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Abstract—The pedestal of fully homomorphic encryption is 
bootstrapping which allows unlimited processing on encrypted 
data. This technique is a bottleneck in the practicability of 
homomorphic encryption. From 2009 to 2016, the execution time 
of bootstrapping decreased from several hours to a few 
thousandths of a second for processing a logic gate on two 
encrypted bits. This paper makes a comparative study of the 
evolution of bootstrapping during the period. An implementation 
of multiplication on 16-bit integers on an Intel i7 architecture 
through three schemes whose libraries are respectively DGHV, 
FHEW and TFHE makes it possible to corroborate the trend that 
to date the best bootstrapping on bits is that of the TFHE which 
executes this processing in 29 seconds improving that of the 
FHEW 30 times despite the multiplication algorithm used. 

Keywords—Bootstrapping; homomorphic encryption; binary 
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I. INTRODUCTION 
Encryption is said to be probabilistic if a plaintext message 

is encrypted in several ciphertexts. This feature is found by 
adding a random value during the encryption operation. It is 
said to be homomorphic if it allows performing processing on 
ciphertexts with corresponding results on plaintexts. If it 
performs only additions [1, 2], multiplications [3] or binary 
operations [4] it is called partial homomorphic otherwise if it 
performs additions and multiplications in a limited number 
then it is somewhat homomorphic [5, 6, 7]. On the other hand, 
if it performs processing on unlimited number it is said to be 
fully homomorphic [5, 6, 7, 8, 9, 10, 11]. 

Fully homomorphic encryption was a breakthrough made 
by Gentry [6] in his thesis in response to the conjecture state 
in [12]. This breakthrough is based on the bootstrapping 
technique that evaluates its own decryption circuit to refresh 
noise in the ciphertexts thus allowing an unlimited number of 
processing in the encrypted domain. Initially, it requires the 
squashing technique and an additional security assumption to 
reduce the complexity of the decryption circuit [9, 10, 11, 13, 
14]. With the advent of fully homomorphic encryption 
schemes based on the difficult problem of LWE [15] which 
belongs a low-complexity decryption algorithm, squashing 
was eliminated in bootstrapping [8, 9,10, 11,13, 14]. 

The removal of squashing allows in [9,10] to use a second 
homomorphic encryption scheme in the homomorphic 
evaluation in the decryption algorithm. This consideration 
improved performance of the homomorphic processing of gate 
NAND on two-bits encrypted in less than a second [9]. This 
processing was improved to 13 milliseconds by [10, 11]. 

N-bits arithmetic operations such as multiplication or 
addition can be built from the universal gate NAND. While 

knowing that an addition or multiplication operation 
performed on encrypted bits can respectively multiple or raise 
to the power the noise by the number of operations. We seek 
to know in this paper whether the performance of 
bootstrapping on a multiplication on two encrypted integers of 
16 bits through an implementation carried out with three 
libraries of the comparative schemas that each marked a 
period in this trend is in the same order of processing as on the 
encrypted bits. 

Roadmap. Section II presents the literature review of the 
encryption scheme from gentry's breakthrough to the period 
under review. Section III establishes the criteria for 
comparison through bootstrapping with a focus on the 
concepts behind them and presents a comparative study based 
on the concepts between the relevant algorithms of each 
period. Section IV shows three multiplication algorithms on 
two 16-bit integers and a shifter. Finally, section V extends the 
bootstrapping processing of said algorithms to integers of 16 
to perform homomorphic multiplication. Discussions close 
this comparison. 

II. LITERATURE REVIEW 
In 2009, Gentry published the first homomorphic 

encryption scheme based on ideals lattices. This scheme is 
characterized by too large parameters and additional security 
assumptions. Two schemes improved respectively the 
reduction of the size of encrypted keys and messages and the 
removal of the additional security assumptions [16, 17, 18, 
19]. The majority of schemes in this category are unusable in 
everyday applications. 

To facilitate an understanding of gentry blueprint, an 
integer-based homomorphic encryption scheme was published 
in 2010[7]. It is based on the difficult assumptions of 
Approximate Greatest Common Divisor [20]. Several integer-
based schemes have been proposed to improve the efficiency 
of DGHV. These improvements could be achieved based on 
different variants of the AGCD security assumptions to reduce 
the size of the public key in security parameter and the 
expansion of this schema in [21, 22, 23,24 ,25]. 

The hardness of implementing homomorphic encryption 
schemes based on hard problems mentioned above have 
steered the research towards another security problem. Thus, 
the first complete homomorphic encryption scheme based its 
security on the assumptions of LWE that removes squashing 
was presented by Brakerski and Vaikuntanathan [13]. Said 
scheme is based on two procedures which are the 
relinearization and the reduction of the module or dimension. 
Relinearization is a technique that reduces the size of 
ciphertexts from 𝑛2to 𝑛 + 1. It starts from a quadratic function 
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in a secret key 𝑠to a linear function in a secret key 𝑡dependent 
on 𝑠. Reducing the module or dimension naturally reduces the 
complexity of the decryption function and also reduces the 
size of the digits. Then, Brakerski and Vaikuntanathan also 
proposed a version of their schema based on the assumptions 
RLWE [14,26,27]. Many homomorphic schemes by levels or 
complete was introduced [8, 27]. Each new scheme brings 
techniques aimed essentially at reducing the size of the 
parameters and increasing the multiplicative depth. But 
relinearization is still a bottleneck for the majority of these 
schemes. 

Of all these schemes, [8] stood out. It relies on 
assumptions of approximate vectors to perform a 
homomorphic operation of gate NAND on encrypted 
messages. Encrypted messages are square matrices, addition 
and homomorphic multiplication is addition and multiplication 
matrix respectively. The author in [8] removes relinearization 
which is an expensive technique used in other LWE schemes 
in favor of the eigenvector approximation technique. The 
author in [9] uses a variant of the [8] to improve its 
bootstrapping based on gate NAND in less than a second. The 
author in [10, 11] introduces the external product in a variant 
of the [8] to reorganize bootstrapping of [9] and achieve 30 
times better performance. 

Our goal is to establish the criteria for comparing 
bootstrapping in three schemes which are the DGHV scheme 
[7], the Ducas Micciancio [9] scheme and the scheme in [10, 
11]. In addition, use the libraries that implement them to 
corroborate the trend of bootstrapping in a 16-bit binary 
multiplication. 

