
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 12, 2021 

Neural Network Model for Artifacts Marking in EEG 
Signals 

Olga Komisaruk, Evgeny Nikulchev 
MIREA — Russian Technological University 

Moscow 119454, Russia 
 
 

Abstract—One of the main methods for research of the 
holistic activity system of human brain is the method of 
electroencephalography (EEG). For example, eye movements, 
blink, hearth activity, muscle activity that affects EEG signal 
interfere with cerebral activity. The paper describes the 
development of an intelligent neural network model aimed at 
detecting the artifacts in EEG signals. The series of experiments 
were conducted to investigate the performance of different 
neural networks architectures for the task of artifact detection. 
As a result, the performance rates for different ML methods 
were obtained. The neural network model based on U-net 
architecture with recurrent networks elements was developed. 
The system detects the artifacts in EEG signals using the model 
with 128 channels and 70% accuracy. The system can be used as 
an auxiliary instrument for EEG signal analysis. 
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I. INTRODUCTION 
Electroencephalography provides quantitative and 

qualitative analysis of human brain functionality and its 
reactions to stimulants. Electroencephalogram (EEG) is 
important for brain activity and behavior recognition, but there 
are always artifacts in electrical activity records that have 
influence on EEG signal analysis. 

Measuring instruments, including defective electrodes, 
disturbances and high electrode resistance can be the reason of 
artifact occurrence. These artifacts can be recognized by more 
accurate recording system, but physiological artifacts are more 
complex. The eye movements, blink, hearth activity, muscle 
activity that affects EEG signal interfere with neural activity 
and can be used as normal phenomenon [1]. 

Artifact is a signal, caused by an extracerebral source, 
observed during EEG recording. They identify physical and 
physiological causes of artifacts [2]. Artifacts obtained during 
an electroencephalographic investigation represent a recording 
defect [3]. Modern electroencephalographic equipment records 
extremely small values of changes in bioelectric potentials, and 
therefore the true EEG recording can be distorted due to the 
influence of a variety of physical (technical) or physiological 
artifacts [4]. In some cases, such artifacts can be removed using 
analog-digital converters and various filters, but if the artifact 
effect coincides in characteristics of wave frequency with a real 
EEG recording, then these methods become ineffective. 

The most common physical artifacts are mains frequency, 
phone artifact, wire breakage, poor electrode contact, high 
resistance artifact. 

The following physiological artifacts are often recorded: 
ECG artifact, vascular artifact, galvanic skin artifact, 
oculomotor artifact, electrooculogram, myographic artifact - 
electromyogam [2]. The appearance of such artifacts is due to 
various biological processes occurring in the patient's body. 

An ECG artifact most often occurs in the examined patients 
suffering from increase in arterial pressure, mainly in 
monopolar and transverse biopolar leads [5]. Usually, its 
occurrence is associated with an increase in the activity of the 
sympathetic nervous system, which facilitates the conduction 
of an ECG signal to peripheral tissues. Galvanic skin artifact 
occurs due to the activation of the patient's parasympathetic 
nervous system and increased sweating. As a result, there is a 
general cyclical change in the resistance of the skin and the 
skin-electrode system [1]. An oculomotor artifact, an 
electrooculogram (EOG), appears as slow-wave oscillations in 
the frontopolar leads with a frequency of 0.3–2 Hz. The 
appearance of EOG is associated with a change in the position 
of the eyeball (retina). Myographic artifact occurs when the 
frontal, chewing and occipital muscles are strained. The 
appearance of such an artifact can be both a spontaneous stress 
of the patient and involuntary reaction to an overly tightly put 
on fixing electrodes system [6]. 

The use of machine learning methods and neural networks 
determines promising research in the field of automatic artifact 
detection. In neurocomputer technologies, there is a general 
training scheme [7], which is divided into a training set, in 
which optimization of parameters is carried out, and a test set, 
according to which the quality of the resulting model is 
assessed. At the stage of training, it is necessary to understand 
the signs by which the classifier will be trained [8]. 

The paper contains six sections. The second section 
presents the overview of the approaches used. The third section 
describes the source data for current study. The fourth section 
presents methods used in the study including the description of 
software and the types of the neural network architectures. In 
the fifth section, conclusions of the study are given. This 
section presents the result of the searching for effective 
architecture for a qualitative solution to the problem of 
searching for artifacts. The sixth section contains general 
conclusion. 
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II. RELATED WORK 
EEG is a tool for psychophysiologic researches. However, 

the record filtering is often accomplished by high qualified 
professionals and takes a lot of resources and special filtering 
techniques [9]. Under these conditions development of 
effective EEG data filtering methods is an urgent task. 

