
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Trend of Bootstrapping from 2009 to 2016
Paulin Boale Bomolo, Eugene Mbuyi Mukendi, Simon Ntumba Badibanga

Department of Computer Sciences and Mathematics
University of Kinshasa, Kinshasa, Democratic Republic of Congo

Abstract—The pedestal of fully homomorphic encryption is
bootstrapping which allows unlimited processing on encrypted
data. This technique is a bottleneck in the practicability of
homomorphic encryption. From 2009 to 2016, the execution time
of bootstrapping decreased from several hours to a few
thousandths of a second for processing a logic gate on two
encrypted bits. This paper makes a comparative study of the
evolution of bootstrapping during the period. An implementation
of multiplication on 16-bit integers on an Intel i7 architecture
through three schemes whose libraries are respectively DGHV,
FHEW and TFHE makes it possible to corroborate the trend that
to date the best bootstrapping on bits is that of the TFHE which
executes this processing in 29 seconds improving that of the
FHEW 30 times despite the multiplication algorithm used.

Keywords—Bootstrapping; homomorphic encryption; binary
multiplication; logic gates

I. INTRODUCTION
Encryption is said to be probabilistic if a plaintext message

is encrypted in several ciphertexts. This feature is found by
adding a random value during the encryption operation. It is
said to be homomorphic if it allows performing processing on
ciphertexts with corresponding results on plaintexts. If it
performs only additions [1, 2], multiplications [3] or binary
operations [4] it is called partial homomorphic otherwise if it
performs additions and multiplications in a limited number
then it is somewhat homomorphic [5, 6, 7]. On the other hand,
if it performs processing on unlimited number it is said to be
fully homomorphic [5, 6, 7, 8, 9, 10, 11].

Fully homomorphic encryption was a breakthrough made
by Gentry [6] in his thesis in response to the conjecture state
in [12]. This breakthrough is based on the bootstrapping
technique that evaluates its own decryption circuit to refresh
noise in the ciphertexts thus allowing an unlimited number of
processing in the encrypted domain. Initially, it requires the
squashing technique and an additional security assumption to
reduce the complexity of the decryption circuit [9, 10, 11, 13,
14]. With the advent of fully homomorphic encryption
schemes based on the difficult problem of LWE [15] which
belongs a low-complexity decryption algorithm, squashing
was eliminated in bootstrapping [8, 9,10, 11,13, 14].

The removal of squashing allows in [9,10] to use a second
homomorphic encryption scheme in the homomorphic
evaluation in the decryption algorithm. This consideration
improved performance of the homomorphic processing of gate
NAND on two-bits encrypted in less than a second [9]. This
processing was improved to 13 milliseconds by [10, 11].

N-bits arithmetic operations such as multiplication or
addition can be built from the universal gate NAND. While

knowing that an addition or multiplication operation
performed on encrypted bits can respectively multiple or raise
to the power the noise by the number of operations. We seek
to know in this paper whether the performance of
bootstrapping on a multiplication on two encrypted integers of
16 bits through an implementation carried out with three
libraries of the comparative schemas that each marked a
period in this trend is in the same order of processing as on the
encrypted bits.

Roadmap. Section II presents the literature review of the
encryption scheme from gentry's breakthrough to the period
under review. Section III establishes the criteria for
comparison through bootstrapping with a focus on the
concepts behind them and presents a comparative study based
on the concepts between the relevant algorithms of each
period. Section IV shows three multiplication algorithms on
two 16-bit integers and a shifter. Finally, section V extends the
bootstrapping processing of said algorithms to integers of 16
to perform homomorphic multiplication. Discussions close
this comparison.

II. LITERATURE REVIEW
In 2009, Gentry published the first homomorphic

encryption scheme based on ideals lattices. This scheme is
characterized by too large parameters and additional security
assumptions. Two schemes improved respectively the
reduction of the size of encrypted keys and messages and the
removal of the additional security assumptions [16, 17, 18,
19]. The majority of schemes in this category are unusable in
everyday applications.

To facilitate an understanding of gentry blueprint, an
integer-based homomorphic encryption scheme was published
in 2010[7]. It is based on the difficult assumptions of
Approximate Greatest Common Divisor [20]. Several integer-
based schemes have been proposed to improve the efficiency
of DGHV. These improvements could be achieved based on
different variants of the AGCD security assumptions to reduce
the size of the public key in security parameter and the
expansion of this schema in [21, 22, 23,24 ,25].

The hardness of implementing homomorphic encryption
schemes based on hard problems mentioned above have
steered the research towards another security problem. Thus,
the first complete homomorphic encryption scheme based its
security on the assumptions of LWE that removes squashing
was presented by Brakerski and Vaikuntanathan [13]. Said
scheme is based on two procedures which are the
relinearization and the reduction of the module or dimension.
Relinearization is a technique that reduces the size of
ciphertexts from 𝑛2to 𝑛 + 1. It starts from a quadratic function

85 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

in a secret key 𝑠to a linear function in a secret key 𝑡dependent
on 𝑠. Reducing the module or dimension naturally reduces the
complexity of the decryption function and also reduces the
size of the digits. Then, Brakerski and Vaikuntanathan also
proposed a version of their schema based on the assumptions
RLWE [14,26,27]. Many homomorphic schemes by levels or
complete was introduced [8, 27]. Each new scheme brings
techniques aimed essentially at reducing the size of the
parameters and increasing the multiplicative depth. But
relinearization is still a bottleneck for the majority of these
schemes.

Of all these schemes, [8] stood out. It relies on
assumptions of approximate vectors to perform a
homomorphic operation of gate NAND on encrypted
messages. Encrypted messages are square matrices, addition
and homomorphic multiplication is addition and multiplication
matrix respectively. The author in [8] removes relinearization
which is an expensive technique used in other LWE schemes
in favor of the eigenvector approximation technique. The
author in [9] uses a variant of the [8] to improve its
bootstrapping based on gate NAND in less than a second. The
author in [10, 11] introduces the external product in a variant
of the [8] to reorganize bootstrapping of [9] and achieve 30
times better performance.

Our goal is to establish the criteria for comparing
bootstrapping in three schemes which are the DGHV scheme
[7], the Ducas Micciancio [9] scheme and the scheme in [10,
11]. In addition, use the libraries that implement them to
corroborate the trend of bootstrapping in a 16-bit binary
multiplication.

III. BOOTSTRAPPING
It is a technique that was introduced by Gentry [6] to solve

the open problem stated in 1978 by [12] which consists in
carrying out the processing on the encrypted data. Before
Gentry's breakthrough, the noise increases with the circuit
depth to be evaluated. The consequence is that decryption
fails. The solution to this concern for inefficiency was through
the encryption technique to reduce noise in the encrypted
message and a homomorphic evaluation of the decryption
algorithm.

A. The reencryption [6]
1) Definition of reencryption: reencryption is a noted

function Rencryptε that converts a message encrypted under a
key pk1 into another message encrypted under an another key
pk2 without revealing any information about the private key
sk1 or the plain text m it is clear that Rencryptε(c) =
 Encryptε(pk2, m) where c = Encryptε(pk2, m) [2].

2) Reencryption algorithm: A reencryption can be
evaluated in the following steps:

Generate a key pair (𝑠𝑘𝑎,𝑝𝑘𝑎) and (𝑠𝑘𝑏,𝑝𝑘𝑏) respectively
belonging to 𝐴 and 𝐵.

Evaluate A reencrypting key 𝐴 between 𝐵 and as follows
𝑟𝑘 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘𝑏, 𝑠𝑘𝑎).

Calculate a ciphertext 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘𝑎,𝑚) where 𝑚 is
plaintext.

Redefine the decryption function 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀 as follows
𝑓𝑐(𝑠𝑘𝑎) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀 (𝑠𝑘𝑎, 𝑐).