III. BOOTSTRAPPING 
It is a technique that was introduced by Gentry [6] to solve 

the open problem stated in 1978 by [12] which consists in 
carrying out the processing on the encrypted data. Before 
Gentry's breakthrough, the noise increases with the circuit 
depth to be evaluated. The consequence is that decryption 
fails. The solution to this concern for inefficiency was through 
the encryption technique to reduce noise in the encrypted 
message and a homomorphic evaluation of the decryption 
algorithm. 

A. The reencryption [6] 
1) Definition of reencryption: reencryption is a noted 

function Rencryptε that converts a message encrypted under a 
key pk1 into another message encrypted under an another key 
pk2 without revealing any information about the private key 
sk1  or the plain text m  it is clear that Rencryptε(c) =
 Encryptε(pk2, m) where c = Encryptε(pk2, m) [2]. 

2) Reencryption algorithm: A reencryption can be 
evaluated in the following steps: 

Generate a key pair (𝑠𝑘𝑎,𝑝𝑘𝑎) and (𝑠𝑘𝑏,𝑝𝑘𝑏) respectively 
belonging to 𝐴 and 𝐵. 

Evaluate A reencrypting key 𝐴 between 𝐵 and as follows 
𝑟𝑘 =  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘𝑏, 𝑠𝑘𝑎). 

Calculate a ciphertext 𝑐 =  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘𝑎,𝑚) where 𝑚 is 
plaintext. 

Redefine the decryption function 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀  as follows 
𝑓𝑐(𝑠𝑘𝑎) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀 (𝑠𝑘𝑎, 𝑐). 

Evaluate the reencryption as follows 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘𝑏,𝑓𝑐 , 𝑟𝑘) =  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀�𝑝𝑘𝑏,𝑓𝑐(𝑠𝑘𝑎)� =
 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘𝑏,𝑚). 

Reencryption allows to 𝐴 to designate 𝐵 by giving it the 
ability to encrypt the plaintext that it has encrypted with 
another key. 𝐵 is called proxy. 

3) One-way reencryption: Given a pair of keys 
(𝑠𝑘1,𝑝𝑘1) and (𝑠𝑘2,𝑝𝑘2) . A one-way reencryption is a 
conversion from 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚,𝑝𝑘1)  to  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚,𝑝𝑘2)  by 
the evaluation of 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘2,𝑓𝑐 , 𝑟𝑘)  where 𝑟𝑘 =
 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘2, 𝑠𝑘1) , not the inverse 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚,𝑝𝑘1) =
 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘1,𝑓𝑐 , 𝑟𝑘) where 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚,𝑝𝑘2) and 𝑟𝑘 =
 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘1, 𝑠𝑘2). The reciprocal of this assertion is false. 

B. Hard Problems of Homomorphic Encryption 
1) The problem of learning with error: The Problem of 

Learning With Error (LWE) was introduced by Regev in 2005 
[15]. The Ring version of this problem called RingLWE, was 
introduced by Lyubashevsky, Peikert and Regev in 2010[28]. 
All variants are widely used nowadays in the construction of 
lattices-based homomorphic encryption schemes. 

a) The Regev problem: For a security setting λ, Either 
n = n(λ)an integer dimension, an integer q = q(λ)  ≥ 2, and 
a distribution χ = χ(λ) under ℤ. The hard problem of LWEn,q,λ 
the is to distinguish two following distributions: 

In the first distribution, the sample (𝑎𝚤���⃗ ,𝑏𝑖) drawn 
uniformly from ℤ𝑞𝑛+1;  

In a second distribution, draw 𝑠 ← ℤ𝑞𝑛+1and (𝑎𝚤���⃗ ,𝑏𝑖) ∈  ℤ𝑞𝑛 
then a sample by drawing uniformly 𝑎𝚤���⃗ ← ℤ𝑞𝑛  and 𝑒𝑖 ← 𝜒 
respectively, and initializing 𝑏 = 〈𝑎𝚤 ����⃗ , 𝑠𝑖〉 + 𝑒𝑖 . The 
assumptions of 𝐿𝑊𝐸𝑛,𝑞,𝜒  are such that the problem of 
𝐿𝑊𝐸𝑛,𝑞,𝜒 is hard. 

b) The RLWE problem: For a secret 𝑠 ∈ 𝑅𝑞, the RLWE 
distribution under 𝑅𝑞 × 𝑅 is drawn by respectively a uniform 
and random 𝑎 ∈ 𝑅𝑞  and 𝑒 ← 𝜒 , and gives the output 
expression (𝑎, 𝑏 = 〈𝑠,𝑎〉) + 𝑒 𝑚𝑜𝑑 𝑞. 

RLWE is said to be decisional if given 𝑚  independent 
samples (𝑎𝑖 ,𝑏𝑖) ∈ 𝑅𝑞 × 𝑅𝑞  where each sample is distributed 
either 𝐴𝑠,𝜒  for random and uniform 𝑠 ∈ 𝑅𝑞  (fixed for all 
samples) or the uniform distribution, distinguish which is the 
case (with a significant probability). 

c) The General Problem of the LWE (GLWE) [26]: For 
a security parameter 𝜆 , that is 𝑓(𝑥) = 𝑥𝑑 + 1 , where 𝑑 =
𝑑(𝜆) is a power of 2. Let be two integers respectively the 
modulus 𝑞 = 𝑞(𝜆) and the dimension 𝑛 , let 𝑅 = ℤ[𝑥]

𝑓(𝑥)�  

and 𝑅𝑞 = 𝑅
𝑞𝑅� . Let be 𝜒 = 𝜒(𝜆) a distribution on 𝑅 . The 

problem with GAAE is to distinguish between the following 
two distributions: 
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The first distribution is a uniform sample (𝑎𝑖 , 𝑏𝑖)  ∈  𝑅𝑞𝑛+1; 

In the second uniformly drawn distribution 𝑎𝑖 ← 𝑅𝑞𝑛 , 
𝑠 ← 𝑅𝑞𝑛 and 𝑒𝑖 ← 𝜒 , the second distribution is the sample 
(𝑎𝑖 , 𝑏𝑖)  ∈ 𝑅𝑞𝑛+1 where 𝑏𝑖 = 〈𝑎𝑖 , 𝑠〉 + 𝑒𝑖 . The assumption of 
GLWE is that the GLWE problem is hard. 

If 𝑑 = 1  then the LWE problem is that of the LWE 
problem. If n = 1 then the GLWE problem is that of the 
RLWE problem. 

