
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Secure and Efficient Proof of Ownership Scheme for
Client-Side Deduplication in Cloud Environments

Amer Al-Amer1, Osama Ouda∗1,2
Department of Computer Science, College of Computer and Information Sciences, Jouf University, Saudi Arabia1

Department of Information Technology, Faculty of Computers and Information, Mansoura University, Egypt2

Abstract—Data deduplication is an effective mechanism that
reduces the required storage space of cloud storage servers by
avoiding storing several copies of the same data. In contrast with
server-side deduplication, client-side deduplication can not only
save storage space but also reduce network bandwidth. Client-
side deduplication schemes, however, might suffer from serious
security threats. For instance, an adversary can spoof the server
and gain access to a file he/she does not possess by claiming that
she/he owns it. In order to thwart such a threat, the concept of
proof-of-ownership (PoW) has been introduced. The security of
the existing PoW scheme cannot be assured without affecting
the computational complexity of the client-side deduplication.
This paper proposes a secure and efficient PoW scheme for
client-side deduplication in cloud environments with minimal
computational overhead. The proposed scheme utilizes convergent
encryption to encrypt a sufficiently large block specified by the
server to challenge the client that claims possession of the file
requested to be uploaded. To ensure that the client owns the
entire file contents, and hence resist collusion attacks, the server
challenges the client by requesting him to split the file he asks to
upload into fixed-sized blocks and then encrypting a randomly
chosen block using a key formed from extracting one bit at a
specified location in all other blocks. This ensures a significant
reduction in the communication overhead between the server
and client. Computational complexity analysis and experimental
results demonstrate that the proposed PoW scheme outperforms
state-of-the-art PoW techniques.

Keywords—Client-side deduplication; proof of ownership; con-
vergent encryption; could storage services

I. INTRODUCTION

Cloud computing is the provision of on-demand access to
different computing services and resources, such as storage
space, servers, networks, databases, and software, over the
internet [1]. The different models of cloud computing can
provide a wide range of capabilities, adapted with different
business goals, to diverse clients and/or consumers [2, 3]. The
rapid development and integration of cloud computing have led
organizations, institutions, and individuals to increasingly turn
to utilize services provided over the cloud [4]. Consequently,
an increasing number of individuals and organizations tend
to move their data on cloud storage services (e.g., Dropbox,
SkyDrive, Google Drive, iCloud, Amazon S3). This resulted
in rapid growth in the volume of data that is stored on the
cloud storage servers [5, 6, 7].

To increase efficiency as well as reduce the storage space
required on storage servers, cloud storage providers tend to
avoid downloading and uploading duplicated data [5, 8]. Data
deduplication is an effective mechanism that aims at reducing
the required storage space of the cloud storage servers by

avoiding storing several copies of the same data. There are
two main types of deduplication [9, 10] namely, server-side
deduplication and client-side deduplication. The server-side
deduplication schemes [11, 12] remove duplicated copies of
the same files after uploading them to the server. On the
other hand, In client-side deduplication [10, 13], duplicated
copies are identified on the client side and not uploaded to
the server. Hence, in contrary to server-side deduplication,
client-side deduplication can not only save storage space and
uploading time but also reduce network bandwidth.

However, client-side deduplication schemes might suffer
from serious security threats [13, 14, 15]. For instance, an
adversary can spoof the server and gain access to a file
that he/she does not possess by claiming that he/she owns
it. To thwart such a threat, Halevi et al. [16] proposed a
cryptographic primitive, referred to as ”proof of ownership”
(PoW), to allow the server to verify whether a client owns
a file. They pointed out that a robust PoW scheme should
alleviate potential security threats without introducing I/O and
computational overhead at both client and server sides. Since
the introduction of the proof-of-ownership concept, several
PoW schemes have been proposed in the past few years
[14, 16, 17, 18, 19, 20, 21, 22]. However, the security of such
schemes cannot be assured without affecting the computational
complexity of client-side deduplication.

An efficient PoW scheme should satisfy several require-
ments. First, the chances that an adversary successfully passes
a PoW run should be negligible if the adversary does not
possess the file in its entirety. Second, a small fixed amount
of information should be loaded on the server-side regardless
of the file size. Third, the amount of processed information
on both the client and server sides should be minimal. In
addition, the amount of transmitted data between the client and
the server should be reduced to minimize the bandwidth. Un-
fortunately, the PoW schemes discussed above do not fulfill all
of these requirements. Thus, new techniques that can resolve
the security-efficiency trade-off and reduce communication and
storage overhead should be proposed.

This paper proposes a secure and efficient proof-of-
ownership scheme for client-side deduplication in cloud envi-
ronments that fulfills the requirements mentioned above. The
proposed technique utilizes convergent encryption to encrypt
a sufficiently large block specified by the server to challenge
the client that claims possession of the file requested to
be uploaded. To ensure that the client owns the entire file
contents, and hence resists collusion attacks [23, 24], The
server challenges the client by requesting him to split the file
he/she asks to upload into fixed-sized blocks and then encrypts

www.ijacsa.thesai.org 916 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

a randomly chosen block using a key formed from extracting
one bit at a specified location in all other blocks. This ensures
a significant reduction in the communication overhead between
the server and client. Moreover, the proposed scheme resists
attacks of honest-but-curious servers [25, 26, 27].