Evaluate the reencryption as follows
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘𝑏,𝑓𝑐 , 𝑟𝑘) = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀�𝑝𝑘𝑏,𝑓𝑐(𝑠𝑘𝑎)� =
 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘𝑏,𝑚).

Reencryption allows to 𝐴 to designate 𝐵 by giving it the
ability to encrypt the plaintext that it has encrypted with
another key. 𝐵 is called proxy.

3) One-way reencryption: Given a pair of keys
(𝑠𝑘1,𝑝𝑘1) and (𝑠𝑘2,𝑝𝑘2) . A one-way reencryption is a
conversion from 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚,𝑝𝑘1) to 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚,𝑝𝑘2) by
the evaluation of 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘2,𝑓𝑐 , 𝑟𝑘) where 𝑟𝑘 =
 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘2, 𝑠𝑘1) , not the inverse 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚,𝑝𝑘1) =
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘1,𝑓𝑐 , 𝑟𝑘) where 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚,𝑝𝑘2) and 𝑟𝑘 =
 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘1, 𝑠𝑘2). The reciprocal of this assertion is false.

B. Hard Problems of Homomorphic Encryption
1) The problem of learning with error: The Problem of

Learning With Error (LWE) was introduced by Regev in 2005
[15]. The Ring version of this problem called RingLWE, was
introduced by Lyubashevsky, Peikert and Regev in 2010[28].
All variants are widely used nowadays in the construction of
lattices-based homomorphic encryption schemes.

a) The Regev problem: For a security setting λ, Either
n = n(λ)an integer dimension, an integer q = q(λ) ≥ 2, and
a distribution χ = χ(λ) under ℤ. The hard problem of LWEn,q,λ
the is to distinguish two following distributions:

In the first distribution, the sample (𝑎𝚤���⃗ ,𝑏𝑖) drawn
uniformly from ℤ𝑞𝑛+1;

In a second distribution, draw 𝑠 ← ℤ𝑞𝑛+1and (𝑎𝚤���⃗ ,𝑏𝑖) ∈ ℤ𝑞𝑛
then a sample by drawing uniformly 𝑎𝚤���⃗ ← ℤ𝑞𝑛 and 𝑒𝑖 ← 𝜒
respectively, and initializing 𝑏 = 〈𝑎𝚤 ����⃗ , 𝑠𝑖〉 + 𝑒𝑖 . The
assumptions of 𝐿𝑊𝐸𝑛,𝑞,𝜒 are such that the problem of
𝐿𝑊𝐸𝑛,𝑞,𝜒 is hard.

b) The RLWE problem: For a secret 𝑠 ∈ 𝑅𝑞, the RLWE
distribution under 𝑅𝑞 × 𝑅 is drawn by respectively a uniform
and random 𝑎 ∈ 𝑅𝑞 and 𝑒 ← 𝜒 , and gives the output
expression (𝑎, 𝑏 = 〈𝑠,𝑎〉) + 𝑒 𝑚𝑜𝑑 𝑞.

RLWE is said to be decisional if given 𝑚 independent
samples (𝑎𝑖 ,𝑏𝑖) ∈ 𝑅𝑞 × 𝑅𝑞 where each sample is distributed
either 𝐴𝑠,𝜒 for random and uniform 𝑠 ∈ 𝑅𝑞 (fixed for all
samples) or the uniform distribution, distinguish which is the
case (with a significant probability).

c) The General Problem of the LWE (GLWE) [26]: For
a security parameter 𝜆 , that is 𝑓(𝑥) = 𝑥𝑑 + 1 , where 𝑑 =
𝑑(𝜆) is a power of 2. Let be two integers respectively the
modulus 𝑞 = 𝑞(𝜆) and the dimension 𝑛 , let 𝑅 = ℤ[𝑥]

𝑓(𝑥)�

and 𝑅𝑞 = 𝑅
𝑞𝑅� . Let be 𝜒 = 𝜒(𝜆) a distribution on 𝑅 . The

problem with GAAE is to distinguish between the following
two distributions:

86 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

The first distribution is a uniform sample (𝑎𝑖 , 𝑏𝑖) ∈ 𝑅𝑞𝑛+1;

In the second uniformly drawn distribution 𝑎𝑖 ← 𝑅𝑞𝑛 ,
𝑠 ← 𝑅𝑞𝑛 and 𝑒𝑖 ← 𝜒 , the second distribution is the sample
(𝑎𝑖 , 𝑏𝑖) ∈ 𝑅𝑞𝑛+1 where 𝑏𝑖 = 〈𝑎𝑖 , 𝑠〉 + 𝑒𝑖 . The assumption of
GLWE is that the GLWE problem is hard.

If 𝑑 = 1 then the LWE problem is that of the LWE
problem. If n = 1 then the GLWE problem is that of the
RLWE problem.

The author in [8] based on assumptions of LWE, it
constructs its schema with a plaintext space ℤ4 = {0, 1, 2, 3},
an encrypted message space ℤ𝑞 with an error or noise 𝐸 <
 𝑞
16

 where 𝑞 is the modulus that determines the key space from
which the secret key 𝑠 is taken and 𝑛 is the encrypted message
dimension.

To encrypt a plaintext 𝑚 ∈ ℤ2 ⊂ ℤ4, draw 𝑎 ← ℤ𝑞𝑛, 𝑒 ← 𝜒
and output the ciphertext 𝑐 as follows 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚, 𝑞
16
� =

�𝑎,𝑎. 𝑠 + 2𝑚
4

+ 𝑒� ∈ ℤ𝑞𝑛+1.

The authors in [10, 11] redefines the problem of LWE and
RLWE on the real torus 𝑇 = ℝ 𝑚𝑜𝑑 1 and the torus of
polynomials 𝑇[𝑋] = 𝑇[𝑋] 𝑚𝑜𝑑 𝑋𝑁 + 1 respectively. This
redefinition produces three types of ciphertexts for this
schema. It also generalized and improved the encryption
scheme based on the [8] and several of its variants.

To encrypt a plaintext 𝑚 ∈ 𝑇, pick a secret key 𝑠 ∈ ℬ𝑛 =
 ℤ2𝑛 and calculate 𝑐 = (𝑎, 𝑏) ∈ 𝑇𝑛+1 where 𝑎 ∈ 𝑇𝑛 is a
random mask, 𝑏 = 𝑎. 𝑠 + 𝜑 and 𝜑 = 𝑒 + 𝑚 where 𝑒 is a
parameter that is drawn in a Gaussian distribution.

To encrypt the plaintext 𝑚 ∈ 𝑇𝑁[𝑋], draw a key 𝑠 ∈ ℬ𝑁[𝑋]
and calculate 𝑐 = (𝑎, 𝑏) ∈ 𝑇𝑁[𝑋]2 where 𝑎 is a random mask
and 𝑏 = 𝑠.𝑎 + 𝑒 + 𝑚 where 𝑒 ∈ 𝑇𝑁[𝑋].

To encrypt the plaintext 𝑚 ∈ ℤ𝑁[𝑋], pick the secret key
𝑠 ∈ ℬ𝑁[𝑋] as in the RLWE and calculate 𝑐 = 𝑍 + 𝑚.𝐺2 ∈
𝑇𝑁[𝑋]2𝑙×2 where 𝑍 is a list of ciphertexts of type RLWE of 0
and 𝐺2 is the matrix with

�𝑔 0
0 𝑔�𝑔

𝑇 = (2−1, … … … … … … … , 2−𝑙).

2) The problem of the Approximation of the Greatest
Common Divisor (AGCD)[20, 29].

The AGCD's problem with the parameters (𝛾, 𝜂,𝜌) is the
problem of finding the secret integer 𝑝 given several samples
𝑥𝑖 = 𝑝𝑞𝑖 + 𝑟𝑖 of arbitrarily provided where:

The secret integer 𝑝 has bits 𝜂;

The terms noises 𝑟𝑖 are uniform samples from the interval
[−2𝜌 + 1, 2𝜌 − 1] ∩ ℤ ;

The terms 𝑞𝑖 are uniform samples of [0, 2𝛾−𝜂] ∩ ℤ.