Fast development of cheap high parallel computation 
infrastructure, powerful machine learning algorithms and big 
data caused a huge progress in deep learning. The modern 
approaches of automatic interpretation of EEG use modern 
techniques such as neural networks and support vector 
machine. 

Machine learning and neural network techniques in 
particular [2] determine perspective in researches in the 
automatic artifact recognition domain. 

There are five basic algorithms [10] that are widely used in 
classifiers: 

• Linear classifier [11]. It is more popular in online 
applications including real-time applications. One of the 
most effective method is support vector machine that 
usually better than other classifiers. 

• Neural networks [12]. The most frequent methods for 
time series analysis are such architectures as 
convolutional neural network and recurrent neural 
network. 

• Non-linear classifier [13]. Common methods are hidden 
Markov models and Bayesian classifiers. 

• K-means [14]. These classifiers are based on neighbor 
distance values. 

• Classifier combinations [15]. This method combines 
different classifiers and demonstrates good efficiency 
for autonomous applications. 

Due to real-time classification, described classifier methods 
are more optimal for EEG signal analysis. 

The task of the machine in unsupervised learning is to find 
relationship between individual data, to identify patterns, to 
select patterns, to organize data or describe their structure, and 
to classify data. 

One of the most known drawbacks of machine learning 
methods is that the source data for training and data for test 
belong to the same feature space and follow the same 
probability distribution. 

The aim of the research is development of intelligent tools 
based on neural network technologies that can recognize 
artifacts in EEG obtained via 64-channel 
electroencephalograph. 

III. DATA 
EEG data is recorded using electroencephalograph 

Brain Products, containing 128 channels, 64 sensors placed on 
the international system “10-10%”. 

The aim of the experiment was analyzing brain activity 
zones in resting state and nonverbal intelligence dependencies. 

The study was conducted in a sound-attenuated and 
electrically shielded dimly lit room. Impedance was kept under 
25 kOhm with high conductive chloride gel. The time of EEG 
settling was approximately 15 minutes. 

The BrainProducts PyCorder system was used as a data 
collection system. This system allows continuous recording 
without any filtering and continuous sampling at 500 Hz. The 
reference electrode was located at Cz. The data was re-
referenced to the common reference after the recording and 
downsampled to 256 Hz. The data were filtered from 0.1 Hz to 
30 Hz and then re-referenced to an averaged reference and 
manually cleaned from artifacts, with noisy channels excluded. 

To remove blink and vertical eye-movement artifacts, 
independent component analysis (ICA) was performed on the 
following electrodes: VEOG — Fp1, HEOG — FT9 and FT10. 
After ICA, the excluded channels were topographically 
interpolated, and semiautomatic artifact rejection was 
conducted. 

Dataset contains two types of files: 

1) Edf files are source data of EEG recording process (see 
example in Fig. 1) 

2) “Markers” files contain description of artifacts (see 
example in Fig. 2): 

• type - type of interval; 

• description - artifact description (for example, “Blink”); 

• position - time of artifact appearance (unit of time 
represented in “SamplingInterval” field, that equals to 
3.90625 ms); 

• length - artifact duration; 

• channel - channel name, representing the location of 
artifact (Fp1, Fp2 – “Blink”, All - artifact that appeared 
in all channels). 

There are only two types of artifacts. Thereby, neural 
network will classify three classes: “Blink”, “Global artifact” 
and “Resting state” (when there are no artifacts). 

 
Fig. 1. Example of Edf File Format Content. 
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Fig. 2. Example of «Markers» File Format Content. 

IV. METHODS 
To select a neural network model, it is necessary to conduct 

experimental studies of various architectures. An intelligent 
EEG signal analysis circuit has been developed (Fig. 3). 
Intelligent analysis of EEG signals consists of the process of 
recording and forming a database, processing signals and 
training a neural network model. 

Recording process consists of taking readings using an 
electroencephalograph, the data of the electrodes located on the 
surface of the head are sent to the BrainProductsPyCorder data 
acquisition system. Next, expert analysis and processing of the 
generated database is carried out, in which different types of 
artifacts are marked, and then a new database is formed 
containing information about artifacts in each .edf file. 