The rest of the paper is structured as follows. Section II
provides a brief background on the concepts of data deduplica-
tion, convergent encryption, and proof-of-ownership. Section
III describes the proposed PoW scheme in detail. Section IV
presents a computational complexity analysis of the proposed
scheme and provides a comparison with the state-of-the-art
schemes. Section V describes the experimental results and
discussion. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Data Deduplication

Data deduplication, also called single-instance storage,
techniques aim to eliminate duplicate copies of the same data
to improve storage utilization and reduce the unnecessary cost
of storage capacity needs [13]. A prominent example of the
usefulness of data deduplication is redundant file attachments
in email systems. Consider a typical email system containing
50 copies of the same 20 megabyte (MB) file attachment.
Saving or archiving this email platform requires 1000 MB of
storage space. The storage demand can drop to only 20 MB if
data deduplication is employed. The example shown in Fig. 1
demonstrates the main concept of data deduplication. There are
two main types of data deduplication in cloud environments:
server-side deduplication and client-side deduplication. Server-
side deduplication techniques identify repeated data after up-
loading them to the server, whereas client-side deduplication
techniques identify duplicate copies of data before they are
uploaded to the server. Therefore, client-side deduplication
techniques can reduce network data transfers in addition to
storage capacity.

Fig. 1. Data Deduplication Technology.

B. Convergent Encryption

Data deduplication techniques can benefit from convergent
encryption (CE) to achieve security smoothly and more easily
[10, 15]. Convergent encryption is a cryptographic concept that

Fig. 2. Convergent Encryption Concept.

ensures security in the cloud by achieving confidentiality and
data privacy. The main idea behind CE is to create similar
ciphertexts from similar plaintexts (see Fig. 2). Unlike tradi-
tional cryptography, in which data encryption and decryption
are carried out using cryptographic keys that are independent
of the data being encrypted, and hence different ciphertexts are
obtained from the same plaintexts, CE ensures that the same
key is used for the same plaintexts. In CE, the data digest or
hash is used as a key to encrypt the data. Encrypting data in CE
undergoes the following three steps: 1) the digest (hash value)
of the plaintext in question is computed, 2) the plaintext is then
encrypted using its digest as a key, and 3) finally, the hash is
encrypted with a key chosen by the user and stored along with
the obtained ciphertext. These steps ensure that identical data
copies will generate the same key and the same ciphertext.

C. Proof of Ownership (PoW)

In client-side deduplication techniques, the hash value of
the file requested to be uploaded by the client is firstly
computed and sent to the server. If this hash value exists in
the list of previously uploaded files to the server, the server
will request the client not to upload the file again to avoid
storing redundant data. However, in order to append the client
to the list of owners of that file, the server has to verify that the
client owns the entire file and not try to spoof it. Traditional
proof of ownership protocols, Such as the one proposed by
Halevy et al. [5] oud storage provider (CSP) has access to the
original file. In other words, such protocols depend on trust
between the cloud storage provider and the client. However,
this trust might generate many potential security risks since
cloud storage providers (CSPs) should not be fully trusted.
The process of adapting PoW protocols so that they can work
properly on encrypted data is an open problem so far [13].

Several PoW schemes have been proposed over the past
few years. Gonzalez-Manzano et al. [14] proposed an attribute-
based symmetric encryption proof of ownership scheme, re-
ferred to as ase-PoW, for hierarchical environments. The main
goals of this scheme are to resist honest-but-curious servers
and to provide flexible access control to ensure that users have
access to sensitive files with the right and real privileges. The

www.ijacsa.thesai.org 917 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

idea behind this scheme is based on recursively encrypting
parts of the file being uploaded to the server to assure its
possession by the user. The ase-PoW scheme has the advantage
of its ability to resist guessing attacks on the content and reduce
the cloud workload. However, it does not take into account the
issues of user revocation and key updating.

Dave et al. [17] proposed a secure proof of ownership
scheme based on utilizing Merkle trees. The idea is based
on calculating the responses of challenges in advance at the
server-side to avoid computational overhead while uploading
the file. The cloud server does not need to hold over the
resources until the response is received, which is preferable to
the utilization of stateless protocols. The user on the client-
side is requested to encrypt the file to be uploaded to the
server using its digest as a key (a.k.a. convergent encryption
(CE)). Afterward, the user computes a file tag (usually a
cipher-text hash) to check the file’s existence on the server.
The file uploading process consists of four stages (metadata
generation, challenge generation, response generation, and
response verification). If the file tag does not exist in the
FileList kept by the server, the client will be requested to
upload the file with the tag. In the case of subsequent uploads,
the server sends an unused precomputed PoW challenge to
the client. If the client owns the entire file, then the client will
correctly respond to the server.