The author in [8] based on assumptions of LWE, it 
constructs its schema with a plaintext space ℤ4 = {0, 1, 2, 3}, 
an encrypted message space ℤ𝑞  with an error or noise 𝐸 <
 𝑞
16

 where 𝑞 is the modulus that determines the key space from 
which the secret key 𝑠 is taken and 𝑛 is the encrypted message 
dimension. 

To encrypt a plaintext 𝑚 ∈ ℤ2 ⊂ ℤ4, draw 𝑎 ← ℤ𝑞𝑛, 𝑒 ←  𝜒 
and output the ciphertext 𝑐  as follows  𝐿𝑊𝐸𝑠

4 𝑞� �𝑚, 𝑞
16
� =

�𝑎,𝑎. 𝑠 + 2𝑚
4

+ 𝑒� ∈ ℤ𝑞𝑛+1. 

The authors in [10, 11] redefines the problem of LWE and 
RLWE on the real torus 𝑇 =  ℝ 𝑚𝑜𝑑 1 and the torus of 
polynomials 𝑇[𝑋] =  𝑇[𝑋] 𝑚𝑜𝑑 𝑋𝑁 + 1 respectively. This 
redefinition produces three types of ciphertexts for this 
schema. It also generalized and improved the encryption 
scheme based on the [8] and several of its variants. 

To encrypt a plaintext 𝑚 ∈ 𝑇, pick a secret key 𝑠 ∈  ℬ𝑛 =
 ℤ2𝑛  and calculate 𝑐 =  (𝑎, 𝑏)  ∈ 𝑇𝑛+1  where 𝑎 ∈ 𝑇𝑛 is a 
random mask, 𝑏 = 𝑎. 𝑠 +  𝜑  and 𝜑 = 𝑒 + 𝑚  where  𝑒  is a 
parameter that is drawn in a Gaussian distribution. 

To encrypt the plaintext 𝑚 ∈ 𝑇𝑁[𝑋], draw a key 𝑠 ∈ ℬ𝑁[𝑋] 
and calculate 𝑐 = (𝑎, 𝑏) ∈ 𝑇𝑁[𝑋]2 where 𝑎 is a random mask 
and 𝑏 = 𝑠.𝑎 + 𝑒 + 𝑚 where 𝑒 ∈ 𝑇𝑁[𝑋]. 

To encrypt the plaintext 𝑚 ∈ ℤ𝑁[𝑋], pick the secret key 
𝑠 ∈ ℬ𝑁[𝑋]  as in the RLWE and calculate 𝑐 =  𝑍 + 𝑚.𝐺2 ∈
𝑇𝑁[𝑋]2𝑙×2 where 𝑍 is a list of ciphertexts of type RLWE of 0 
and 𝐺2  is the matrix with 

�𝑔 0
0 𝑔�𝑔

𝑇 = (2−1, … … … … … … … , 2−𝑙). 

2) The problem of the Approximation of the Greatest 
Common Divisor (AGCD)[20, 29]. 

The AGCD's problem with the parameters (𝛾, 𝜂,𝜌) is the 
problem of finding the secret integer 𝑝 given several samples 
𝑥𝑖 = 𝑝𝑞𝑖 + 𝑟𝑖 of arbitrarily provided where: 

The secret integer 𝑝 has bits 𝜂; 

The terms noises 𝑟𝑖 are uniform samples from the interval 
[−2𝜌 + 1, 2𝜌 − 1] ∩ ℤ ; 

The terms 𝑞𝑖 are uniform samples of [0, 2𝛾−𝜂] ∩ ℤ. 

[7] is the first known scheme applying the AGCD problem 
in cryptography to produce a homomorphic encryption 
scheme. In its symmetric version, it encrypts the plaintext 
𝑚 ∈  {0, 1} , two random integers are drawn uniformly to 
evaluate the encrypted message as follows 𝑐 = 𝑝𝑞 + 2𝑟 + 𝑚. 

In other words, a sample of AGCD is calculated by adding the 
even noise 2𝑟 to the product 𝑝𝑞 which is added to 𝑚. 

C. Bootstrapping [6] 
1) Fundamental properties: In Gentry construction, 

bootstrapping is based on three fundamental properties that 
belong a partial or somewhat homomorphic encryption 
scheme that make it fully homomorphic encryption. These 
properties are listed and noticed below: 

The complexity of the decryption algorithm is greater than 
that of the circuits to be evaluated. Given 𝑑  the maximum 
degree of the decryption algorithm 𝐷𝑒𝑐𝑟𝑦𝑝𝑡ℇ  and 𝑝  the 
maximum degree of the function or polynomial to be 
evaluated by scheme. If 𝑑 < 𝑝 then the decryption algorithm 
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀  is been useful in homomorphic evaluations. If 
𝑑 > 𝑝  then the complexity of this algorithm is reduced to 
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀′  for homomorphic evaluations hence 𝑓𝑐(𝑠𝑘) =
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀′(𝑠𝑘, 𝑐) where 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘,𝑚). 

Bootstrappability is a critical property of an encryption 
scheme that allows you to homomorphically evaluate your 
own decryption algorithm under an encrypted decryption key. 
Given an encryption scheme ℇ, ℇ is said to be bootstrappable 
if 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒ℇ = (𝑝𝑘1,𝑓𝑐 , 𝑒𝑘) = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ℇ(𝑝𝑘1,𝑚)  where 
𝑓𝑐(𝑠𝑘) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡ℇ(𝑐, 𝑠𝑘) , 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ℇ(𝑚,𝑝𝑘)  and 
𝑒𝑘 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ℇ(𝑝𝑘1, 𝑠𝑘)  it is obvious that ℇ  evaluates 
homomorphically its decryption algorithm. 

Circular security is a property that an asymmetric 
(symmetric) encryption scheme has to encrypt one's private 
key securely (secretly) by its corresponding public (secret) 
key. A homomorphic encryption scheme ℇ  has the circular 
security property if for a couple of given keys, (𝑠𝑘,𝑝𝑘) the 
bootstrapping key is evaluated as follows 
𝑒𝑘 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡ℇ(𝑠𝑘,𝑝𝑘): it is obvious that the private key is 
securely encrypted by its public key. 

2) Definition of bootstrapping: Bootstrapping is a 
technique for reducing noise in the ciphertext 𝑐  and getting 
noise 𝑏′ in a refreshed ciphertext 𝑐′ such as 𝑏′ < 𝑏  where 
𝑏′ ⊃  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘,𝑚) ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘,𝑓𝑐 , 𝑒𝑘)  and 𝑏  is the 
original noise in the ciphertext 𝑐  by the homomorphic 
evaluation its own decryption circuit 
𝑓𝑐(𝑠𝑘) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘, 𝑐)  on a decryption key called 
bootstrapping key𝑒𝑘 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘, 𝑠𝑘). 