Based on the Database analysis, the size of input and output 
of neural network was determined. Pre-processing block reads 
Markers Database. Then, Data analyze block analyzes it. After 
that, train and test samples formed. 

It is necessary to determine input and output. To find the 
solution, data was analyzed where distance between artifacts 
and maximum duration of every type of artifact were found. 
Also, quantity for every type of artifact was analyzed for data 
balance. For that, Data_analyzer.py library was created. The 
library consists of the following methods: 

• max_artifact_length - returns maximum length of the 
artifacts; 

• max_type_length - returns maximum length of the 
artifact of the specific type; 

• channel_stats - based on markers data, it returns 
quantity of artifacts for every channel;  

• normal-state-lengths - returns distances between 
artifacts (lengths of «resting state»); 

• getMaxMin_by_edf - returns maximum and minimum 
values of frequency in edf file; 

• getMaxMin_by_train - returns maximum and minimum 
values of frequency in input samples. 

Using the described methods, the most optimal time 
window was selected for determining artifacts, based on the 
maximum length of the artifact Blinking (1.8 seconds) [16]. 

 
Fig. 3. EEG Signal Intelligent Analysis Scheme. 

 
Fig. 4. Signal Graph with Artifact Marking. 

It is necessary to determine number of channels that will be 
included in classification. Based on fact that most «Blinks» 
appear in Fp1 sensor, neural network can be trained only on 
one sensor. There are two artifacts: Blink and global artifact. 
Output of neural network consists of three classes: «Blink», 
«Global artifact» and «Resting state». 

Samples were formed based on Markers database. Blink 
artifacts are put randomly in samples (Fig. 4). 

Raw data in dataset still has noise. To filter the signal Fast 
Fourier Transform was implemented. The result is showed in 
Fig. 5. 

Based on the developed mining analysis scheme presented 
in Fig. 4, it is necessary to develop an environment for 
conducting experiments. The interaction of software is shown 
in Fig. 6.  Number of neural network models were trained. 

 
Fig. 5. Result of FFT: a) EEG Signal; b) EEG Signal with FFT. 
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Fig. 6. Train Sample. 

 
Fig. 7. Software Structure for the Analysis and Formation of Training 

Samples for a Neural Network Model. 

In the PyCharm development environment, the main source 
code was developed to analyze and process the input values of 
the neural network model. The software tools interaction is 
shown in Fig. 7. The Parse_data.py library is used to convert 
Markers files into an associative array containing all the 
artifact information for each record in .edf files. The library 
contains the artifacts_supression method, which is used to 
translate the Position and Length format in seconds. In the 
read_markers_from_dir method, an associative array is formed 
from the specified directory using the pandas data analysis 
library containing the file name and its information about 
artifacts: the position of the artifacts, their description and 
length. This approach is used to obtain data in the function of 
generating training samples for a neural network. 

The NeuralNetwork.py library allows creating samples for 
training a neural network based on arrays that are generated 
using the Parse_data.py library. The main method is 
prepare_data, which is based on information about artifacts, a 
database of EEG signals, used channels, and the size of the 
input window (in seconds) and a given ratio of samples with a 
normal state to samples with artifacts forms training samples 
for a neural network. Since the window size is larger than the 
maximum length of the Blinking artifact, this class is added to 
the selection completely. This takes into account the random 
shift of the artifact relative to the start of the sample. The 
Global artifact class is divided into several samples, from the 
beginning of the artifact to the sample that captures the end of 

the artifact and part of the signal without artifacts. In the 
process of recording samples with artifacts, the distance 
between them is calculated, and samples with the “normal 
state” class are taken, located between the artifacts. The 
Data_analyzer.py library contains the methods for analyzing 
the database described previously. An executable file 
“main.ipynb” was created in the Colaboratory environment, 
which contains the interactions of the libraries shown in Fig. 7, 
and also contains the architecture and process of training a 
neural network. The implementation scheme of an intelligent 
system for determining artifacts in an EEG signal is described 
in Fig. 8. 

 
Fig. 8. Neural Network Training Scheme. 

The neural network training scheme is an interaction of the 
libraries described earlier in the executing part of the 
Main.ipynb program. The executable file contains methods 
from the libraries for processing the database, conclusions of 
analytical data, sampling, the architecture of the neural network 
and its learning process located in the GoogleDrive cloud 
storage. The training process was conducted on the 
Colaboratory platform. 