Islam et al. [18] proposed a secure and reliable storage
scheme for cloud environments with client-side deduplication
(SecReS). The authors combined convergent encryption and
secret sharing techniques to achieve data confidentiality. They
used the Reed-Solomon erasure code to achieve fault tolerance
through distributing data to multiple storage servers. Moreover,
Merkle trees are utilized to verify the ownership of data
and to perform secure data deduplication. Mishra et al. [19]
proposed a merged PoW scheme (MPoWS) for block-level
deduplication in cloud storage. By employing a random test
approach, MPoWS meets the requirements of client-side and
server-side mutual verification. In MPoWS, large files are
uploaded to the servers, and then their duplication is checked
using various blocking flags. The authors used a random test
approach to increase security and make it difficult to predict
which block will be validated.

Fan et al. [20] proposed a secure deduplication scheme
based on a trusted execution environment (TEE), which pro-
vides secure key management by using convergent encryption
with cloud users’ privileges. Trusted execution environments
improve cryptographic systems’ capability to resist chosen-
plaintext and chosen-ciphertext attacks. The authors proposed
assigning a set of privileges to every cloud user. Therefore,
data deduplication can be performed if and only if the user
of the cloud has the right and valid privileges. In [21],
Ouda proposed a secure and effective proof of ownership
scheme for client-side deduplication in the cloud. This scheme
verifies if the client owns the entire file for which he/she
claims possession. In other words, the proposed scheme does
not allow an adversary to engage in a successful proof of
ownership without fully owning the file’s content. This can
be achieved by requesting the client to encrypt the entire file
using the file hash as the key before uploading the file to the
server. This prevents the curious server from disclosing the file
content.

Du et al. [22] proposed a proof of ownership and re-
trievability framework (PoOR) in which the cloud client can
prove ownership of files to the server without uploading or
downloading the files. The proposed framework consists of
the pre-processing two phase, proof of ownership phase, and
retrievability phase. The proof of ownership phase depends
on the Merkle Tree protocol and comprises three steps:
prove, challenge, and verify. Cui et al. [28] proposed a new
attribute-based storage system that supports secure and effi-
cient deduplication. The proposed system runs on a hybrid
cloud environment where the private cloud is responsible for
detecting identical copies for storage management. Ma et al.
[29] demonstrated how attribute-based encryption can be used
to minimize storage space and share data efficiently. In this
technique, if the attributes of certain user is matched, then the
user is given the right to decipher the encrypted data.

Blasco et al. [30] proposed a PoW scheme, called bf-
PoW, that utilizes the Bloom filters to mitigate the server-side
overhead. The main drawback of the bf-PoW scheme is that
it does not consider data privacy. Di Pietro and Sorniotti [9]
introduced another scheme, referred to as s-PoW in which the
server requests clients to send bit-values of randomly selected
bit positions of files requested to be uploaded by those clients.
Although this scheme is computationally efficient at the client-
side, it is not efficient on the server-side. Manzano and Orfila
[31] proposed a PoW scheme, called ce-PoW, employing the
concept of convergent encryption to encrypt file chunks before
uploading them to the server. This scheme reduces issues
related to key management. However, since the encryption is
applied at the chunk level, the number of encryption keys in-
creases linearly with the number of requested chunks. This can
put a significant burden on both storage space and bandwidth
as the security parameters increase.

Huang et al. [32] proposed a bidirectional and malleable
proof-of-ownership scheme for large files in cloud storage
(BM-PoW). The proposed BM-PoW protocol allows the server
and user to interact to ensure ownership of the file to be
uploaded even if the file is updated. Thus, secure and efficient
deduplication for large files in static and dynamic archives is
guaranteed. Miao et al. [33] proposed a novel PoW protocol
that benefits from the distinguishable properties of chameleon
hashing. Although this protocol is more efficient than existing
PoWs based on Merkle hash tree, it is vulnerable to brute-force
attack (BFA) due to its limited keyspace [34].

Although some solutions have been proposed to improve
the efficiency at the server-side, other solutions tend to enhance
the computational cost at the client-side. Besides, most of the
existing schemes cannot satisfy all the security requirements
in terms of resisting honest-but-curious servers and collusion
attacks without affecting the efficiency and/or communication
bandwidth requirements. Therefore, it is promising to study
how to develop PoW schemes that can balance the trade-off
between the security and efficiency requirements.

III. PROPOSED POW SCHEME

As we previously mentioned, the main goal of our proposed
PoW scheme is to provide an efficient means to prove the
ownership of files in client-side deduplication environments
securely. Precisely, we aim at minimizing the exchanged

www.ijacsa.thesai.org 918 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Fig. 3. Proposed PoW Scheme.

information between the client and server, reducing the data
uploaded in memory during a PoW session, and decreasing the
likelihood that a malicious client can successfully respond to
the challenge sent to him/her by the server via increasing the
amount of exchanged information between a malicious client
and a legitimate owner of the file. Definition of abbreviations
and symbols are given in Table I.

