
is obtained from the cellular automata produced by the j-th
neighboring robot. If sj0 > 0, the neighboring robots are
recognized as an organized group, with the set of recognized
organized robots defined as CSi, which is used to calculate the
output of the phase-field method (in the next section, we will
explain how the detailed cellular automata states are derived).

The order parameter that represents the state between the
solid and liquid phases controls the i-th robot’s behavior. When
this parameter contacts the j-th organized robots, it is updated
according to (1) as follows:

φi ← φi +

(∑
φj − φi
|CSi|

+ 8φi(1− φi)(φi − 0.5 + β)

)
∆t

(2)

where ∆t is the interval of the algorithm. According to this
order parameter, the controller that decides the priority of
environment and surface explorations is represented as follows:

f INTi (φi) =

{
(1− φi) f̂EXPi + φif

D
i ;CSi 6= ∅

f̂EXPi ; otherwise
. (3)

The order parameter transitions from zero to one when
the crystal growth produces a solidified state. This model
prioritizes surface exploration, fDi , when close to the solid-
ification state and environment exploration, fEXPi , otherwise.
Note that a robot that does not yet neighbor an organized
group uses only environment exploration to find a group. These
environment and surface exploration behaviors must involve
interactive reflection to avoid other robots and obstacles and
edge-following drift of the outline of the organized group;
these behaviors are described as follows.

The avoidance behavior used in environmental exploration
is generated by constructing a reflection vector between the
pre-behavioral vector and the point of collision with a target
as follows:

fEXPi =


∑
j∈TSi

f INTi − 2
(
f INTi · r̂ij

)
r̂ij ;TSi 6= ∅

f INTi ; otherwise
(4)

where TSi is the set of reflected objects, which contains
obstacles that can be contacted by the robot and neighboring
robots within a balanced potential distance, r0. To compare the
magnitudes of environment and surface exploration behavior,
the calculated reflection vector is normalized and integrated
into the behavioral vector.

The drift behavior for surface exploration used to search
for a position of adherence to an organized group is described
using a vector that rotates around the neighboring robot group
while maintaining the potential, i.e., the distance needed to
construct the lattice. It is calculated as follows:

fDi = fPi −
{
R
(
+π

2

)
r̂id ; |f INTi × rid| ≥ 0

R
(
−π2
)
r̂id ; |f INTi × rid| < 0

(5)

where the first and second terms on the right-hand side are
the potential functions used to maintain a constant distance
between robots as an surface and the rotation surrounding the
neighbor closest to the pre-behavioral vector among organized
robots, d = ∀ arg max

(
f INTi · rij |j ∈ CSi

)
, respectively. The

boundary conditions of the model determine the direction of
this rotation along the pre-behavioral vector. By combining
these, the robot can explore around an organized group at a
certain distance.

The inter-robot potential works not only for drift but
also for positioning. This potential generates attraction and
repulsion forces that maintain the distance between robots
needed to construct a group based on the lattice. As this
approach focuses on a particle system, we incorporate the
Lennard-Jones potential [21] as the distance potential and a
simple sinusoidal potential as an angular potential, which is
represented as follows:
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fPi =
∑
j∈CSi

1 + cos(L(θij + liπ))

2|CSi|
fLJ(rij)

+ sin (2Lθij)R
(π

2

)
r̂ij

(6)

where L is the number of neighboring robots depending on
the target lattice. fLJ is the Lennard-Jones potential adjusted
for the attraction, as shown follows:

fLJ(r) =
169 6

√
13
7

63 · 2 5
6

1

r

(
12
(σ
r

)12
− 6

(σ
r

)6)
. (7)

This potential outputs a maximum attraction value of one to
maintain a constant balanced distance r0 (where fLJ(r0) = 0)
that depends on the diameter of the robot. In addition to this
potential, the robot is attracted in a direction that satisfies the
geometric regularity of the lattice according to the period of
the angular potential. By these interactions, the robot moves
to the position that places the the neighbors in the direction
according to the regularity of the lattice. If the robot does not
maintain the lattice-based structure, such as during drift, L is
given zero to ensure that the angular potential does not work.

The i-th robot moves according to the movement vector,
vi = vf INTi , based on the behavioral vector calculated using
these equations.

IV. ENLARGING ALGORITHM

According to the behavioral model described in the pre-
vious section, a robot can find an adherence position suitable
for further construction of the lattice that forms the group. We
propose a ruleset of cellular automata to provide this position
to the robot and a self-organizing potential function to maintain
its tiled position. Fig. 4 shows the neighborhoods of these
lattices, which can exchange information with neighboring
robots in the same layer (unfilled layer), and the neighboring
relations for constructing the lattice. The transition function of
the cellular automata for these neighborhoods is represented
as follows:

si0 ←


δ (si0, si1, si2, si3, si4, si5, si6,

si7, si8, si9, si10, si11, si12)
; Honeycomb lattice

δ (si0, si1, si2, si3, si4) ; Square lattice

δ (si0, si1, si2, si3, si4, si5, si6) ; Hexagonal lattice
(8)

where si0 is the lattice construction state and si1 to siN are
the neighbor states, which depend on the number of neighbors
in the lattice, with N = 12, 4, and 6 denoting a honeycomb,
square, and hexagonal lattice, respectively. Because each lattice
has rotational symmetry around its central robot, the surround-
ing states can be defined by any neighboring robot [22].