[7] is the first known scheme applying the AGCD problem
in cryptography to produce a homomorphic encryption
scheme. In its symmetric version, it encrypts the plaintext
𝑚 ∈ {0, 1} , two random integers are drawn uniformly to
evaluate the encrypted message as follows 𝑐 = 𝑝𝑞 + 2𝑟 + 𝑚.

In other words, a sample of AGCD is calculated by adding the
even noise 2𝑟 to the product 𝑝𝑞 which is added to 𝑚.

C. Bootstrapping [6]
1) Fundamental properties: In Gentry construction,

bootstrapping is based on three fundamental properties that
belong a partial or somewhat homomorphic encryption
scheme that make it fully homomorphic encryption. These
properties are listed and noticed below:

The complexity of the decryption algorithm is greater than
that of the circuits to be evaluated. Given 𝑑 the maximum
degree of the decryption algorithm 𝐷𝑒𝑐𝑟𝑦𝑝𝑡ℇ and 𝑝 the
maximum degree of the function or polynomial to be
evaluated by scheme. If 𝑑 < 𝑝 then the decryption algorithm
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀 is been useful in homomorphic evaluations. If
𝑑 > 𝑝 then the complexity of this algorithm is reduced to
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀′ for homomorphic evaluations hence 𝑓𝑐(𝑠𝑘) =
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀′(𝑠𝑘, 𝑐) where 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘,𝑚).

Bootstrappability is a critical property of an encryption
scheme that allows you to homomorphically evaluate your
own decryption algorithm under an encrypted decryption key.
Given an encryption scheme ℇ, ℇ is said to be bootstrappable
if 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒ℇ = (𝑝𝑘1,𝑓𝑐 , 𝑒𝑘) = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ℇ(𝑝𝑘1,𝑚) where
𝑓𝑐(𝑠𝑘) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡ℇ(𝑐, 𝑠𝑘) , 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ℇ(𝑚,𝑝𝑘) and
𝑒𝑘 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ℇ(𝑝𝑘1, 𝑠𝑘) it is obvious that ℇ evaluates
homomorphically its decryption algorithm.

Circular security is a property that an asymmetric
(symmetric) encryption scheme has to encrypt one's private
key securely (secretly) by its corresponding public (secret)
key. A homomorphic encryption scheme ℇ has the circular
security property if for a couple of given keys, (𝑠𝑘,𝑝𝑘) the
bootstrapping key is evaluated as follows
𝑒𝑘 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ℇ(𝑠𝑘,𝑝𝑘): it is obvious that the private key is
securely encrypted by its public key.

2) Definition of bootstrapping: Bootstrapping is a
technique for reducing noise in the ciphertext 𝑐 and getting
noise 𝑏′ in a refreshed ciphertext 𝑐′ such as 𝑏′ < 𝑏 where
𝑏′ ⊃ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘,𝑚) ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘,𝑓𝑐 , 𝑒𝑘) and 𝑏 is the
original noise in the ciphertext 𝑐 by the homomorphic
evaluation its own decryption circuit
𝑓𝑐(𝑠𝑘) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘, 𝑐) on a decryption key called
bootstrapping key𝑒𝑘 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘, 𝑠𝑘).

3) Bootstrapping algorithm: Given two pairs of keys
(𝑝𝑘1, 𝑠𝑘1) and (𝑝𝑘2, 𝑠𝑘2) generated by a homomorphic
encryption scheme 𝜀.

Let be two ciphertexts 𝑐1 and 𝑐2 evaluate as follows:
𝑐1 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘1,𝑚1) and 𝑐2 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘1,𝑚2) where
𝑚1 𝑎𝑛𝑑 𝑚2 are plaintexts.

The bootstrapping key 𝑒𝑘 is calculated as follows 𝑒𝑘 =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘2, 𝑠𝑘1). And the decryption function 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀 is
redefined in the following way
𝑓𝑐1,𝑐2(𝑠𝑘) = 𝑁𝑂𝑁𝐸𝑇�𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘, 𝑐1),𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘, 𝑐2)�
where is the private key 𝑠𝑘.

87 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

A homomorphic evaluation of 𝑓𝑐1,𝑐2 on 𝑐1 𝑎𝑛𝑑 𝑐2 is carried
out as follows:
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀�𝑝𝑘2,𝑓𝑐1,𝑐2 , 𝑒𝑘� =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀 �𝑝𝑘2,𝑁𝑂𝑁𝐸𝑇�𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘1, 𝑐1),𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘1, 𝑐2)�� =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀�𝑝𝑘2,𝑁𝑂𝑁𝐸𝑇(𝑚1,𝑚2)� =
𝑁𝑂𝑁𝐸𝑇�𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘2,𝑚1),𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘2,𝑚2)� =
𝑁𝑂𝑁𝐸𝑇(𝑐1′ , 𝑐2′) where 𝑐1′ 𝑎𝑛𝑑 𝑐2

′ are refreshed ciphertexts of
𝑐1 𝑎𝑛𝑑 𝑐2whose noise 𝑏′ <≪ 𝑏.

4) Squashing: Squashing is a procedure that consists of
expressing the decryption algorithm 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀 into a
polynomial or function 𝑝𝑐(𝑠𝑘) whose variables are the
ciphertext 𝑐 and the secret key 𝑠𝑘 . 𝑝𝑐(𝑠𝑘) is equivalent to a
shallow circuit.

In [3], the decryption algorithm is expressed by the
function 𝑐𝑑 𝑚𝑜𝑑 𝑁 . The complexity of the operation of
exponentiation does not make it possible to rewrite this
function into an equivalent function of low degree.

In the [7], the decryption algorithm is expressed by the
expression 𝑐 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 2 (1) which is not a low complexity.
To do this, it is transformed into a circuit of expression
[𝑐]2 ⊕ ��𝑐. �1 𝑝� ���

2
 (2). 1 𝑝� is replaced in the evaluation (2)

by the expression ∑ 𝑠𝑖𝑧𝑖Θ
𝑖=1 which represents the sum of the

subsets where 𝑠𝑖 = 𝑢𝑖 2𝜅� . Evaluation (1) becomes �𝑐 −
 ∑ 𝑠𝑖𝑧𝑖Θ

𝑖=1 �
2
 (3). (3) is the equivalent function of (1). (3) is an

expression that has a low complexity.

5) Concept of Bootstrapping from 2015 [8 9, 10, 11]:
Bootstrapping of scheme based on the problem of assumptions
of LWE and its variants removes squashing. The decryption
algorithm has a complexity that allows it to be evaluated
homomorphically in the reencryption. This reencryption is
carried out by a homomorphic accumulator which makes it
possible to refresh the encrypted message into an equivalent
encrypted message containing a small noise.

A homomorphic accumulator is a quadruplet of algorithms
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀 , Init, Incr and msbExtract. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀 is an
encryption scheme that uses a key and is different from the
first. It is called an internal scheme.

Init is the algorithm that initializes the contents of the
accumulator. More briefly, this operation is written as follows:
𝐴𝐶𝐶 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀 , (𝑣) 𝑝𝑜𝑢𝑟 𝐴𝐶𝐶 ← 𝐼𝑛𝑖𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀, (𝑣)).

Incr is the algorithm that allows you to add a value to the
contents of the accumulator. This operation is written as
follows: 𝐴𝐶𝐶

+
← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀 for

, (𝑣)𝐼𝑛𝑐𝑟�𝐴𝐶𝐶, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀, (𝑣)�.

𝑚𝑠𝑏𝐸𝑥𝑡𝑟𝑎𝑐𝑡 calculates with high probability from the
contents of the homomorphic accumulator to produce a valid
number. This operation is summarized by the expression
𝑐 ← 𝑚𝑠𝑏𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝐴𝐶𝐶) with 𝑐 ∈
𝐿𝑊𝐸𝑠

𝑡 𝑞� �𝑚𝑠𝑏(𝑣), 𝑒(𝑙)� where 𝑒 is the noise.

6) Type of bootstrapping: There are two types of
bootstrapping that bootstrapping by squashing or by
homomorphic accumulator.

A bootstrapping is said by squashing if a new security
assumption is added in the reduction of the complexity of the
decryption algorithm to ensure optimal security in the
encryption scheme during the refresh of the noisy message.

Refreshing the ciphertext 𝑐 with the addition of the
assumption of the sum of subsets to re-encrypt 𝑐 using the
encrypted secret key ∑ 𝑠𝑖𝑧𝑖Θ

𝑖=1 of 1
𝑝
 which is used to obtain the

ciphertext 𝑐∗ = �𝑐 − ∑ 𝑠𝑖𝑧𝑖Θ
𝑖=1 �

2
 [7].

A bootstrapping is said by homomorphic accumulator if a
homomorphic accumulator is used to refresh a ciphertext in
the reencryption operation.

a) Homomorphic accumulator in [9]: In [9], the
homomorphic accumulator is based on the encryption scheme
[8] defined under the assumptions of the Ring LWE. Let be a
message 𝑚 and the key 𝑧 ∈ ℤ , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀𝑧(𝑚) encrypts as
described below:

Pick Randomly and uniformly the vector 𝑎 ∈ ℛ𝑄
2𝑑𝑔 and

𝑒 ∈ ℛ𝑄
2𝑑𝑔 into a Gaussian distribution χ of parameter ζ where

ℛ𝑄
2𝑑𝑔 = ℤ𝑄

2𝑑𝑔,𝑁 = 2𝑘;

Calculate 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀,𝑧 (𝑚) = [𝑎,𝑎. 𝑧 + 𝑒] +
 𝑢𝑌𝑚𝐺 𝑑𝑒 ℛ𝑄

2𝑑𝑔×2 where 𝑚 is encoded as the root of the unit
𝑌𝑚 ∈ ℛ = ℤ𝑁

𝑋𝑁+1
 of where 𝑁 = 2𝑘.

To upload the accumulator with the ciphertext 𝑣 ∈ ℤ𝑞, the
function 𝐼𝑛𝑖𝑡(𝐴𝐶𝐶 ⟵ 𝑣) uploads the content of accumulator
with 𝑣 as follows 𝐴𝐶𝐶 : = 𝑢𝑌𝑣𝐺 𝑑𝑒 ℛ𝑄

2𝑑𝑔×2 ;

To add an ciphertext to the contents of the accumulator, a
decomposition of 𝑢−1.𝐴𝐶𝐶 in the base 𝐵𝑑𝑔 is performed as
follows: 𝑢−1.𝐴𝐶𝐶 = ∑ 𝐵𝑔𝑖−1𝐷𝑖

𝑑𝑔
𝑖=1 where the 𝐷𝑖 ∈

ℛ2𝑑𝑔×2 with the coefficients �1−𝐵𝑔
2

, … … . , 𝐵𝑔−1
2
� and then

perform 𝐼𝑛𝑐𝑟(𝐴𝐶𝐶
+
← 𝐶) where 𝐴𝐶𝐶,𝐶 ∈ ℛ𝑄

2𝑑𝑔×2 to output
𝐴𝐶𝐶: = �𝐷1 … … .𝐷𝑑𝑔�.

Finally, use the msbExtract function with two entries that

are a switch key ℜ , a test vector 𝑡 = −∑ 𝑌�⃑𝑖
𝑞
2� −1

𝑖=0 to find

𝑐 ∈ 𝐿𝑊𝐸𝑠
4 𝑞� �𝑚, 𝑞

16
�.

In [10], bootstrapping by accumulator is performed on the
one-bit encrypted message 𝑚 ∈ ℬ , (𝑎, 𝑏) ∈ 𝑇𝑛 × 𝑇 =
 𝐿𝑊𝐸𝑞𝑠(𝑚, 𝑒) where ℬ = {0, 1} and 𝑒 < 1

4
 for valid

decryption. Said message is first rounded to �𝑎�, 𝑏�� ∈ ℤ2𝑁𝑛 ×
ℤ2𝑁 where 𝑏� = ⌈2𝑁𝑏⌋ and aı��� = ⌈2Nai⌋.

Given a test vector
𝑡𝑒𝑠𝑡𝑣 = (1 + 𝑋 + ⋯… … . . +𝑋𝑁−1).𝑋𝑁 2� .𝑢′ where 𝑢′ = 𝑚

4
∈

𝑇 , the result of the expression 𝑋𝑏� . (0, 𝑡𝑒𝑠𝑡𝑣) is loaded into
ACC: 𝐴𝐶𝐶 ← (0,𝑋−𝑏, 𝑡𝑒𝑠𝑡𝑣) . The evaluation of the

88 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

expression [ℎ + (𝑋−𝑎�𝑖 − 1)]⨀𝐴𝐶𝐶 update the content of
ACC: 𝐴𝐶𝐶 ← 𝑋𝑏�−𝑎�𝑠. 𝑡𝑒𝑠𝑡𝑣.

An extraction is performed with the function
𝑆𝑎𝑚𝑝𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡 that receives as input the contents of:
𝐴𝐶𝐶𝑋𝑏�−𝑎�𝑠. 𝑡𝑒𝑠𝑡𝑣. It extracts the terms of said polynomial in a
sample 𝑚𝑠𝑔�(𝑎′, 𝑏′)� where
(𝑎′, 𝑏′) = �𝑐𝑜𝑒𝑓𝑠�𝑎′′(𝑋)�,𝑏′′� ∈ 𝑇𝑛 × 𝑇 where
𝑐𝑜𝑒𝑓𝑠�𝑎′′(𝑋)� is the coefficient of the vector 𝑎′′ ∈ 𝑇𝑁[𝑋] and
𝑏0′′ ∈ 𝑇 is the constant term of the polynomial 𝑏′′ ∈ 𝑇𝑁[𝑋].

Key switching allows you to find a sample 𝑇𝐿𝑊𝐸(𝑎, 𝑏) ∈
𝑇𝑛 × 𝑇 of the message 𝑚

2
∈ 𝑇 under the secret key 𝑠 . It

receives as input the result of the expression 𝑚𝑠𝑔(𝑢) = 𝑢′ +
𝑚𝑠𝑔�𝑆𝑎𝑚𝑝𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝐴𝐶𝐶)�.

7) Processing bootstrapping [9, 10]: There are two types
of processing bootstrapping which are logic gate
bootstrapping and logic circuit bootstrapping.

It is said that a homomorphic encryption scheme supports
logic gate processing bootstrapping if a refresh is performed
after each logic gate it is obvious that
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘,𝑓𝑐 , 𝑒𝑘) where 𝑓𝑐 is a logic gate of the type
AND, OR, NOT,

In [8], the homomorphic NAND gate is defined by

𝐻𝑜𝑚𝑁𝐴𝑁𝐷 ∶ 𝐿𝑊𝐸𝑠
4 𝑞� �𝑚0,𝑞 16� � × 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚1,𝑞 16� � →

𝐿𝑊𝐸𝑠
2 𝑞� �𝑚0⋀�𝑚1� where 𝑚0⋀�𝑚1 = 1 −𝑚0𝑚1 and 𝑐𝑖 =

𝐿𝑊𝐸𝑠
4 𝑞� �𝑚𝑖 ,

𝑞
16� � with 𝑖 ∈ {0, 1}. The refresh is performed

on the result as follows:

𝐿𝑊𝐸𝑠
2 𝑞� �𝑚, 𝑞 4� � ⟶ 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚, 𝑞 16� �.