As illustrated in Fig. 3, the proposed PoW scheme consists
of three phases: the client initialization phase, server initial-
ization phase, and challenge phase. In the client initialization
phase (see Algorithm 1), the client initiates a file (f) upload
request to the server by simply sending general attributes of
the file, such as its name and size. The server responds to
the client by sending a message specifying a robust hashing
algorithm H (e.g., MD5, SHA1, etc.) as well as a private
key encryption scheme E (e.g., DES, AES, etc.). The client
uses the specified hashing algorithm to compute the file digest,
hf = H(f), which is then used as a key to encrypt the file
using the encryption algorithm specified by the server to obtain
an encrypted file fe = E(f, hf). The encrypted file fe is then
hashed using H to obtain its digest hfe = H(fe). Finally, the
client sends hfe to the server so that it can decide whether the
file has been uploaded before by a different user.

TABLE I. DEFINITION OF ABBREVIATIONS AND SYMBOLS

Abbreviation Definition

f File to be uploaded to the server

fe Encrypted file

H(f) Hash of the file f

blk A block of f

j Block number

n Number of non-overlapping blocks

κ Encryption key

m Bit position

L List of uploaded files

C The client

S The server

Assuming that the server stores the digest of each previ-
ously uploaded encrypted file, the server can decide whether
f has been uploaded before by searching for hfe in the list
(L) of the stored digests. It is worth noting that our scheme

www.ijacsa.thesai.org 919 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Algorithm 1 Client Initialization Phase
Input: File f
Output: H(fe), fe

1: Client C sends a request to server S to upload the file f
2: S sends to C the name of the hashing algorithm H and

encryption algorithm E
3: C computes the digest H(f) of f using H
4: fe ← E(f,H(f))
5: C computes hfe = H(fe) and sends it to S
6: S searches for hfe in the list (L) of uploaded files
7: if H(fe) is found in L then
8: Go to the Challenge Phase
9: else

10: Allow C to upload fe to S
11: Go to the Server Initialization Phase
12: end if

Algorithm 2 Server Initialization Phase
Input: File fe
Output: The entry L[hfe]

1: Divide fe into n blocks of size 64MB each
2: for i← 1 to c do /* c = No. of challenges */
3: Choose two integers m and j < n
4: Extract the m-th bit of each block in fe
5: Generate a cryptographic key κ by concatenating the
n extracted bits

6: Encrypt the j-th block in fe using κ to obtain
E(blkj , κ)

7: Compute the digest of E(blkj , κ)
8: Challange[i] =< m, j,H(E(blkj , κ)) >
9: end for

10: Create a new entry for fe consisting of all the generated
challenges and append it to L

assumes that files are encrypted before uploading them to the
server to prevent honest-but-curious servers from disclosing
the contents of the uploaded files. If hfe is not found in the
list of the stored digests, the server sends a message to the
client to start uploading fe; otherwise, the server initiates the
challenge phase.

After the file fe is uploaded, the server initialization phase
(see Algorithm 2) starts by creating a new entry for fe. This
entry consists of hfe and a pointer to a set of pre-computed
challenges that will be used to prove the ownership of fe by
other clients who might request to upload the same file in the
future. A challenge is created by dividing the file into n non-
overlapping blocks sufficiently large to resist collusion attacks.
It is assumed that sharing data ≥ 64MB among colluders
would discourage them launch collusion attacks [30]. Thus,
we recommend setting the block size at such levels. Then, the
encryption key (κ) is composed by concatenating all bits at a
specific position (m) across all blocks. For instance, if m = 3
and n = 128, then the third bit in each block is extracted, and
the set of the 128 extracted bits are concatenated to create
a 128-bit cryptographic key κ. An example that illustrates
the key generation process, where m = 3 and the file and
block sizes are 8 GB and 64 MB, respectively, is shown in
Fig. 4. The generated key is then used to encrypt a randomly
chosen block (blkj) of the encrypted file fe using the AES

Fig. 4. An Example that Illustrates the Key Generation Process.

encryption algorithm to obtain E(blkj , κ). Finally, the digest
of the encrypted block H(E(blkj , κ)) is obtained and stored
along with m and j as one challenge for fe. The previous
challenge creation process is then repeated using different
values of m and j to encrypt different blocks of fe in order
to generate as many challenges as needed.

The challenge phase is initiated when an entry is found
for fe in the list of uploaded files kept by the server. In
this case, the server chooses one of the available challenges
in L[hfe] to verify that the client possesses the file he/she
requests to upload. The server challenges the client by sending
m and j corresponding to the chosen challenge. Note that
with just these two values, the amount of information sent
from the server to the client is minimized. This satisfies an
important design objective of the proposed PoW scheme. The
client responds to the challenge by dividing the file, after
encrypting it using the same procedure described in the client
initialization phase, into n blocks, generating κ by extracting
bits at position m of all blocks, encrypting the block blkj
specified by the server using κ, and finally calculating the
digest of the encrypted block H(E(blkj , κ)) and sends it to
the server as a response to the received challenge. The server
matches the received block digest with the corresponding
digest stored in L. The PoW run succeeds if both digests are
identical and fails otherwise.