To build a group, a set of transition functions, called a
ruleset, that repeatedly fills and enlarges the layers of the group
by counting the number of filled corners in the outer layers is
applied. The construction states si0 to siN are therefore defined
as continuous natural numbers from zero, indicating that the
liquid phase searches for a position of adherence of to up to
Smax and the solid phase fills the layers. Smax is at least eight,
six, and eight for honeycomb, square, and hexagonal lattices,
respectively, with adhered and layer-filled states included in
the number of corners of the layer formed by each lattice.

si1 si1si1

si2
si2 si2

si3

si3

si3

si4

si4

si4

si5

si5si6

si6

si8

si7

si9

si10si11

si12

si0 si0 si0

Honeycomb lattice Square lattice Hexagonal lattice

Fig. 4. Directly Observable Neighbors and Coupling Neighbors in Lattices.

Counting and sharing the values in the outer layers requires
the neighbor values of the left and right neighbors, sil and
sir, respectively, in the layer inhabited by the i-th robot. The
left and right reference directions of a robot can be toward
either the inner or outer layers; therefore, to recognize its
neighbors within its layer, the i-th robot calculates the layer li
at the current position based on the layer lj of the neighboring
robots as li = min(lj |j ∈ LSi)+1. For reference, the layer of
the landmark robot is set to zero. LSi, the set of neighboring
robots within the range

√
2r0, can be used to observe the robots

in the inner layer from a constructible position in the outer
layer. Consequently, the i-th robot obtains the neighbors from
the layer adjacent to the inner layer as sil and sir, respectively.
The ruleset for synchronously enlarging the layers of a lattice
based on these neighborhoods is then

si0 ←


1 ; si0 = 0, ∃Smax ∈ sin|1 ≤ n ≤ N
1 ; si0 = 0, 0 < sir < Smax or 0 < sil < Smax

sir + 1 ; 0 < si0, sir, sil < Smax and θril <
N−0.5
2N

π

sir ; 0 < si0, sir, sil

.

(9)

This ruleset is constructed from the top two enlarging rules
and the bottom two filling rules that produce the process shown
in Fig. 5. By applying these enlarging rules, robots that are
adjacent to either a filled inner layer or a neighborhood in the
same layer will converge to that position and be organized into
the group. The robots applied this rule complete the exploration
by (3) to construct the group, and apply the potential model
according to the number of neighbors of the organized lattice.
The robots in the outer layer then count the number of corners
in that layer based on the filling rules. If the angle between
sil and sir is less than π rad, the corresponding robot is in
a corner and the adjacent robots are located on the sides.
The robots identified as being in corners then transition to a
state that adds one to sir, whereas the others continue sharing
sir. By repeating this process, the robots in the outer layer
reach their maximum state, Smax, allowing the robot swarm
to synchronously enlarge the layers of the organized group.

V. EVALUATION OF SYNCHRONISTIC ENLARGEMENT OF
ROBOT AGGREGATION

Using the proposed self-organization method, we con-
firmed that the self-organization process is integrated and that
scattered robots can synchronously enlarge the layers of a
lattice-based structure to self-organize a group. To this end,
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si0← sir+1
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1

si0← sirEnlarging

Filling

Fig. 5. Filling Process of the Robots in the Outer Layer by the Proposed
Ruleset. The Robots Construct a New Layer on the Outside of the

Green-colored Robots.

Fig. 6. Example of Field Generated by Simulation, with Green Robots
Self-organizing Around a Red Landmark Robot.

we simulated the process of building self-organizing lattice-
based groups based on honeycomb, square, and hexagonal
lattices. We also evaluated the geometrical regularities of the
organized groups relative to their collective centers. Trans-
portation requires a robot swarm comprising several tens to
several hundred robots, depending on the size, weight, and
shape of a transported object. In our simulation, we confirmed
that the proposed method can be used to direct robots in the
construction of a group to perform transporting tasks for large
objects and that these groups can arrange the robots regularly
to distribute the load for the weight of the transported objects.

We evaluated the dynamics of mobile robots under the
following conditions: the robots were generated at random
positions within a square region based on the average exploring
range of an individual robot, with the landmark robot placed
at the center of the region, as shown in Fig. 6. Note that
this region size affects the search time of the robots. Each
initialized robot had a diameter of 20 pixels, could move
in all directions within an upper-velocity limit of 50 pixel/s,
and was able to begin moving in a random direction. The
robots also updated their behavioral vectors and communicable
information computed using the proposed method with a
reaction coefficient β of 0.1 at intervals of 10 ms. We simulated
the movement of the robots for each lattice and layer condition.