It is said that a homomorphic encryption scheme supports
circuit processing bootstrapping if a refresh is performed after
each logic circuit it is obvious that 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘, 𝑓𝑐 , 𝑒𝑘)
where 𝑓𝑐 is a circuit that includes more than one logic gate of
the type AND, OR, NOT.

In [8], let be a circuit for calculating the retention in an n-
bit adder of two numbers a and b and an incoming retention
c0= 0, the expression (2). 𝑐𝑖 = (𝑎𝑖 ⊕ 𝑐𝑖−1). (𝑏𝑖 ⊕ 𝑐𝑖−1) ⊕
𝑐𝑖−1 where ⊕ is XOR logic gate. From the Table I which is
table of truth below of this expression a bootstrapping by
circuit can be performed from a function majority with three

variables noted 𝑀𝑎𝑗(𝑚1,𝑚2𝑚3) gives a value equal to 1 if the
majority of bits is 1 otherwise 0.

Specifically, given three encrypted messages; Expression
(1) can evaluate these three ciphertexts and produce a
resulting ciphertext. Being calculated modulo 4, this makes it
possible to homomorphically process the majority function
described above. 𝑐1, 𝑐2 𝑒𝑡 𝑐3.

This addition modulo 4 of the encrypted messages makes
it possible to find the encrypted 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚) , 𝑚 ∈
{2,3} with if majority is equal to 1 or if 𝑚 ∈ {0,1} the majority
is equal to 0. An affine transform of 9𝑞

8
 is performed to find the

majority function in ℤ4. The circuit retained out of three is
illustrated with the majority function noted 𝑚𝑎𝑗 as follows:

𝑀𝑎𝑗 �𝐿𝑊𝐸𝑠
4 𝑞� �𝑚0, 𝑞 16� �, 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚1, 𝑞 16� �, 𝐿𝑊𝐸𝑠
4 𝑞� �𝑚2, 𝑞 16� �� →

𝐿𝑊𝐸𝑠
2 𝑞� �𝑚, 𝑞 4� �.

The refresh is carried out on the result of the circuit as

follows: 𝐿𝑊𝐸𝑠
2 𝑞� �𝑚, 𝑞 4� � ⟶ 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚, 𝑞 16� �.

8) Bootstrapping: Analysis and comparison of
algorithms: Table II shows that TFHE bootstrapping performs
better than bootstrapping performed and executed in the other
two schemes. This fact is due to the removal of the
decomposition step in any basis of the vector 𝑎 of assumptions
LWE [10, 11].

TABLE I. TRUTH TABLE OF THE SELECTED FUNCTION OF THE THREE
BITS

𝒂𝒊 𝒃𝒊 𝒄𝒊−𝟏 𝒂𝒊 ⊕
𝒄𝒊−𝟏(1)

𝒃𝒊 ⊕
𝒄𝒊−𝟏(2)

𝟏⊕
𝟐(3)

𝟑
⊕ 𝒄𝒊−𝟏 𝑴𝒂𝒋

1 1 1 0 0 0 1 3

1 1 0 1 1 1 1 2

1 0 1 0 1 0 1 2

1 0 0 1 0 0 0 1

0 1 1 1 0 0 1 2

0 1 0 0 1 0 0 1

0 0 1 1 1 1 0 1

0 0 0 0 0 0 0 0

TABLE II. ANALYSIS AND COMPARISON OF ALGORITHMS

Encryption
scheme

Type of
homomorphy

hard
problem

Type of
bootstrapping

Homomorphic
operations Squashing

Security
parameter
size (bits)

Complexity
of the
decryption
algorithm

Bootstrapping
key size

Bootstrapping
execution time(s)

DGHV fully AGCD By squashing + 𝑒𝑡 × Yes 72 great NA 660

FHEW fully LWE
RLWE

By
accumulator NAND No 88 low 2.4 GB – 1 GB 0.63

TFHE
fully

TLWE By
accumulator

NAND, AND,
... No 110 low 24 MB 0.052

0.0013 Leveled

89 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

IV. APPLICATIONS: BINARY MULTIPLICATION
The operation of multiplying two integers is described in

Fig. 1, for any calculation basis (binary, decimal, etc.) by the
following two steps:

The calculation of partial products;

The sum of the partial products obtained.

The product of two numbers of 𝑛 digits can be given by a
number of 2𝑛 digits. In the binary system, the gate 𝐴𝑁𝐷 is
used to generate the partial products 𝑎𝑖𝑏𝑖 between each bit of
the two multiplicandes. A binary addition is performed on
each column of partial products.

 𝑎3 𝑎2 𝑎1 𝑎0

 𝑏3 𝑏2 𝑏1 𝑏0

 𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

 𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1

 𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2

 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3

𝑝7 𝑝6 𝑝5 𝑝4 𝑝3 𝑝2 𝑝1 𝑝0

Fig. 1. Example of Multiplying Two Numbers at 4 Bits.

A. The Classic Multiplication Algorithm[30]
Let 𝑎 and 𝑏 be two numbers of k bits, expressed as a

basis:𝛽 = 2

𝑎 = (𝑎𝑛−1𝑎𝑛−2 … … … … . .𝑎0) = ∑ 𝑎𝑖𝑛−1
𝑖=0 𝛽𝑖 (1)

𝑏 = (𝑏𝑛−1𝑏𝑛−2 … … … … . . 𝑏0) = ∑ 𝑏𝑖𝑛−1
𝑖=0 𝛽𝑖 (2)

Where the and 𝑎𝑖 are 𝑏𝑖 in the interval [0, 1]. The classical
algorithm of multiplication of 𝑎 and 𝑏 consists in calculating
partial products by multiplying the 𝑏𝑖 of the multiplier by 𝑏
the whole number 𝑎 and then adding these partial products in
order to obtain the final product 𝑝 which is a number of 2𝑛
bits.

Note 𝑝𝑖𝑗 the pair (carry, Sum) obtained from the partial
product 𝑎𝑖𝑏𝑗. Fig. 1 illustrates the results 𝑝𝑖𝑗 of multiplication
of 𝑎 and 𝑏 at 4 bits.

The last rank denotes the total sum of the partial products
which is also the product 𝑎 𝑏𝑦 𝑏 represented by a number of
2𝑘 bits.
Algorithm 1: Classical Multiplication MC
Input: a, b
Output: p = ab
Initialize 𝑝𝑖 ≔ 0 for 𝑖 = 0, 1, … … . , 2𝑛 − 1
for 𝑖 = 0 𝑡𝑜 𝑛 − 1

𝑟
 for 𝑗 ≔ 0 𝑡𝑜 𝑛 − 1

(𝑟, 𝑠) = 𝑝𝑖+𝑗 + 𝑏𝑖𝑎𝑗 + 𝑟
𝑝𝑖+𝑗 = 𝑠

End For
𝑝𝑖+𝑛 ≔ 𝑟

End for
Return (𝑝2𝑛−1𝑝2𝑛−2 … … … … … 𝑝0)

This algorithm requires 𝑂(𝑛2) bit-level operations to
multiply two 𝑛 bit encrypted numbers.

B. Horner's Algorithm
It was originally introduced to effectively evaluate the

value of a polynomial 𝑝(𝑥) = ∑ 𝑎𝑖𝑥𝑖𝑛
𝑖=0 for a given value 𝛼. It

is based on the following rewrite:

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯… + 𝑎𝑛𝑥𝑛 (3)

= 𝑎0 + 𝑥 �𝑎1 + 𝑥�𝑎2 + ⋯… … … . . +𝑥�𝑎𝑛−1 + 𝑥(𝑎𝑛)�… … . �� (4)

The expressions below evaluate a polynomial 𝑝(𝑥) at a
given point 𝛼 by performing 𝑛 multiplications and 𝑛 additions
to calculate 𝑝(𝛼).