3) Bootstrapping algorithm: Given two pairs of keys 
(𝑝𝑘1, 𝑠𝑘1) and (𝑝𝑘2, 𝑠𝑘2)  generated by a homomorphic 
encryption scheme 𝜀. 

Let be two ciphertexts 𝑐1  and 𝑐2  evaluate as follows: 
𝑐1 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘1,𝑚1)  and 𝑐2 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘1,𝑚2)  where 
𝑚1 𝑎𝑛𝑑 𝑚2 are plaintexts. 

The bootstrapping key 𝑒𝑘  is calculated as follows  𝑒𝑘 =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘2, 𝑠𝑘1). And the decryption function 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀 is 
redefined in the following way 
𝑓𝑐1,𝑐2(𝑠𝑘) = 𝑁𝑂𝑁𝐸𝑇�𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘, 𝑐1),𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘, 𝑐2)�  
where is the private key 𝑠𝑘.  
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A homomorphic evaluation of 𝑓𝑐1,𝑐2 on 𝑐1 𝑎𝑛𝑑 𝑐2 is carried 
out as follows: 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀�𝑝𝑘2,𝑓𝑐1,𝑐2 , 𝑒𝑘� =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀 �𝑝𝑘2,𝑁𝑂𝑁𝐸𝑇�𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘1, 𝑐1),𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀(𝑠𝑘1, 𝑐2)�� =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀�𝑝𝑘2,𝑁𝑂𝑁𝐸𝑇(𝑚1,𝑚2)� =
𝑁𝑂𝑁𝐸𝑇�𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘2,𝑚1),𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑝𝑘2,𝑚2)� =
𝑁𝑂𝑁𝐸𝑇(𝑐1′ , 𝑐2′ ) where 𝑐1′  𝑎𝑛𝑑 𝑐2 

′ are refreshed ciphertexts of 
𝑐1 𝑎𝑛𝑑 𝑐2whose noise 𝑏′ <≪ 𝑏. 

4) Squashing: Squashing is a procedure that consists of 
expressing the decryption algorithm 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝜀  into a 
polynomial or function 𝑝𝑐(𝑠𝑘) whose variables are the 
ciphertext 𝑐  and the secret key 𝑠𝑘 . 𝑝𝑐(𝑠𝑘) is equivalent to a 
shallow circuit.  

In [3], the decryption algorithm is expressed by the 
function 𝑐𝑑  𝑚𝑜𝑑 𝑁 . The complexity of the operation of 
exponentiation does not make it possible to rewrite this 
function into an equivalent function of low degree. 

In the [7], the decryption algorithm is expressed by the 
expression 𝑐 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 2 (1) which is not a low complexity. 
To do this, it is transformed into a circuit of expression 
[𝑐]2 ⊕ ��𝑐. �1 𝑝� ���

2
 (2). 1 𝑝�  is replaced in the evaluation (2) 

by the expression ∑ 𝑠𝑖𝑧𝑖Θ
𝑖=1  which represents the sum of the 

subsets where 𝑠𝑖 =  𝑢𝑖 2𝜅�  . Evaluation (1) becomes �𝑐 −
 ∑ 𝑠𝑖𝑧𝑖Θ

𝑖=1 �
2
 (3). (3) is the equivalent function of (1). (3) is an 

expression that has a low complexity. 

5) Concept of Bootstrapping from 2015 [8 9, 10, 11]: 
Bootstrapping of scheme based on the problem of assumptions 
of LWE and its variants removes squashing. The decryption 
algorithm has a complexity that allows it to be evaluated 
homomorphically in the reencryption. This reencryption is 
carried out by a homomorphic accumulator which makes it 
possible to refresh the encrypted message into an equivalent 
encrypted message containing a small noise. 

A homomorphic accumulator is a quadruplet of algorithms 
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀 , Init, Incr and msbExtract. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀  is an 
encryption scheme that uses a key and is different from the 
first. It is called an internal scheme. 

Init is the algorithm that initializes the contents of the 
accumulator. More briefly, this operation is written as follows: 
𝐴𝐶𝐶 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀 , (𝑣) 𝑝𝑜𝑢𝑟 𝐴𝐶𝐶 ← 𝐼𝑛𝑖𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀, (𝑣)). 

Incr is the algorithm that allows you to add a value to the 
contents of the accumulator. This operation is written as 
follows: 𝐴𝐶𝐶 

+
← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀  for 

, (𝑣)𝐼𝑛𝑐𝑟�𝐴𝐶𝐶,  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀, (𝑣)�. 

𝑚𝑠𝑏𝐸𝑥𝑡𝑟𝑎𝑐𝑡  calculates with high probability from the 
contents of the homomorphic accumulator to produce a valid 
number. This operation is summarized by the expression 
𝑐 ← 𝑚𝑠𝑏𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝐴𝐶𝐶)  with 𝑐 ∈
𝐿𝑊𝐸𝑠

𝑡 𝑞� �𝑚𝑠𝑏(𝑣), 𝑒(𝑙)� where 𝑒 is the noise. 

6) Type of bootstrapping: There are two types of 
bootstrapping that bootstrapping by squashing or by 
homomorphic accumulator. 

A bootstrapping is said by squashing if a new security 
assumption is added in the reduction of the complexity of the 
decryption algorithm to ensure optimal security in the 
encryption scheme during the refresh of the noisy message. 

Refreshing the ciphertext 𝑐 with the addition of the 
assumption of the sum of subsets to re-encrypt 𝑐  using the 
encrypted secret key ∑ 𝑠𝑖𝑧𝑖Θ

𝑖=1  of 1
𝑝
 which is used to obtain the 

ciphertext 𝑐∗ =  �𝑐 −  ∑ 𝑠𝑖𝑧𝑖Θ
𝑖=1 �

2
 [7]. 