V. EXPERIMENTAL SELECTION OF NEURAL NETWORK 
ARCHITECTURE 

After analyzing the results of studies related to signal 
processing using neural networks, the architectures were 
selected based on convolutional and recurrent neural networks. 
Thus, 4 architectures were obtained: 

• Batch_normalization + CNN + Dense using 
spectrograms; 

• RNN (LSTM) + CNN + RNN (LSTM) + Dense; 

• Batch_normalization + CNN + Dense; 

• LSTM + NN based on "U-net" 
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1) Batch_normalization + CNN + Dense using 
spectrograms: The signal was converted to a spectrogram, a 
corresponding function was created using the fast Fourier 
transform (performed using the spectrogram method of the 
Scipy library) (Fig. 9). 

A neural network model was applied to this type of data 
(Fig. 10), which is based on the convolutional neural network 
(CNN) [17]. The architecture was selected experimentally. It is 
the input data that comes to the normalization layer 
(BatchNormalization) with the aim of uniform learning. 

 
Fig. 9. Spectrogram of the EEG Sensor Signal. 

 
Fig. 10. Architecture of CNN. 

BatchNormalization is a method for deep learning 
accelerating that solves a problem of learning efficiency. 
Normalization is implemented before every neural network 
layer [18]. Further, the convolutional neural network [19] 
receives normalized data at the input, and convolutional layers 
form 3x3 feature maps from it. During the experiment, it was 
revealed that a gradual twofold increase in the convolution core 
is two times more optimal for this architecture. With pooling 
(MaxPooling), the sample of the input space is being reduced 

by half (2x2), after that the “Dropout” layer is used to exclude 
a certain percentage of random neurons, since the neural 
network was overtrained during training. Then data is being 
converted to a one-dimensional vector using the Flatten layer. 
Classification is performed by the fully connected layer. 

Based on the results obtained from experimental studies of 
the first model, several neural network models have been 
developed. The difference between the second and the third 
models (Fig. 11, 12) are that the data of the neural network 
model were presented in the form of a sequence, which were 
also converted using the fast Fourier transform. 

2) RNN (LSTM) + CNN + RNN (LSTM) + Dense: A 
neural network model is shown on Fig. 11, the basis of which 
is a convolutional neural network (CNN) [20], that uses time 
convolutional layers (Conv1D). This layer creates a 
convolution core, which is convoluted with the input layer in 
one time dimension [21]. The architecture is as follows: in the 
second experiment, the input data comes to the recurrence 
layer (LSTM) with the maximum number of neurons, 
depending on the GPU capability, then the data goes to a time 
convolution layer in which a window of size 3 was specified 
empirically, after that the data is normalized by normalization 
layer (BatchNormalization). Based on the first experiment, the 
“Dropout” layer was applied, in which 20% of neurons are 
randomly turned off to exclude overtraining of the neural 
network. Then the data is transferred to the recurrent neural 
layer and converted into a one-dimensional vector using the 
“Flatten” layer. Classification is performed by the fully 
connected layer (Fig. 11). 

 
Fig. 11. Neural Network Architecture of the RNN (LSTM) + CNN + RNN 

(LSTM) + Dense Type using the Fourier Transform. 
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3) Batch_normalization + CNN + Dense: The difference 
between the architectures of the third model and the second 
model is that before the data is going to be transferred to the 
convolutional layer, it is being normalized. A normalization 
layer (BatchNormalization) was applied, before each time 
convolutional layer, then similarly, the data was converted 
into a one-dimensional vector, using the Flatten layer for fully 
connected layer and classification (Fig. 12). 

4) LSTM + NN based on "U-net": fourth model was 
developed based on “Unet” (Fig. 13), using a time 
convolution, due to fact that database is small. The 
architecture of model 4 is shown in Fig. 14. 

 
Fig. 12. Neural Network Architecture of Type Batch_Normalization + CNN 

+ Dense using Fourier Transform. 

 
Fig. 13. The Architecture of the Neural Network “U-net". 

For signal preprocessing, the fast Fourier transform method 
was used. Also, to improve the quality of training, a function 
was created (blink_augmentation), where several positions are 
generated for each "Blink” artifact, where this artifact will be 

recorded. The result is number of "Blink" samples with the 
same artifact but the different location in samples. 