𝑎𝑏 = 𝑎.∑ 𝑏𝑖2𝑖𝑛−1
𝑖=0 = 𝑎𝑏02 �𝑎𝑏1 + 2�𝑎𝑏2 + ⋯ . . +2�𝑎𝑏𝑛−2 +

2(𝑎𝑏𝑛−1)�… … … … �� (5)

The equation below can be written in the following
recursive form:

𝑝0 = 0

𝑝𝑖 = 2𝑝𝑖−1 + 𝑏𝑖−1𝑎 (6)

From these equations, Horner's algorithm (2) for
multiplying binary integers is written as follows:
Input: 𝑎0,𝑎1, … … … . ,𝑎𝑛−1 and 𝑏0, 𝑏1, … … … … … … , 𝑏𝑛−1
Output : 𝑝 = 𝑎𝑏
 𝑝0 ≔ 0
For 𝑖 = 𝑛 – 1 𝑡𝑜 0
Do

𝑝𝑖 ≔ 2𝑝𝑖−1 + 𝑏𝑖−1𝑎
End do
End for
Return 𝑝

This algorithm has the same complexity as the classical
multiplication algorithm is 𝑂(𝑛2).

C. Karatsuba's Algorithm
The Karatsuba algorithm is a recursive algorithm

introduced by the Russian mathematician Karatsuba in 1962.
This algorithm requires 𝑂�𝑛log2 3� to multiply two numbers of
𝑛 bits. Its complexity is reduced by method of the divide-and-
conqueror which uses fewer multiplications than the classical
algorithm.

Let 𝑎 and 𝑏 be two integers of n bits and 𝑙 = �𝑛 2� � .
Karatsuba initially breaks down 𝑎 𝑎𝑛𝑑 𝑏 into two equal parts:

𝑎 = 2𝑙𝑎1 + 𝑎0 ,𝑏 = 2𝑙𝑏1 + 𝑏0 (7)

Such as 𝑎1 is the 𝑙 high-weight bits of 𝑎 and 𝑎0 is the 𝑙
low-weight bits of 𝑎. Note that the 2𝑙value thus constitutes the
basis of the representation 𝛽.

1) Naïve recursion method: The naïve recursion method
reduces the multiplication of 𝑎 and 𝑏 multiplication of their
components 𝑎1,𝑎0,𝑏1 𝑒𝑡 𝑏0 including the size of the initial
integers as shown in the following equation:

𝑝 = 𝑎. 𝑏 = (2𝑙𝑎1 + 𝑎0)(2𝑙𝑏1 + 𝑏0)

90 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

= 22𝑙(𝑎1𝑏1) + 2𝑙(𝑎1𝑏0 + 𝑎0𝑏1) + 𝑎0𝑏0

= 22𝑙𝑝2 + 2𝑙𝑝1 + 𝑝0 (8)

Said formulation reveals that the multiplication of two
numbers of 𝑘 bits require 4 multiplications of 𝑙 = 𝑘

2
 bits. Its

complexity is not far from that of a classical algorithm.

2) Karatsuba algorithm: Its algorithm improves the
performance of equations in (1). By reducing the number of
multiplications to three but adding four additional additions. A
rearrangement of the terms of the product 𝑝 = 𝑎. 𝑏 makes it
possible to obtain:

𝑝0 = 𝑎0𝑏0(9)

𝑝1 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1) − 𝑝0 − 𝑝2 (10)

𝑝2 = 𝑎1𝑏1 (11)

Of these equations, a remark is made of the presence of
three multiplications, two bits 𝑛 and 𝑛 + 1 one bit. The
karatsuba algorithm requires 𝑂(𝑛1.59) operations to give the
product of two numbers.
Algorithm 3: Karatsuba multiplication.𝑀𝐾

Input: 𝑎, 𝑏,𝑘
Output : 𝑝 = 𝑎. 𝑏
If (is small) then 𝑘
Return: Call the classic algorithm.𝑀𝐶(𝑎, 𝑏)
Finsi

𝑙 ∶= 𝑘/2
𝑎0 ≔ 𝑎/2𝑙
𝑎1 ≔ 𝑎 𝑚𝑜𝑑 2𝑙
𝑏0 ≔ 𝑏/2𝑙
𝑏1 ≔ 𝑏 𝑚𝑜𝑑 2𝑙
𝑝0 ≔ 𝑀𝐶(𝑎0, 𝑏0)
𝑝1 ≔ 𝑀𝐶(𝑎1, 𝑏1)
𝑡𝑒𝑚𝑝 ≔ 𝑀𝐶(𝑎0 + 𝑎1, 𝑏0 + 𝑏1)
𝑝1 ∶= 𝑡𝑒𝑚𝑝 − 𝑝0 − 𝑝2

Return 22𝑙𝑝2 + 2𝑙𝑝1 + 𝑝0

The version of the algorithm that has been implemented in
this paper is iterative. It performs operations on 8-bit
encrypted integers.

D. The Shifter
A shifter is formed of n + 1 inputs d1, d2,

..........................., dn, c and n outputs s1, s2,, sn and
operates an offset of 1 bit on the inputs if c = 1, it is an offset
to the right and if c = 0 then it is an offset to the left.

Algorithm 4: shifting to left or right.
Input: a: n-bit encrypted integer, right or left Boolean: offset direction
Positions: Number of offset positions
b: encrypted integer shifted by offset over n bits of positions.
cx1, cx2 two null encrypted integers of n bits
i: integer counter
flag: A Boolean integer that determines the offset direction.
if flag = 0 then
 right = 1;
 left = no(right)
otherwise
 right = 0;
 left = no(right)
finsi
for i of 1 to positions
do
 for k from 0 to n – 1

 do
 if k > 0 and k < n – 1 then
 cx1k = and(ak-1, left);
 cx2k = and(ak+1, right);
 bk = or(cx1k , cxk2);
 otherwise
 if k = 0 then
 bk = and(ak+1, right)
 finsi
 if k == n then
 bk = and(ak-1, left);
 finsi
 finish
end do
return b

Algorithm 4 has a complexity of 𝑂(𝑝 × 𝑛) where p is the
number of offset positions and n is the bit size of the number
to be shifted.

V. IMPLEMENTATION AND INTERPRETATION OF RESULTS

A. Implementation
The implementations were tested on the Intel® coreTM i7-

5500 CPU @2.4 GHZ processor of a laptop with a cache
memory of 4019 kilobytes, a clock clock clock of 1100 MHZ
and a volatile memory of 8 Gigabytes that supports extensions
of the following instruction sets: MMX, SSE, SSE2, SSE4_1,
SSE4_2, FMA, AVX and AVX2.

The DGHV code was implemented in Python with Sage
and GMP (GNU Multi Precision). These two libraries provide
machine compiled mathematical libraries that are fast in their
executions. We have not been optimal to work with these tools
in the implementation of multiplication.

The FHEW library that is written in C/C++ language. An
optimization to quickly perform convolution was achieved by
an implementation of the Fourier transform FFTW3 to process
bootstrapping. Functions useful for performing multiplication
have been added to the FHEW.cpp source file [31].

The TFHE library is written in C/C++ language and an
optimization has been implemented for the fast processing of
bootstrapping with the data parallelism of fused-multiply add
and as an Advanced Vector eXtensions assembler through a
SQLIOS fast Fourier transform parameterized in either AVX
or FMA. Useful functions have been added to the cloud file.c
and alice.c [32].

Synthesis and comparison:

In Table III, the columns represent the circuit type used in
the implementation of multiplication operations and the type
of logic gates. As for the rows, they represent the
implementation of different types of multiplication. The
intersection between the row and the column gives the number
of circuits or gates implemented to achieve each type of
multiplication.