A bootstrapping is said by homomorphic accumulator if a 
homomorphic accumulator is used to refresh a ciphertext in 
the reencryption operation. 

a) Homomorphic accumulator in [9]: In [9], the 
homomorphic accumulator is based on the encryption scheme 
[8] defined under the assumptions of the Ring LWE. Let be a 
message 𝑚  and the key 𝑧 ∈ ℤ , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀𝑧(𝑚)  encrypts as 
described below: 

Pick Randomly and uniformly the vector 𝑎 ∈ ℛ𝑄
2𝑑𝑔 and 

𝑒 ∈ ℛ𝑄
2𝑑𝑔 into a Gaussian distribution χ of parameter ζ where 

ℛ𝑄
2𝑑𝑔  =  ℤ𝑄

2𝑑𝑔,𝑁 =  2𝑘; 

Calculate 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀,𝑧 (𝑚)  =  [𝑎,𝑎. 𝑧 +  𝑒]  +
 𝑢𝑌𝑚𝐺 𝑑𝑒 ℛ𝑄

2𝑑𝑔×2 where 𝑚 is encoded as the root of the unit 
𝑌𝑚 ∈  ℛ = ℤ𝑁

𝑋𝑁+1
 of where 𝑁 = 2𝑘. 

To upload the accumulator with the ciphertext 𝑣 ∈  ℤ𝑞, the 
function 𝐼𝑛𝑖𝑡(𝐴𝐶𝐶 ⟵  𝑣) uploads the content of accumulator 
with 𝑣 as follows 𝐴𝐶𝐶 : =  𝑢𝑌𝑣𝐺 𝑑𝑒 ℛ𝑄

2𝑑𝑔×2 ; 

To add an ciphertext to the contents of the accumulator, a 
decomposition of 𝑢−1.𝐴𝐶𝐶  in the base 𝐵𝑑𝑔  is performed as 
follows: 𝑢−1.𝐴𝐶𝐶 =  ∑ 𝐵𝑔𝑖−1𝐷𝑖

𝑑𝑔
𝑖=1  where the 𝐷𝑖 ∈

ℛ2𝑑𝑔×2 with the coefficients �1−𝐵𝑔
2

, … … . , 𝐵𝑔−1
2
�  and then 

perform 𝐼𝑛𝑐𝑟(𝐴𝐶𝐶
+
←  𝐶)  where 𝐴𝐶𝐶,𝐶 ∈ ℛ𝑄

2𝑑𝑔×2 to output 
𝐴𝐶𝐶: = �𝐷1 … … .𝐷𝑑𝑔�. 

Finally, use the msbExtract function with two entries that 

are a switch key ℜ , a test vector 𝑡 = −∑ 𝑌�⃑𝑖
𝑞
2� −1

𝑖=0  to find 

𝑐 ∈ 𝐿𝑊𝐸𝑠
4 𝑞� �𝑚, 𝑞

16
�. 

In [10], bootstrapping by accumulator is performed on the 
one-bit encrypted message 𝑚 ∈  ℬ , (𝑎, 𝑏)  ∈  𝑇𝑛 × 𝑇 =
 𝐿𝑊𝐸𝑞𝑠(𝑚, 𝑒)  where ℬ =  {0, 1}  and 𝑒 <  1

4
 for valid 

decryption. Said message is first rounded to �𝑎�, 𝑏��  ∈  ℤ2𝑁𝑛 ×
ℤ2𝑁 where 𝑏� = ⌈2𝑁𝑏⌋ and aı��� = ⌈2Nai⌋. 

Given a test vector 
𝑡𝑒𝑠𝑡𝑣 = (1 + 𝑋 + ⋯… … . . +𝑋𝑁−1).𝑋𝑁 2� .𝑢′ where 𝑢′ = 𝑚

4
∈

𝑇 , the result of the expression 𝑋𝑏� . (0, 𝑡𝑒𝑠𝑡𝑣) is loaded into 
ACC: 𝐴𝐶𝐶 ← (0,𝑋−𝑏, 𝑡𝑒𝑠𝑡𝑣) . The evaluation of the 
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expression [ℎ + (𝑋−𝑎�𝑖 − 1)]⨀𝐴𝐶𝐶  update the content of 
ACC: 𝐴𝐶𝐶 ← 𝑋𝑏�−𝑎�𝑠. 𝑡𝑒𝑠𝑡𝑣. 

An extraction is performed with the function 
𝑆𝑎𝑚𝑝𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡  that receives as input the contents of: 
𝐴𝐶𝐶𝑋𝑏�−𝑎�𝑠. 𝑡𝑒𝑠𝑡𝑣. It extracts the terms of said polynomial in a 
sample 𝑚𝑠𝑔�(𝑎′, 𝑏′)�  where 
(𝑎′, 𝑏′) = �𝑐𝑜𝑒𝑓𝑠�𝑎′′(𝑋)�,𝑏′′� ∈ 𝑇𝑛 × 𝑇  where 
𝑐𝑜𝑒𝑓𝑠�𝑎′′(𝑋)� is the coefficient of the vector 𝑎′′ ∈ 𝑇𝑁[𝑋] and 
𝑏0′′ ∈ 𝑇 is the constant term of the polynomial 𝑏′′ ∈ 𝑇𝑁[𝑋]. 

Key switching allows you to find a sample 𝑇𝐿𝑊𝐸(𝑎, 𝑏) ∈
𝑇𝑛 × 𝑇  of the message 𝑚

2
∈ 𝑇  under the secret key 𝑠 . It 

receives as input the result of the expression 𝑚𝑠𝑔(𝑢) = 𝑢′ +
𝑚𝑠𝑔�𝑆𝑎𝑚𝑝𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝐴𝐶𝐶)�. 

7) Processing bootstrapping [9, 10]: There are two types 
of processing bootstrapping which are logic gate 
bootstrapping and logic circuit bootstrapping. 

It is said that a homomorphic encryption scheme supports 
logic gate processing bootstrapping if a refresh is performed 
after each logic gate it is obvious that 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘,𝑓𝑐 , 𝑒𝑘) where 𝑓𝑐  is a logic gate of the type 
AND, OR, NOT, .... 

In [8], the homomorphic NAND gate is defined by 

𝐻𝑜𝑚𝑁𝐴𝑁𝐷 ∶  𝐿𝑊𝐸𝑠
4 𝑞� �𝑚0,𝑞 16� � × 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚1,𝑞 16� � →

𝐿𝑊𝐸𝑠
2 𝑞� �𝑚0⋀�𝑚1�  where 𝑚0⋀�𝑚1 = 1 −𝑚0𝑚1  and 𝑐𝑖 =

𝐿𝑊𝐸𝑠
4 𝑞� �𝑚𝑖 ,

𝑞
16� � with 𝑖 ∈ {0, 1}. The refresh is performed 

on the result as follows: 

𝐿𝑊𝐸𝑠
2 𝑞� �𝑚, 𝑞 4� � ⟶ 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚, 𝑞 16� �. 