It is important to note that all design goals of the proposed
PoW scheme are satisfied. The data exchanged between the
client and server are minimized. In the challenge phase, the
server sends two small pieces of information; namely, the
bit position index m used to generate the key κ and the
index of the block to be encrypted. Similarly, the client is
required to respond to the challenge received from the server
by just sending the specified block digest. From the security
perspective, the block size is set to 64MB because a PoW
scheme is considered secure if the amount of exchanged
information between a legitimate owner of f and a malicious
client required to pass a PoW run is not smaller than 64MB
[30]. Moreover, since one bit per block is used to generate the
key (κ), a large number of challenges can be generated for each
uploaded file. Precisely, more than 229 different challenges can
be generated if the block size is set to 64MB.

www.ijacsa.thesai.org 920 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

TABLE II. COMPARISON BETWEEN THE PROPOSED SCHEME AND FIVE RELATED POW SCHEMES CONCERNING SPACE AND COMPUTATIONAL
COMPLEXITY. κ: SECURITY PARAMETER, n: NUMBER OF PRE-COMPUTED CHALLENGES, l: TOKEN LENGTH, F : FILE SIZE, B: BLOCK SIZE AND pf :

FALSE POSITIVE RATE (BF-POW SCHEME)

ase-PoW ouda-PoW ce-PoW bf-PoW s-PoW Proposed

Client computation O(B).Sym.nr.hash O(F).CE.hash O(B).CE.hash.hash O(F).hash O(F).hash O(B).CE.hash

Server init computation O(B).hash O(F).hash O(B).hash.hash O(F).hash O(F) O(B).hash

Server init I/O O(F) O(F) O(F) O(F) O(F) O(F)

Server regular I/O O(0) O(0) O(0) O(0) O(n.k) O(0)

Server memory usage I/O O(n.l.k) O(n.l) O(n.l.k) O(
log(l/pf)

l) O(n.k) O(n.k)

Bandwidth O(l.k) O(l.k) O(l.k) O(l.kpf
) O(k) O(k)

Algorithm 3 Challenge Phase
Input: m and j of an unused challenge
Output: PoW response

1: S sends m and j to C
2: C divides fe into n non-overlapping blocks of size 64MB

each
3: C extract the m the bit of each block in fe
4: C generate a cryptographic key κ by concatenating the n

extracted bits
5: C encrypt the j the block in fe using κ to obtain E(blkj , k)
6: C send to the S the challenge H(E(blk, k))
7: S reciving the challenge H(E(blk, k))
8: if Clinet H(E(blk, k)) = Server H(E(blk, k)) then
9: PoW success

10: else
11: Fail to PoW
12: end if

IV. COMPLEXITY ANALYSIS

This section demonstrates how the proposed PoW scheme
fulfills bandwidth and space efficiency requirements by com-
paring it to five well-known PoW schemes from the literature,
as shown in Table II. Specifically, we compare the complexity
of our proposed scheme by focusing on bandwidth, server
memory usage, client/server computation, and I/O. It can be
noticed from Table II that the complexity of the proposed
scheme is similar to the complexity of the other schemes
with respect to server initialization I/O as it primarily relies
on the file size. For the regular server I/O, the complexity of
the proposed scheme is also similar to the complexity of the
other schemes except for s-PoW. Moreover, the complexity of
the proposed scheme outperforms the complexity of the other
schemes with respect to client computation and server ini-
tialization computation, mainly because the proposed scheme
only encrypts a randomly chosen block in the file rather than
encrypting the whole file. It is worth noting that this does not
affect the security of the proposed scheme since the employed
cryptographic key is extracted from all blocks of the file.

V. EXPERIMENTAL RESULTS

This section describes the experiments conducted to evalu-
ate the performance of the proposed PoW scheme. All experi-
ments were conducted on a personal computer with Intel Core
i7-4770 CPU (2.4 GHz) and 8 GiB RAM. The performance
of the proposed scheme was compared with the performance
of the ce-PoW scheme proposed by Gonzalez-Manzano et al.
[14], ase-PoW scheme proposed by Manzano and Orfila [31],
Ouda-PoW scheme proposed by Ouda [21], bf-PoW scheme
proposed by Blasco et al. [30], and s-PoW scheme proposed
by Di Pietro and Sorniotti [9]. In all experiments, the schemes
were evaluated using randomly generated test files of sizes
ranging from 4MB to 2GB, doubling the size at each step. We
used the C++ programming language for the implementation
and utilized the OpenSSL cryptographic library [35] for the
encryption and hashing operations, namely, AES (in counter
mode) and SHA-256.