TABLE III. CIRCUIT USED IN EACH TYPE OF MULTIPLICATION

 Adder Subtractor Shifter And Multiply Weighting

Horner 1 0 1 1 0 N

Classic 2 0 0 1 0 N2

Karatsuba 4 4 4 1 3 1

91 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

The implementation of Karatsuba is less expensive in
circuits and logic gates than the other two implementations are
about three offsets respectively of 8 bits on 8 bits and 16 bits
on 16 bits, two subtractors on 8 bits which represents the
modulo 28 , four additions respectively two on 8 bits and two
on 16 bits and three multiplications on 8 bits. And on the other
side, the classic implementation takes 512 complete additions
on one bit and 256 multiplications with the door and on one
bit. And in the same proportion as Horner’s is 16 offsets of 1
bit by 16 bits, 256 multiplications on 1 bit with the door and
16 additions on 16 bits.

B. Interpretation of Results
In Table IV, the columns represent the implementation

library and the rows represent the type of multiplication
implemented. The intersection is the second execution time of
a type of multiplication of two 16-bit numbers with one of the
column libraries.

TABLE IV. PERFORMANCE TABLE OF MULTIPLICATION BY DGHV, FHEW
OR TFHE

 DGHV FHEW TFHE

Horner NA 671 41

Classic NA 649 39

Karatsuba NA 483 29

The library implemented for the DGHV did not provide
results in a reasonable time to be taken into account in this
paper. As for the FHEW and TFHE libraries, the theoretical
results corroborated the theoretical hypotheses in memory and
time complexity. It appears that the choice made in the design
and implementation of the TFHE makes its bootstrapping
more efficient.

VI. DISCUSSION
TFHE bootstrapping improves 15 times that of FHEW for

this homomorphic multiplication on two 16-bit encrypted
integers. This multiplication deteriorates the performance of
the TFHE compared to the FHEW by halving the starting
assumptions for a logic gate on ciphertexts bits. But in
practice, this improvement is negligible if we consider that a
binary multiplication of two 16-bit on plaintext numbers on
the same architecture is carried out in less than 1 nanosecond.
The ratio of improvement of the TFHE by adding the
decryption time of the result is close to zero. This observation
is also valid for the FHEW.

VII. CONCLUSION
Bootstrapping is the basis of unlimited homomorphic

processing on encrypted data. This study compared
bootstrapping through three patterns to identify its evolution
from 2009 to 2016. It emerges from this comparison that the
best design and implementation is that of the TFHE which is
based respectively on the problem of the LWE on the real
torus modulo 1, the bootstrapping by accumulator, on the fast
Fourier transform coupled with the parallelism of FMA and
AVX data. One avenue to explore is to study the performance
of the implemented FHEW with a rapid transform based on
the stockham algorithm, optimized throttle calculation and
data parallelism.

REFERENCES
[1] Pascal Paillier, Public Key cryptosystem based on composite degree

residuosity classes, In Stern 97, pages 223-238. 27, 29, 51, 53, 55.
[2] Taher El Gamal, A public key cryptosystem and a signature scheme

based on discrete logarithms. In GR Blakey and David Chaum, editors,
CRYPTO 1984, volume 196 of Lectures Notes in computer Sciences,
pages 10-18, Springer 1984.

[3] R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital
signatures and public key cryptosystems. Common of the ACM, 21:120-
126, 178.

[4] Shafi Goldwasser and Silvio Micali, probabilistic encryption, J.
Computer. System. Sci, 28(2): 270-299, 1984. 6, 33.

[5] Dan Boneh, Eu-Jin Goh and Kobbi Nissim, Evaluating 2-DNF formulas
on ciphertexts, In Joe Killian, editor, TCC 2005, Volume 3378 of
Lectures Notes in Computer Science, Pages 325-341, Springer, 2002. 2,
31, 66, 67, 97, 98, 99.

[6] Craig Gentry. "A fully homomorphic encryption scheme".
crypto.stanford. edu/craig. PhD thesis. Stanford University, 2009.

[7] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
"Fully Homomorphic Encryption over the Integers". In: EUROCRYPT
2010. Ed. By Henri Gilbert. Vol. 6110. LNCS. Springer, Heidelberg,
May 2010, pp. 24–43.

[8] Craig Gentry, Amit Sahai, and Brent Waters. "Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptotically-
Faster, Attribute-Based". In: CRYPTO 2013, Part I. Ed. by Ran Canetti
and Juan A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013,
pp. 75–92. doi: 10.1007/978-3-642-40041-4_5.

[9] Léo Ducas and Daniele Micciancio. "FHEW: Bootstrapping
Homomorphic Encryption in Less Than a Second". In: EUROCRYPT
2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
LNCS. Springer, Heidelberg, Apr. 2015, pp. 617–640. doi: 10.1007/978-
3-662-46800-5_24.

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast
Fully Homomorphic Encryption Library over the Torus. https: / / github
. com /tfhe/tfhe. 2016.

[11] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. "Faster Fully Homomorphic Encryption: Bootstrapping in
Less Than 0.1 Seconds". In: ASIACRYPT 2016, Part I. Ed. by Jung Hee
Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Heidelberg,
Dec. 2016, pp. 3–33. doi: 10.1007/978-3-662-53887-6_1.

[12] R. L. Rivest, L. Adleman, and M. L. Dertouzos. "On Data Banks and
Privacy Homomorphisms". In: Foundations of Secure Computation,
Academia Press (1978), pp. 169–179.

[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. "(Leveled)
fully homomorphic encryption without bootstrapping". In: ITCS 2012.
Ed. by Shafi Goldwasser. ACM, Jan. 2012, pp. 309–325.

[14] Brakerski Z. and Vaikuntanathan V., Fully Homomorphic Encryption
from RingLWE and security for key dependent messages, LNCS, vol.
6841, Springer Verlag, Proceedings of CRYPTO, pp. 505-524, 2011.

[15] Oded Regev. "On lattices, learning with errors, random linear codes, and
cryptography". In: 37th ACM STOC. Ed. by Harold N. Gabow and
Ronald Fagin. ACM Press, May 2005, pp. 84–93.

[16] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz.
Additively homomorphic encryption with d-operand multiplications. In
CRYPTO, pages 138–154, 2010.

[17] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic
encryption with relatively small key and ciphertext sizes. In Phong Q.
Nguyen and David Pointcheval, editors, Public Key Cryptography,
volume 6056 of Lecture Notes in Computer Science, pages 420–443.
Springer, 2010.

[18] Craig Gentry and Shai Halevi. Implementing gentry’s fully-
homomorphic encryption scheme. In Kenneth G. Paterson, editor,
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science,
pages 129–148. Springer, 2011.

[19] Craig Gentry and Shai Halevi. Fully homomorphic encryption without
squashing using depth-3 arithmetic circuits. Cryptology ePrint Archive,
Report 2011/279, 2011. http: //eprint.iacr.org/2011/279.

92 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

[20] N. Howgrave-Graham. Approximate integer common divisors. in J.
Silverman (ed), Cryptography and Lattices, Springer LNCS 2146 (2001)
51−66.

[21] Jean-Sebastien Coron, Avradip Mandal, David Naccache, and Mehdi
Tibouchi. Fully Homomorphic Encryption over the Integers with Shorter
Public Keys. Cryptology ePrint Archive, Report 2011/441, 2011.
http://eprint.iacr.org/.

[22] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-
invariant fully homomorphic encryption over the integers. 9 In Public-
Key Cryptography–PKC 2014, pages 311–328. Springer, 2014.

[23] JungHee Cheon, Jean-Sébastien Coron, Jinsu Kim, MoonSung Lee,
Tancrède Lepoint, Mehdi Tibouchi, and Aaram Yun. Batch Fully
Homomorphic Encryption over the Integers. In Thomas Johansson and
PhongQ. Nguyen, editors, Advances in Cryptology – EUROCRYPT
2013, volume 7881 of Lecture Notes in Computer Science, pages 315–
335. Springer Berlin Heidelberg, 2013.