During the study, the U-net architecture was used (Fig. 13), 
which consists of an encoder (narrowing part), a bottleneck and 
a decoder (expanding part). This architecture is used for the 
analysis of R-grams, MRI and other medical images. 

The first part of U-net is the classical architecture of a 
classification convolutional neural network [22]. It consists of 
repeated applications of two convolutional layers, with a 3–3 
kernel, followed by the ReLU activation function and the 
MaxPooling operation, which reduces the input representation 
by the maximum value in the window (poolsize, in this case 
the value is 2). 

 
Fig. 14. The Architecture of the Neural Network Type LSTM + NN based on 

"U-net" using the Fourier Transform. 

"Bottleneck" is a part of the network located between the 
contracting and expanding parts [23]. The second part consists 
of reverse convolution (deconvolution), which contains two 
convolutional layers with a 3–3 kernel and the Relu activation 
function, then concatenation is performed. At the last level, 
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convolution 1x1 is used to match each vector with class 
attributes. Then the data is converted into a one-dimensional 
vector using the Flatten layer and the classification is 
performed by a fully connected layer [23]. 

In all experiments, the "fit" method was used for training. 
The number of samples, the gradient and the number of epochs 
for the model as well as compile method "Adam optimization 
function" and the error calculation function 
"categorical_crossentropy" were determined for each neural 
network model. It was revealed empirically that 
categorical_crossentropy is the most suitable error calculation 
function to optimize Adam parameters. To assess the quality of 
training, the Accuracy metric was chosen. 

TABLE I.  LEARNING OUTCOMES OF CLASSIFICATION MODELS WITH 
VARIOUS PARAMETERS 

No. Neural network 
architecture Epochs Batch_size 

Accuracy 

train test 

1 
Batch_normalization + 
CNN + Dense with 
spectrogram 

20 128 0.68 0.67 

2 
RNN (LSTM) + CNN 
+ RNN (LSTM) + 
Dense 

20 256 0.81 0.60 

3 Batch_normalization + 
CNN + Dense 50 16 0.94 0.49 

4 LSTM +  NN based on 
U-Net model 10 300 0.70 0.70 

A comparison of the results of an experimental study of 
four models is given in Table I. The training graph of neural 
network models was analyzed. The developed neural network 
based on the U-net architecture with recurrent layers 
demonstrates the best result of artifact recognition. 70% 
accuracy were acquired on test samples.  Fig. 15 shows the 
results of automatic search for artifacts. 

 

 

 
Fig. 15. The Result of Neural Network Activity. Examples of Highlighted 

Neural Network Artifacts: Blink Artifact is Green, Global Artifact Artifact is 
Red. 

VI. CONCLUSION 
A neural network model capable of recognizing artifacts in 

the process of recording EEG has been developed. 
Experimentally LSTM + U-net architecture was formed. To 
solve the problem, the U-net architecture, which is a two-
dimensional convolution, was modified - a one-dimensional 
temporary convolution was used, the input of which received 
data from LSTM layers. Ensuring the required accuracy (70%) 

34 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 12, 2021 

is achieved due to the properties of the LSTM layers (trained to 
determine the signal state) and qualitative symmetric analysis 
(tension / compression) of the modified U-net layer. 

Data analysis was carried out, in which the distance 
between artifacts in the signals, the maximum duration of each 
type of artifact was found. Using analytical functions, an 
optimal time window was allocated for artifact recognition, 
based on the maximum length of the "Blink" artifact. Since the 
data was manually filtered from the artifacts, and the database 
was small (9574 samples with artifacts), there was a problem 
with the quality of training of the neural network. The database 
was expanded using augmentation method, which partially 
influenced the learning process (28,722 samples with 
augmentation). 

An analysis of existing architectures of neural networks, as 
well as an experiment with a training set was conducted. As a 
result, a neural network was developed based on recurrent 
neural network and U-net. The resulting neural network model 
is capable of detecting artifacts in the converted signal with an 
accuracy of 70%. The developed intelligent system can be used 
as an auxiliary tool for the analysis of the EEG signal. 

During the study, the methods using libraries of applied 
software packages were developed for selecting an artificial 
neural network model of defects in digital signals, such as 
blinking artifacts in an EEG signal. Selected tools are able to 
create an environment for research and modeling of various 
signals. 

The study showed the prospects for using the identified 
types of neural network architectures for analyzing EEG 
signals. The architectures selected during the study can be used 
in future studies aimed at modeling and clustering EEG 
signals. 
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