It is said that a homomorphic encryption scheme supports 
circuit processing bootstrapping if a refresh is performed after 
each logic circuit it is obvious that 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝜀(𝑝𝑘, 𝑓𝑐 , 𝑒𝑘) 
where 𝑓𝑐 is a circuit that includes more than one logic gate of 
the type AND, OR, NOT. 

In [8], let be a circuit for calculating the retention in an n-
bit adder of two numbers a and b and an incoming retention 
c0= 0, the expression (2). 𝑐𝑖 = (𝑎𝑖 ⊕ 𝑐𝑖−1). (𝑏𝑖 ⊕ 𝑐𝑖−1) ⊕
𝑐𝑖−1 where ⊕ is XOR logic gate. From the Table I which is 
table of truth below of this expression a bootstrapping by 
circuit can be performed from a function majority with three 

variables noted 𝑀𝑎𝑗(𝑚1,𝑚2𝑚3) gives a value equal to 1 if the 
majority of bits is 1 otherwise 0. 

Specifically, given three encrypted messages; Expression 
(1) can evaluate these three ciphertexts and produce a 
resulting ciphertext. Being calculated modulo 4, this makes it 
possible to homomorphically process the majority function 
described above. 𝑐1, 𝑐2 𝑒𝑡 𝑐3. 

This addition modulo 4 of the encrypted messages makes 
it possible to find the encrypted 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝜀(𝑚) , 𝑚 ∈
{2,3} with if majority is equal to 1 or if 𝑚 ∈ {0,1} the majority 
is equal to 0. An affine transform of 9𝑞

8
 is performed to find the 

majority function in ℤ4. The circuit retained out of three is 
illustrated with the majority function noted 𝑚𝑎𝑗 as follows: 

𝑀𝑎𝑗 �𝐿𝑊𝐸𝑠
4 𝑞� �𝑚0, 𝑞 16� �, 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚1, 𝑞 16� �, 𝐿𝑊𝐸𝑠
4 𝑞� �𝑚2, 𝑞 16� �� →

𝐿𝑊𝐸𝑠
2 𝑞� �𝑚, 𝑞 4� �. 

The refresh is carried out on the result of the circuit as 

follows: 𝐿𝑊𝐸𝑠
2 𝑞� �𝑚, 𝑞 4� � ⟶ 𝐿𝑊𝐸𝑠

4 𝑞� �𝑚, 𝑞 16� �. 

8) Bootstrapping: Analysis and comparison of 
algorithms: Table II shows that TFHE bootstrapping performs 
better than bootstrapping performed and executed in the other 
two schemes. This fact is due to the removal of the 
decomposition step in any basis of the vector 𝑎 of assumptions 
LWE [10, 11]. 

TABLE I. TRUTH TABLE OF THE SELECTED FUNCTION OF THE THREE 
BITS 

𝒂𝒊 𝒃𝒊 𝒄𝒊−𝟏 𝒂𝒊 ⊕
𝒄𝒊−𝟏(1) 

𝒃𝒊 ⊕
𝒄𝒊−𝟏(2) 

𝟏⊕
𝟐(3) 

𝟑
⊕ 𝒄𝒊−𝟏 𝑴𝒂𝒋 

1 1 1 0 0 0 1 3 

1 1 0 1 1 1 1 2 

1 0 1 0 1 0 1 2 

1 0 0 1 0 0 0 1 

0 1 1 1 0 0 1 2 

0 1 0 0 1 0 0 1 

0 0 1 1 1 1 0 1 

0 0 0 0 0 0 0 0 

TABLE II. ANALYSIS AND COMPARISON OF ALGORITHMS 

Encryption 
scheme 

Type of 
homomorphy 

hard 
problem  

Type of 
bootstrapping 

Homomorphic 
operations Squashing 

Security 
parameter 
size (bits) 

Complexity 
of the 
decryption 
algorithm 

Bootstrapping 
key size  

Bootstrapping 
execution time(s) 

DGHV fully  AGCD By squashing + 𝑒𝑡 × Yes 72 great NA 660 

FHEW fully LWE 
RLWE 

By 
accumulator NAND No 88 low 2.4 GB – 1 GB 0.63 

TFHE 
fully  

TLWE By 
accumulator 

NAND, AND, 
... No  110 low 24 MB 0.052 

0.0013  Leveled 
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IV. APPLICATIONS: BINARY MULTIPLICATION 
The operation of multiplying two integers is described in 

Fig. 1, for any calculation basis (binary, decimal, etc.) by the 
following two steps: 

The calculation of partial products; 

The sum of the partial products obtained. 

The product of two numbers of 𝑛 digits can be given by a 
number of 2𝑛 digits. In the binary system, the gate 𝐴𝑁𝐷  is 
used to generate the partial products 𝑎𝑖𝑏𝑖 between each bit of 
the two multiplicandes. A binary addition is performed on 
each column of partial products. 

    𝑎3 𝑎2 𝑎1 𝑎0 

    𝑏3 𝑏2 𝑏1 𝑏0 

    𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0 

   𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1  

  𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2   

 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3    

𝑝7 𝑝6 𝑝5 𝑝4 𝑝3 𝑝2 𝑝1 𝑝0 

Fig. 1. Example of Multiplying Two Numbers at 4 Bits. 

A. The Classic Multiplication Algorithm[30] 
Let 𝑎  and 𝑏  be two numbers of k bits, expressed as a 

basis:𝛽 = 2  

𝑎 = (𝑎𝑛−1𝑎𝑛−2 … … … … . .𝑎0) = ∑ 𝑎𝑖𝑛−1
𝑖=0 𝛽𝑖           (1) 

𝑏 = (𝑏𝑛−1𝑏𝑛−2 … … … … . . 𝑏0) = ∑ 𝑏𝑖𝑛−1
𝑖=0 𝛽𝑖           (2) 

Where the and 𝑎𝑖 are 𝑏𝑖 in the interval [0, 1]. The classical 
algorithm of multiplication of 𝑎 and 𝑏 consists in calculating 
partial products by multiplying the 𝑏𝑖  of the multiplier by 𝑏 
the whole number 𝑎 and then adding these partial products in 
order to obtain the final product 𝑝 which is a number of 2𝑛 
bits.  