The clock cycles spent by the client to upload a file for
the first time and to respond to the server challenge have been
measured and compared with the corresponding clock cycles
spent by the other tested PoW schemes. Fig. 5 shows the com-
putational cost (clock cycles) spent in the client initialization
phase for the four tested schemes. It can be noticed from the
figures that the proposed PoW scheme outperforms all the
other schemes. This is mainly because the s-PoW dealing with
file level and the server requests from the clients to send bit-
values of randomly selected bit positions of files requested
to be uploaded. whereas in bf-PoW the clients compute a
token for each segment index using the hash function, which in
turn increments the executed operations. The ce-PoW scheme
requires implementing multiple hashing and encryption op-
erations separately for each file chunk. In ase-PoW, on the
other hand, the client has to encrypt each part of the file
chunks provided by the Attribute Certificate Service (ACS)
symmetrically, whereas in the Ouda-PoW scheme, the entire
file should be hashed twice and encrypted once. However, we
can also notice that the performance of both the Ouda-PoW
and ase-PoW schemes is close to the performance obtained by
our proposed scheme with respect to the complexity of client

www.ijacsa.thesai.org 921 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Fig. 5. Clock Cycles Required for the Client Initialization Phase.

Fig. 6. Client Response Creation Clock Cycles.

initialization.

Fig. 6 shows the results obtained from comparing the
proposed scheme with the other evaluated schemes regarding
the time spent by the client responding to the server challenge.
It is clear from the figure that the proposed scheme outperforms
the other three schemes. This result is expected because the
server in s-PoW uses a pseudorandom number generator to
precompute the challenges that contain random file bits. In
bf-PoW, the server initializes the bloom filter and divides the
input files into chunks of fixed size, then creates the token
chunks of each and inserts the function of each token into
the bloom filters. In ce-PoW, the client encrypts all chunks
specified by the server and then computes the hash over each
encrypted chunk, increasing the computation time. The client
in the ase-PoW scheme, on the other hand, performs several
frequent encryptions of the designated chunks. In ouda-PoW,
the client generates a random string of the same file size using
the random seed received from the server, performs an XOR
operation on the generated string with the CE file, and finally
computes the hash of the resulting string. By contrast, in the
proposed scheme, the client extracts the key from all blocks
in the file and then encrypts only the block specified by the
server.

VI. CONCLUSION

In this paper, we have proposed a secure and efficient
proof-of-ownership scheme to thwart potential collusion at-
tacks against client-side deduplication in cloud environments.
The proposed PoW scheme’s main idea is to divide the file
to be uploaded into a number of fixed-sized blocks and then
encrypt a randomly chosen block using a key formed by
extracting one bit at a specified location in all other blocks.
Unlike existing PoW schemes, the proposed scheme minimizes
the exchanged information between the client and server and
reduces the amount of data uploaded in memory during a
PoW session. Moreover, it decreases the likelihood that a
malicious client can successfully respond to the challenge sent
to her by the server by increasing the amount of exchanged
information between a malicious client and a legitimate file
owner. The computational complexity of the proposed scheme
was compared to five different PoW schemes, and experimental
results showed that the proposed scheme outperforms the state-
of-the-art PoW schemes concerning the time spent (clock
cycles) for client initialization and response to the challenge
received from the server.

ACKNOWLEDGMENT

The authors would like to thank the Deanship of Graduate
Studies at Jouf University for funding and supporting this
research through the initiative of DGS, Graduate Students
Research Support (GSR) at Jouf University, Saudi Arabia.

REFERENCES

[1] Ali Sunyaev. Cloud computing. In Internet computing, pages 195–236.
Springer, 2020. doi:10.1007/978-3-030-34957-8 7.

[2] Chris Dotson. Practical Cloud Security: A Guide for Secure Design
and Deployment. O’Reilly Media, 2019. URL https://www.oreilly.com/
library/view/practical-cloud-security/9781492037507/.

[3] Srijita Basu, Arjun Bardhan, Koyal Gupta, Payel Saha, Mahasweta
Pal, Manjima Bose, Kaushik Basu, Saunak Chaudhury, and Pritika
Sarkar. Cloud computing security challenges & solutions-a sur-
vey. In 2018 IEEE 8th Annual Computing and Communication
Workshop and Conference (CCWC), pages 347–356. IEEE, 2018.
doi:10.1109/CCWC.2018.8301700.

[4] Omer K Jasim Mohammad. Recent trends of cloud computing ap-
plications and services in medical, educational, financial, library and
agricultural disciplines. In Proceedings of the 4th International Confer-
ence on Frontiers of Educational Technologies, pages 132–141, 2018.
doi:10.1145/3233347.3233388.

[5] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua,
Min Fu, Yucheng Zhang, and Yukun Zhou. A comprehensive study of
the past, present, and future of data deduplication. Proceedings of the
IEEE, 104(9):1681–1710, 2016. doi:10.1109/JPROC.2016.2571298.

[6] Taek-Young Youn, Ku-Young Chang, Kyung-Hyune Rhee, and Sang Uk
Shin. Efficient client-side deduplication of encrypted data with pub-
lic auditing in cloud storage. IEEE Access, 6:26578–26587, 2018.
doi:10.1109/ACCESS.2018.2836328.

[7] Shunrong Jiang, Tao Jiang, and Liangmin Wang. Secure and efficient
cloud data deduplication with ownership management. IEEE Transac-
tions on Services Computing, 2017. doi:10.1109/TSC.2017.2771280.