[24] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public
Key Compression and Modulus Switching for Fully Homomorphic
Encryption over the Integers. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in
Computer Science, pages 446–464. Springer, 2012.

[25] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Batch
Fully Homomorphic Encryption over the Integers. Cryptology ePrint
Archive, Report 2013/036, 2013. http://eprint. iacr.org/.

[26] Brakerski Z. and Vaikuntanathan V., Efficient Fully Homomorphic
Encryption from standard LWE, Proceedings of the 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011,
pp. 97-106, IEEE Computer Society, 2011.

[27] BLLN13. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael
Naehrig. Improved Security for a Ring-Based Fully Homomorphic
Encryption Scheme. In Martijn Stam, editor, IMA Int. Conf., volume
8308 of Lecture Notes in Computer Science, pages 45–64. Springer,
2013.

[28] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and
learning with errors overs rings. In In Proc. Of EUROCRYPT, Volume
6110 of LNCS, pages 1-23. Springer, 2010.

[29] Yuanmi Chen and Phong Q. Nguyen. Faster Algorithms for
Approximate Common Divisors: Breaking Fully-Homomorphic
Encryption Challenges over the Integers. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lecture
Notes in Computer Science, pages 502–519. Springer, 2012.

[30] Kassem Kalach, Implementation of the multiplication of large numbers
by FFT in the contexts of cryptographic algorithms, August 2005,
dissertation, Université de Montréal.

[31] P. Boale Bomolo, S. Ntumba Badibanga, E. Mbuyi Mukendi,
Implementation of homomorphic arithmetic operations on integers,
volume 5, number 2, May 2021, pp 125-137, IJISR.

[32] P. Boale Bomolo, S. Ntumba Badibanga, E. Mbuyi Mukendi,
performance of Adder Architectures on encrypted integers, volume 10,
issue-6, august 2021, IJEAT.

93 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Literature Review
	III. Bootstrapping
	A. The reencryption [6]
	1) Definition of reencryption: reencryption is a noted function ,Rencrypt-ε. that converts a message encrypted under a key ,p-k1. into another message encrypted under an another key ,p-k2. without revealing any information about the private key ,s-k1. or t�
	2) Reencryption algorithm: A reencryption can be evaluated in the following steps:
	3) One-way reencryption: Given a pair of keys ,,𝑠-𝑘1.,,𝑝-𝑘1.. and ,,𝑠-𝑘2.,,𝑝-𝑘2... A one-way reencryption is a conversion from ,𝐸𝑛𝑐𝑟𝑦𝑝𝑡-𝜀.,𝑚, ,𝑝-𝑘1.. to ,𝐸𝑛𝑐𝑟𝑦𝑝𝑡-𝜀.,𝑚, ,𝑝-𝑘2.. by the evaluation of ,𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒-𝜀.,,𝑝-𝑘2�

	B. Hard Problems of Homomorphic Encryption
	1) The problem of learning with error: The Problem of Learning With Error (LWE) was introduced by Regev in 2005 [15]. The Ring version of this problem called RingLWE, was introduced by Lyubashevsky, Peikert and Regev in 2010[28]. All variants are widely us�
	a) The Regev problem: For a security setting λ, Either n=n,λ.an integer dimension, an integer q=q,λ. ≥2, and a distribution χ=χ,λ. under ℤ. The hard problem of ,LWE-n,q,λ. the is to distinguish two following distributions:
	b) The RLWE problem: For a secret 𝑠∈,𝑅-𝑞., the RLWE distribution under ,𝑅-𝑞.×𝑅 is drawn by respectively a uniform and random 𝑎∈,𝑅-𝑞. and 𝑒←𝜒, and gives the output expression ,𝑎, 𝑏=,𝑠,𝑎..+𝑒 𝑚𝑜𝑑 𝑞.
	c) The General Problem of the LWE (GLWE) [26]: For a security parameter 𝜆, that is 𝑓,𝑥.=,𝑥-𝑑.+1, where 𝑑=𝑑,𝜆. is a power of 2. Let be two integers respectively the modulus 𝑞=𝑞,𝜆.and the dimension 𝑛, let 𝑅=,ℤ,𝑥.-𝑓,𝑥.. and ,𝑅-𝑞.=,𝑅-𝑞𝑅.. �

	2) The problem of the Approximation of the Greatest Common Divisor (AGCD)[20, 29].

	C. Bootstrapping [6]
	1) Fundamental properties: In Gentry construction, bootstrapping is based on three fundamental properties that belong a partial or somewhat homomorphic encryption scheme that make it fully homomorphic encryption. These properties are listed and noticed bel�
	2) Definition of bootstrapping: Bootstrapping is a technique for reducing noise in the ciphertext 𝑐 and getting noise ,𝑏-′.in a refreshed ciphertext ,𝑐-′.such as ,𝑏-′.<𝑏 where ,𝑏-′.⊃ ,𝐸𝑛𝑐𝑟𝑦𝑝𝑡-𝜀.,,𝑝-𝑘., 𝑚.←,𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒-𝜀.,,𝑝-𝑘., ,𝑓�
	3) Bootstrapping algorithm: Given two pairs of keys ,,𝑝-𝑘1.,,𝑠-𝑘1.. and ,,𝑝-𝑘2.,,𝑠-𝑘2.. generated by a homomorphic encryption scheme 𝜀.
	4) Squashing: Squashing is a procedure that consists of expressing the decryption algorithm ,𝐷𝑒𝑐𝑟𝑦𝑝𝑡-𝜀. into a polynomial or function ,𝑝-𝑐.,,𝑠-𝑘.. whose variables are the ciphertext 𝑐 and the secret key 𝑠𝑘. ,𝑝-𝑐.,,𝑠-𝑘.. is equivalent to �
	5) Concept of Bootstrapping from 2015 [8 9, 10, 11]: Bootstrapping of scheme based on the problem of assumptions of LWE and its variants removes squashing. The decryption algorithm has a complexity that allows it to be evaluated homomorphically in the reen�
	6) Type of bootstrapping: There are two types of bootstrapping that bootstrapping by squashing or by homomorphic accumulator.
	a) Homomorphic accumulator in [9]: In [9], the homomorphic accumulator is based on the encryption scheme [8] defined under the assumptions of the Ring LWE. Let be a message 𝑚 and the key 𝑧∈ℤ, ,,𝐸𝑛𝑐𝑟𝑦𝑝𝑡-𝜀.-𝑧.(𝑚) encrypts as described below:

	7) Processing bootstrapping [9, 10]: There are two types of processing bootstrapping which are logic gate bootstrapping and logic circuit bootstrapping.
	8) Bootstrapping: Analysis and comparison of algorithms: Table II shows that TFHE bootstrapping performs better than bootstrapping performed and executed in the other two schemes. This fact is due to the removal of the decomposition step in any basis of th�

	IV. Applications: Binary Multiplication
	A. The Classic Multiplication Algorithm[30]
	B. Horner's Algorithm
	C. Karatsuba's Algorithm
	1) Naïve recursion method: The naïve recursion method reduces the multiplication of 𝑎 and 𝑏 multiplication of their components ,𝑎-1., ,𝑎-0., ,𝑏-1. 𝑒𝑡 ,𝑏-0. including the size of the initial integers as shown in the following equation:
	2) Karatsuba algorithm: Its algorithm improves the performance of equations in (1). By reducing the number of multiplications to three but adding four additional additions. A rearrangement of the terms of the product 𝑝=𝑎.𝑏 makes it possible to obtain:

	D. The Shifter

	V. Implementation and Interpretation of Results
	A. Implementation
	B. Interpretation of Results

	VI. Discussion
	VII. Conclusion
	References