Note 𝑝𝑖𝑗  the pair (carry, Sum) obtained from the partial 
product 𝑎𝑖𝑏𝑗. Fig. 1 illustrates the results 𝑝𝑖𝑗 of multiplication 
of 𝑎 and 𝑏 at 4 bits.  

The last rank denotes the total sum of the partial products 
which is also the product 𝑎 𝑏𝑦 𝑏 represented by a number of 
2𝑘 bits. 
Algorithm 1: Classical Multiplication MC 
Input: a, b 
Output: p = ab 
Initialize 𝑝𝑖 ≔ 0 for 𝑖 = 0, 1, … … . , 2𝑛 − 1 
for 𝑖 = 0 𝑡𝑜 𝑛 − 1 

𝑟
 for 𝑗 ≔ 0 𝑡𝑜 𝑛 − 1 

(𝑟, 𝑠) = 𝑝𝑖+𝑗 + 𝑏𝑖𝑎𝑗 + 𝑟 
𝑝𝑖+𝑗 = 𝑠 

End For 
𝑝𝑖+𝑛 ≔ 𝑟 

End for  
Return (𝑝2𝑛−1𝑝2𝑛−2 … … … … … 𝑝0) 

This algorithm requires 𝑂(𝑛2)  bit-level operations to 
multiply two 𝑛 bit encrypted numbers. 

B. Horner's Algorithm 
It was originally introduced to effectively evaluate the 

value of a polynomial 𝑝(𝑥) = ∑ 𝑎𝑖𝑥𝑖𝑛
𝑖=0  for a given value 𝛼. It 

is based on the following rewrite: 

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯… + 𝑎𝑛𝑥𝑛            (3) 

=  𝑎0 + 𝑥 �𝑎1 + 𝑥�𝑎2 + ⋯… … … . . +𝑥�𝑎𝑛−1 + 𝑥(𝑎𝑛)�… … . ��              (4) 

The expressions below evaluate a polynomial 𝑝(𝑥)  at a 
given point 𝛼 by performing 𝑛 multiplications and 𝑛 additions 
to calculate 𝑝(𝛼). 

𝑎𝑏 = 𝑎.∑ 𝑏𝑖2𝑖𝑛−1
𝑖=0 = 𝑎𝑏02 �𝑎𝑏1 + 2�𝑎𝑏2 + ⋯ . . +2�𝑎𝑏𝑛−2 +

2(𝑎𝑏𝑛−1)�… … … … ��             (5) 

The equation below can be written in the following 
recursive form: 

𝑝0 = 0 

𝑝𝑖 = 2𝑝𝑖−1 + 𝑏𝑖−1𝑎             (6) 

From these equations, Horner's algorithm (2) for 
multiplying binary integers is written as follows: 
Input: 𝑎0,𝑎1, … … … . ,𝑎𝑛−1 and 𝑏0, 𝑏1, … … … … … … , 𝑏𝑛−1 
Output : 𝑝 = 𝑎𝑏 
 𝑝0 ≔ 0 
For 𝑖 =  𝑛 –  1 𝑡𝑜 0 
Do 

𝑝𝑖 ≔ 2𝑝𝑖−1 + 𝑏𝑖−1𝑎 
End do 
End for  
Return 𝑝 

This algorithm has the same complexity as the classical 
multiplication algorithm is 𝑂(𝑛2). 

C. Karatsuba's Algorithm 
The Karatsuba algorithm is a recursive algorithm 

introduced by the Russian mathematician Karatsuba in 1962. 
This algorithm requires 𝑂�𝑛log2 3� to multiply two numbers of 
𝑛 bits. Its complexity is reduced by method of the divide-and-
conqueror which uses fewer multiplications than the classical 
algorithm.  

Let 𝑎  and 𝑏  be two integers of n bits and 𝑙 = �𝑛 2� � . 
Karatsuba initially breaks down 𝑎 𝑎𝑛𝑑 𝑏 into two equal parts: 

𝑎 = 2𝑙𝑎1 + 𝑎0 ,𝑏 = 2𝑙𝑏1 + 𝑏0             (7) 

Such as 𝑎1 is the 𝑙  high-weight bits of 𝑎  and 𝑎0  is the 𝑙 
low-weight bits of 𝑎. Note that the 2𝑙value thus constitutes the 
basis of the representation 𝛽.  

1) Naïve recursion method: The naïve recursion method 
reduces the multiplication of 𝑎  and 𝑏  multiplication of their 
components 𝑎1,𝑎0,𝑏1 𝑒𝑡 𝑏0 including the size of the initial 
integers as shown in the following equation: 

𝑝 = 𝑎. 𝑏 =  (2𝑙𝑎1 + 𝑎0)(2𝑙𝑏1 + 𝑏0) 
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= 22𝑙(𝑎1𝑏1) + 2𝑙(𝑎1𝑏0 + 𝑎0𝑏1) + 𝑎0𝑏0 

= 22𝑙𝑝2 + 2𝑙𝑝1 + 𝑝0              (8) 

Said formulation reveals that the multiplication of two 
numbers of 𝑘  bits require 4 multiplications of 𝑙 = 𝑘

2
 bits. Its 

complexity is not far from that of a classical algorithm. 

2) Karatsuba algorithm: Its algorithm improves the 
performance of equations in (1). By reducing the number of 
multiplications to three but adding four additional additions. A 
rearrangement of the terms of the product 𝑝 = 𝑎. 𝑏 makes it 
possible to obtain: 

𝑝0 = 𝑎0𝑏0(9) 

𝑝1 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1) − 𝑝0 − 𝑝2         (10) 

𝑝2 = 𝑎1𝑏1            (11) 

Of these equations, a remark is made of the presence of 
three multiplications, two bits 𝑛  and 𝑛 +  1  one bit. The 
karatsuba algorithm requires 𝑂(𝑛1.59) operations to give the 
product of two numbers. 
Algorithm 3: Karatsuba multiplication.𝑀𝐾 

Input: 𝑎, 𝑏,𝑘 
Output : 𝑝 =  𝑎. 𝑏 
If ( is small) then 𝑘 
Return: Call the classic algorithm.𝑀𝐶(𝑎, 𝑏) 
Finsi 

𝑙 ∶=  𝑘/2 
𝑎0 ≔ 𝑎/2𝑙 
𝑎1 ≔ 𝑎 𝑚𝑜𝑑 2𝑙 
𝑏0 ≔ 𝑏/2𝑙 
𝑏1 ≔ 𝑏 𝑚𝑜𝑑 2𝑙 
𝑝0 ≔ 𝑀𝐶(𝑎0, 𝑏0) 
𝑝1 ≔ 𝑀𝐶(𝑎1, 𝑏1) 
𝑡𝑒𝑚𝑝 ≔ 𝑀𝐶(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) 
𝑝1 ∶= 𝑡𝑒𝑚𝑝 −  𝑝0 − 𝑝2 

Return 22𝑙𝑝2 + 2𝑙𝑝1 + 𝑝0 

The version of the algorithm that has been implemented in 
this paper is iterative. It performs operations on 8-bit 
encrypted integers. 