[8] Won-Bin Kim and Im-Yeong Lee. Survey on data deduplication in cloud
storage environments. Journal of Information Processing Systems, 17(3):
658–673, 2021. doi:https://doi.org/10.3745/JIPS.03.0160.

[9] Roberto Di Pietro and Alessandro Sorniotti. Boosting efficiency and
security in proof of ownership for deduplication. In Proceedings of the
7th ACM Symposium on Information, Computer and Communications Se-
curity, pages 81–82, 2012. doi:https://doi.org/10.1145/2414456.2414504.

[10] Weijing You, Lei Lei, Bo Chen, and Limin Liu. What if
keys are leaked? towards practical and secure re-encryption in
deduplication-based cloud storage. Information, 12(4):142, 2021.
doi:https://doi.org/10.3390/info12040142.

www.ijacsa.thesai.org 922 | P a g e

https://doi.org/10.1007/978-3-030-34957-8_7
https://www.oreilly.com/library/view/practical-cloud-security/9781492037507/
https://www.oreilly.com/library/view/practical-cloud-security/9781492037507/
https://doi.org/10.1109/CCWC.2018.8301700
https://doi.org/10.1145/3233347.3233388
https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1109/ACCESS.2018.2836328
https://doi.org/10.1109/TSC.2017.2771280
https://doi.org/https://doi.org/10.3745/JIPS.03.0160
https://doi.org/https://doi.org/10.1145/2414456.2414504
https://doi.org/https://doi.org/10.3390/info12040142

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

[11] Dutch T Meyer and William J Bolosky. A study of practical dedu-
plication. ACM Transactions on Storage (ToS), 7(4):1–20, 2012.
doi:https://doi.org/10.1145/2078861.2078864.

[12] Jian Liu, Nadarajah Asokan, and Benny Pinkas. Secure deduplication of
encrypted data without additional independent servers. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 874–885, 2015. doi:10.1145/2810103.2813623.

[13] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. A survey of secure
data deduplication schemes for cloud storage systems. ACM computing
surveys (CSUR), 49(4):1–38, 2017. doi:10.1145/3017428.

[14] Lorena González-Manzano, Jose Maria de Fuentes, and Kim-
Kwang Raymond Choo. ase-pow: A proof of ownership mechanism
for cloud deduplication in hierarchical environments. pages 412–428,
2016. doi:10.1007/978-3-319-59608-2 24.

[15] Taek-Young Youn, Nam-Su Jho, Keonwoo Kim, Ku-Young Chang, and
Ki-Woong Park. Locked deduplication of encrypted data to counter
identification attacks in cloud storage platforms. Energies, 13(11):2742,
2020. doi:https://doi.org/10.3390/en13112742.

[16] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-
Peleg. Proofs of ownership in remote storage systems. pages 491–500,
2011. doi:https://doi.org/10.1145/2046707.2046765.

[17] Jay Dave, Avijit Dutta, Parvez Faruki, Vijay Laxmi, and Manoj Singh
Gaur. Secure proof of ownership using merkle tree for deduplicated
storage. Automatic Control and Computer Sciences, 54(4):358–370,
2020. doi:https://doi.org/10.3103/S0146411620040033.

[18] Tariqul Islam, Hassan Mistareehi, and D Manivannan. Secres: A secure
and reliable storage scheme for cloud with client-side data deduplication.
pages 1–6, 2019. doi:10.1109/GLOBECOM38437.2019.9013469.

[19] Shivansh Mishra, Surjit Singh, and Syed Taqi Ali. Mpows: Merged
proof of ownership and storage for block level deduplication in cloud
storage. In 2018 9th international conference on computing, communi-
cation and networking technologies (ICCCNT), pages 1–7. IEEE, 2018.
doi:10.1109/ICCCNT.2018.8493976.

[20] Yongkai Fan, Xiaodong Lin, Wei Liang, Gang Tan, and Priyadarsi
Nanda. A secure privacy preserving deduplication scheme for cloud
computing. Future Generation Computer Systems, 101:127–135, 2019.
doi:https://doi.org/10.1016/j.future.2019.04.046.

[21] Osama Ouda. A secure proof of ownership scheme for efficient
client-side deduplication in cloud. Journal of Convergence Information
Technology, 11:82–92, 2016. URL https://bit.ly/3sjSkxj.

[22] Ruiying Du, Lan Deng, Jing Chen, Kun He, and Minghui Zheng. Proofs
of ownership and retrievability in cloud storage. pages 328–335, 2014.
doi:10.1109/TrustCom.2014.44.

[23] Di Zhang, Junqing Le, Nankun Mu, Jiahui Wu, and Xiaofeng Liao. Se-
cure and efficient data deduplication in jointcloud storage. IEEE Trans-
actions on Cloud Computing, 2021. doi:10.1109/TCC.2021.3081702.

[24] VS Lakshmi, S Deepthi, and PP Deepthi. Collusion resistant secret
sharing scheme for secure data storage and processing over cloud.
Journal of Information Security and Applications, 60:102869, 2021.
doi:10.1016/j.jisa.2021.102869.