0.00s

38.76s

88.60s

323.77s

0.00s

43.49s

105.37s

369.16s
Square latticeHoneycomb lattice

0.00s

34.15s

87.14s

316.04s
Hexagonal lattice

Fig. 7. Group Enlargements up to Self-organization of 15-layer Robot
Groups on Different Lattice Types.

A. Appearance of the Self-organization Process

To verify that a robot swarm could synchronously enlarge
a layer based on the proposed cellular automata ruleset, we
simulated self-organization of 15-layer groups on honeycomb,
square, and hexagonal lattices using the required number of
robots (361, 481, and 721, respectively) for each case and
setting the average exploration area to 40×40 pixel2. The self-
organization results obtained under these conditions are shown
in Fig. 7.

From top to bottom, the rows in the figure show the
groups constructed at 0 (initial state), 5, 10, and 15 (completed
state) layers, respectively. In each case, the robots, which had
been initialized with individual behaviors, converged to regular
positions on the applied lattice and enlarged the organized
group in all directions around the landmark robot. The shapes
of the in-progress and completed organized groups were, in
general, similar, and there were no defects in the filled layers
or overgrowth in the outermost layers of the organized groups.
These results indicate that the layer-filling process based on the
proposed cellular automata ruleset worked as designed, with
all robot swarms applying the proposed method achieving the
construction of ordered arrangements from scattered robots.

The robot behavioral paths overlap and increase depending
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on the random reflection vectors of the other robots, therefore,
this paper cannot compare and discuss their time requirements.
In the enlargement process, a robot exploring its environment
will have to move in the path with little overlap to find
an organized group. We expect to improve by incorporating
behavioral models, such as random walk [23] and Lévy flight
[24], that can effectively explore the overall environment into
the proposed method.

B. Convergence Location of Scalable Self-organization

We then confirmed that the self-organization by a scalable
robot swarm can satisfy the geometric regularity of a lattice.
To evaluate this, we compared the differences between the sim-
ulated collective centers and the coordination of the landmark
robots. Here, by “collective center” we mean the geometric
condition-dependent coordination of the landmark robot as the
organized robots converge to their ideal positions. Based on
this difference, we could evaluate the geometrical regularity
of the self-coordination process. The evaluation index for an
individual robot is given by

Oc =
1

100

100∑
try=1

√√√√( N∑
i=1

xi − xc
N

)2

+

(
N∑
i=1

yi − yc
N

)2

(10)
where xc and yc are the coordinates at which the landmark
robot is initially placed, xi and yi are the coordinates of the
i-th robot when self-organization is complete, and N is the
number of robots required under each experimental condition.
To account for the randomness of the sequence of enlargement
and the robot behavioral paths, the index was measured 100
times and the average value and standard deviation were
calculated.

The index was measured for the first- to twentieth-layer
group of each lattice with the average exploring area set to
60×60 pixel2. Fig. 8 shows the measurement results for each
lattice. In each case, the obtained difference was shorter than
the distance at which the potential model converged over time,
indicating that the differences satisfied geometrical regularity.
In addition, the indices for the series of honeycomb lattices
were larger than those for the other lattices because, in the
honeycomb lattice, the supported range of the proposed angular
potential has wider than those of the others, and half of the
robots in the outermost layer only construct with one robot.
The indices also increased and scattered as the number of
robots neighboring only one robot with weak convergence
forces and wide support ranges increased with the number of
layers.

VI. CONCLUSION

This paper proposed a self-organization method that inte-
grates the self-organization process to utilize the cooperative
capability of swarm robot systems. To achieve this, we focused
on crystal growth and developed a distributed control/algorithm
that combines a phase state transition based on the Phase-
Field method and a group enlargement based on Cellular
Automata. We demonstrated the self-organization process and
evaluated the geometrical regularity of organized groups based
on honeycomb, square, and hexagonal lattice-based arrange-
ment conditions. From this result, we have achieved to produce
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Fig. 8. Error in Measured Geometric Regularity as a Function of Number of
Layers. The Solid Lines and Error Bars are the Average Values from 100

Trials and the Corresponding Standard Deviations, respectively.

a collective state from a parallel distributed state of a swarm
robot system based on local robot positions and information
exchange between the local robots.

Because the proposed method is a self-organizing approach
based on the use of identical robots to fulfill a given lattice
condition, it is limited by its inability to be used to construct
flexible shapes (e.g., amorphous structures) based on long-
range ordered coupling. Nevertheless, under the proposed
method various group shapes can be represented by increasing
the number of robots, i.e., the resolution. This will allow
us to develop an approach for constructing designed group
shapes by controlling the landmark robot and the layer growth
speed. Furthermore, the proposed method has been shown to be
effective at fixed-point observation; for the robots to engage in
dynamic observation or the cooperative transportation of large
objects, they will have to move in organized groups. Therefore,
in the future, we will address the development of a dynamic
approach in which the geometric conditions of the lattice are
maintained.
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