D. The Shifter 
A shifter is formed of n + 1 inputs d1, d2, 

..........................., dn, c and n outputs s1, s2, ..............., sn and 
operates an offset of 1 bit on the inputs if c = 1, it is an offset 
to the right and if c = 0 then it is an offset to the left. 

Algorithm 4: shifting to left or right. 
Input: a: n-bit encrypted integer, right or left Boolean: offset direction 
Positions: Number of offset positions 
b: encrypted integer shifted by offset over n bits of positions. 
cx1, cx2 two null encrypted integers of n bits  
i: integer counter 
flag: A Boolean integer that determines the offset direction. 
if flag = 0 then  
 right = 1;  
 left = no(right) 
otherwise 
 right = 0;  
 left = no(right)  
finsi 
for i of 1 to positions 
do 
 for k from 0 to n – 1 

 do 
 if k > 0 and k < n – 1 then  
 cx1k = and(ak-1, left);  
 cx2k = and(ak+1, right);  
 bk = or(cx1k , cxk2); 
 otherwise 
 if k = 0 then  
 bk = and(ak+1, right)  
 finsi 
 if k == n then  
 bk = and(ak-1, left); 
 finsi 
 finish 
end do  
return b 

Algorithm 4 has a complexity of 𝑂(𝑝 ×  𝑛) where p is the 
number of offset positions and n is the bit size of the number 
to be shifted. 

V. IMPLEMENTATION AND INTERPRETATION OF RESULTS 

A. Implementation 
The implementations were tested on the Intel® coreTM i7-

5500 CPU @2.4 GHZ processor of a laptop with a cache 
memory of 4019 kilobytes, a clock clock clock of 1100 MHZ 
and a volatile memory of 8 Gigabytes that supports extensions 
of the following instruction sets: MMX, SSE, SSE2, SSE4_1, 
SSE4_2, FMA, AVX and AVX2. 

The DGHV code was implemented in Python with Sage 
and GMP (GNU Multi Precision). These two libraries provide 
machine compiled mathematical libraries that are fast in their 
executions. We have not been optimal to work with these tools 
in the implementation of multiplication. 

The FHEW library that is written in C/C++ language. An 
optimization to quickly perform convolution was achieved by 
an implementation of the Fourier transform FFTW3 to process 
bootstrapping. Functions useful for performing multiplication 
have been added to the FHEW.cpp source file [31]. 

The TFHE library is written in C/C++ language and an 
optimization has been implemented for the fast processing of 
bootstrapping with the data parallelism of fused-multiply add 
and as an Advanced Vector eXtensions assembler through a 
SQLIOS fast Fourier transform parameterized in either AVX 
or FMA. Useful functions have been added to the cloud file.c 
and alice.c [32]. 

Synthesis and comparison: 

In Table III, the columns represent the circuit type used in 
the implementation of multiplication operations and the type 
of logic gates. As for the rows, they represent the 
implementation of different types of multiplication. The 
intersection between the row and the column gives the number 
of circuits or gates implemented to achieve each type of 
multiplication. 

TABLE III. CIRCUIT USED IN EACH TYPE OF MULTIPLICATION 

 Adder Subtractor Shifter And  Multiply  Weighting  

Horner 1 0 1 1 0 N 

Classic  2 0 0 1 0 N2 

Karatsuba 4 4 4 1 3 1 
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The implementation of Karatsuba is less expensive in 
circuits and logic gates than the other two implementations are 
about three offsets respectively of 8 bits on 8 bits and 16 bits 
on 16 bits, two subtractors on 8 bits which represents the 
modulo 28 , four additions respectively two on 8 bits and two 
on 16 bits and three multiplications on 8 bits. And on the other 
side, the classic implementation takes 512 complete additions 
on one bit and 256 multiplications with the door and on one 
bit. And in the same proportion as Horner’s is 16 offsets of 1 
bit by 16 bits, 256 multiplications on 1 bit with the door and 
16 additions on 16 bits. 

B. Interpretation of Results 
In Table IV, the columns represent the implementation 

library and the rows represent the type of multiplication 
implemented. The intersection is the second execution time of 
a type of multiplication of two 16-bit numbers with one of the 
column libraries. 

TABLE IV. PERFORMANCE TABLE OF MULTIPLICATION BY DGHV, FHEW 
OR TFHE 

 DGHV  FHEW TFHE 

Horner  NA 671 41 

Classic NA 649 39 

Karatsuba NA 483 29 

The library implemented for the DGHV did not provide 
results in a reasonable time to be taken into account in this 
paper. As for the FHEW and TFHE libraries, the theoretical 
results corroborated the theoretical hypotheses in memory and 
time complexity. It appears that the choice made in the design 
and implementation of the TFHE makes its bootstrapping 
more efficient. 

VI. DISCUSSION 
TFHE bootstrapping improves 15 times that of FHEW for 

this homomorphic multiplication on two 16-bit encrypted 
integers. This multiplication deteriorates the performance of 
the TFHE compared to the FHEW by halving the starting 
assumptions for a logic gate on ciphertexts bits. But in 
practice, this improvement is negligible if we consider that a 
binary multiplication of two 16-bit on plaintext numbers on 
the same architecture is carried out in less than 1 nanosecond. 
The ratio of improvement of the TFHE by adding the 
decryption time of the result is close to zero. This observation 
is also valid for the FHEW. 

VII. CONCLUSION 
Bootstrapping is the basis of unlimited homomorphic 

processing on encrypted data. This study compared 
bootstrapping through three patterns to identify its evolution 
from 2009 to 2016. It emerges from this comparison that the 
best design and implementation is that of the TFHE which is 
based respectively on the problem of the LWE on the real 
torus modulo 1, the bootstrapping by accumulator, on the fast 
Fourier transform coupled with the parallelism of FMA and 
AVX data. One avenue to explore is to study the performance 
of the implemented FHEW with a rapid transform based on 
the stockham algorithm, optimized throttle calculation and 
data parallelism. 
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