[25] Shanshan Li, Chunxiang Xu, and Yuan Zhang. Csed: Client-side
encrypted deduplication scheme based on proofs of ownership for cloud
storage. Journal of Information Security and Applications, 46:250–258,
2019. doi:http://dx.doi.org/10.1016/j.jisa.2019.03.015.

[26] Jinbo Xiong, Fenghua Li, Jianfeng Ma, Ximeng Liu, Zhiqiang Yao, and
Patrick S Chen. A full lifecycle privacy protection scheme for sensitive
data in cloud computing. Peer-to-peer Networking and Applications, 8
(6):1025–1037, 2015. doi:10.1007/s12083-014-0295-x.

[27] Kangle Wang, Xiaolei Dong, Jiachen Shen, and Zhenfu Cao. An
effective verifiable symmetric searchable encryption scheme in cloud
computing. In Proceedings of the 2019 7th International Conference
on Information Technology: IoT and Smart City, pages 98–102, 2019.
doi:10.1145/3377170.3377251.

[28] Hui Cui, Robert H Deng, Yingjiu Li, and Guowei Wu. Attribute-
based storage supporting secure deduplication of encrypted data
in cloud. IEEE Transactions on Big Data, 5(3):330–342, 2017.
doi:10.1109/TBDATA.2017.2656120.

[29] Hua Ma, Ying Xie, Jianfeng Wang, Guohua Tian, and Zhenhua Liu.
Revocable attribute-based encryption scheme with efficient dedupli-
cation for ehealth systems. IEEE Access, 7:89205–89217, 2019.
doi:10.1109/ACCESS.2019.2926627.

[30] Jorge Blasco, Roberto Pietro, Agustin Orfila, and Alessandro Sorniotti. A
tunable proof of ownership scheme for deduplication using bloom filters.
2014 IEEE Conference on Communications and Network Security, CNS
2014, pages 481–489, 12 2014. doi:10.1109/CNS.2014.6997518.

[31] Lorena González-Manzano and Agustı́n Orfila. An efficient
confidentiality-preserving proof of ownership for deduplication. J. Netw.
Comput. Appl., 50:49–59, 2015. doi:10.1016/j.jnca.2014.12.004.

[32] Ke Huang, Xiao-song Zhang, Yi Mu, Fatemeh Rezaeibagha, and Xi-
aojiang Du. Bidirectional and malleable proof-of-ownership for large
file in cloud storage. IEEE Transactions on Cloud Computing, 2021.
doi:10.1109/TCC.2021.3054751.

[33] Meixia Miao, Guohua Tian, and Willy Susilo. New proofs of ownership
for efficient data deduplication in the adversarial conspiracy model.
International Journal of Intelligent Systems, 36(6):2753–2766, 2021.
doi:10.1002/int.22400.

[34] Angtai Li, Guohua Tian, Meixia Miao, and Jianpeng Gong. Blockchain-
based cross-user data shared auditing. Connection Science, pages 1–21,
2021. doi:10.1080/09540091.2021.1956879.

[35] John Viega, Matt Messier, and Pravir Chandra. Network security with
OpenSSL: cryptography for secure communications. ” O’Reilly Media,
Inc.”, 2002. URL https://dl.acm.org/doi/10.5555/2167247.

www.ijacsa.thesai.org 923 | P a g e

https://doi.org/https://doi.org/10.1145/2078861.2078864
https://doi.org/10.1145/2810103.2813623
https://doi.org/10.1145/3017428
https://doi.org/10.1007/978-3-319-59608-2_24
https://doi.org/https://doi.org/10.3390/en13112742
https://doi.org/https://doi.org/10.1145/2046707.2046765
https://doi.org/https://doi.org/10.3103/S0146411620040033
https://doi.org/10.1109/GLOBECOM38437.2019.9013469
https://doi.org/10.1109/ICCCNT.2018.8493976
https://doi.org/https://doi.org/10.1016/j.future.2019.04.046
https://bit.ly/3sjSkxj
https://doi.org/10.1109/TrustCom.2014.44
https://doi.org/10.1109/TCC.2021.3081702
https://doi.org/10.1016/j.jisa.2021.102869
https://doi.org/http://dx.doi.org/10.1016/j.jisa.2019.03.015
https://doi.org/10.1007/s12083-014-0295-x
https://doi.org/10.1145/3377170.3377251
https://doi.org/10.1109/TBDATA.2017.2656120
https://doi.org/10.1109/ACCESS.2019.2926627
https://doi.org/10.1109/CNS.2014.6997518
https://doi.org/10.1016/j.jnca.2014.12.004
https://doi.org/10.1109/TCC.2021.3054751
https://doi.org/10.1002/int.22400
https://doi.org/10.1080/09540091.2021.1956879
https://dl.acm.org/doi/10.5555/2167247

	Introduction
	Background
	Data Deduplication
	Convergent Encryption
	Proof of Ownership (PoW)

	Proposed PoW Scheme
	Complexity Analysis
	Experimental Results
	Conclusion

