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Abstract—Internet of Things (IoT) is defined as millions of 
interconnections between wireless devices to obtain data globally. 
The multiple data are targeting to observe the data through a 
common platform, and then it becomes essential to investigate 
accuracy for realizing the best IoT platform. To address the 
growing demand for time-sensitive data analysis and real-time 
decision-making, accuracy in IoT data collecting has become 
critical. The Res-HQCNN is a hybrid quantum-classical neural 
network with deep residual learning. The model is qualified in an 
end-to-end analog method in a traditional neural network, 
backpropagation is used. To discover the Res-HQCNN efficiency 
to perform on the classical computer, there has been a lot of 
investigation into quantum data with or without noise. Then 
focus on the application of the artificial neural network to 
analyze the dangers to these IoT networks. For data recording 
purposes, to undertake in-depth analysis on the threat severity, 
kind, and source, a model is trained using recurrent and 
convolutional neural networks. The intrusion detection system 
(IDS) explored in this study has a success rate of 99% based on 
the empirical data supplied to the model. Due to irregularly 
distributed robust execution, larger affectability for the 
introduction of authority dimension, steadiness, and the 
extremely large crucial area, a quantum hash function work has 
been proposed as an amazing method for secure communication 
between the IoT and cloud. 

Keywords—Internet of things (IoT); cloud; Res-HQCNN; 
intrusion detection system (IDS); optimization 

I. INTRODUCTION 
Artificial neural networks (ANN) are one of the most 

successful computational approaches. Neural network-based 
machine learning algorithms are improving and advancing [1]. 
In the machine learning sector, neural networks are currently 
enjoying remarkable success and have a wide range of 
applications, including pattern recognition, video analysis, 
medical diagnosis, and robot control. Quantum neural 
networks (QNN) appear in parallel with the development of 
artificial neural networks (ANNs), with the promise of 
overcoming classical computation limits using quantum 
computing [2]. The paper shows a quantum feed - forward 
neural network made up of genuinely quantum neurons. It has 
a remarkable capacity to study an unknown homogeneous and 
a high level of robustness when dealing with noisy training 
data. Due to a decrease in the number of coherent qubits, this 
process is essential for noisy approximate quantum computers. 
The adherence among a pure quantum system and an arbitrary 
quantum state is selected also as cost function in this study. 
However, as the number of network layers grows larger, the 
convergence rate of a cost function slows, and the value of 

convergence even fails to deliver the highest for clean data is 
shown in Fig. 1(a). In the case of noisy data, Fig. 1(b) shows it 
as the system gets deeper, the strength for noisy data weakens. 
As a result, guess if the cost function's efficiency can be 
enhanced both for clean and noisy data. To show the number 
of convolution layers in the corresponding layer, use a one-
dimensional list of real numbers. 

 

 
Fig. 1. QNN Numerical Results for Clean and Noisy Data. 

To enhance the novel quantum-classical neural network 
with the deep residual learning (Res-HQCNN) to attain a goal, 
inspired by the deep residual efficiency learning. This is a 
novel concept and no work has been attempted as far as know. 
To find the efficiency incorporate a residual scheme into 
QNNs. It is not a simple task [3]. The amount of residual 
block structures, levels of the network count, and whether or 
not to skip the layer all have an impact on the parameter 
updating method. Because the informing parameters of the 
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matrix are derived from the function of derivative formulation, 
the updating parameters matrix for each network is unique. 
Res-HQCNN now outperforms previous QNNs on both fresh 
and loud quantum data while requiring only a conventional 
machine to build. Discuss a different way for incorporating 
quantum neural networks with residual block structure so that 
they can be executed on quantum computers. 

Networks intrusion continues to occur. This is even though 
numerous artificial intelligence techniques have been created 
throughout time to prevent such incidents [4]. Various 
advancements and modifications are made to network 
configuration protocols daily to improve them, but in reality, 
there is a weakening risk of the protocols with or without 
understanding. Malware and other intrusions frequently take 
advantage of minute alterations made to the original core 
development codes that serve as the foundation for running 
and maintaining networks. The changes are vital, but they 
come at a high price. It’s time to rethink your threat 
management strategy [5]. IoT and Cloud Computing benefit in 
the same way and Cloud Computing is constantly encouraged 
to improve the introduction to the level of high resource 
usage, accumulation, necessity, and processing capability. 

However, network intrusions continue to occur. This is 
regardless of the fact that multiple artificial intelligence 
techniques have been developed over time to prevent such 
incidents. Various progressions and modifications are made to 
configuration management protocols on a daily basis in an 
effort to improve them, but in reality, there is a risk of 
decimating the procedures with or without knowledge [6]. 
Malware and other intrusions frequently take benefit of minute 
changes respect to the design foundational development rules 
that serve as the foundation for operating and maintaining 
networks. The changes are needed, but they come at a high 
cost. 

Cloud is a ground-breaking platform that can provide 
additional features as an information distribution delegate. 
When an IoT client has valid requests for specific information 
to be acquired, stored, and accessed, he can simply designate 
the requests to the cloud whenever with more remarkable 
comfort. A couple of incites linked to contraption 
disillusionment are addressed by cloud and IoT applications 
developed in resource-constrained conditions. A QHF is 
proposed to address IoT security concerns. It converts an old-
style message to a Hilbert space, preventing programmers 
from obtaining too much information about the old-style 
message. Safety issues are of extreme importance, and they 
must be addressed without exacerbating the system's or 
devices' dimensions [7]. A few calculations concerning safety 
issues have been published in prior studies. The U-2 hash 
work is the largest class of hash capacity groups among 
known hash capacity groups, assuring good safety. 

The number of residual block structures, the number of 
network layers, and whether or not to skip layers all have an 
impact on the variable propagation algorithm. Because the 
updating parameters structure is derived from the description 
of the derivative feature, the updating parameters structure for 
each network structure is unique. The updating parameters 
matrix becomes more complex as the network structure 

becomes more varied. As a result, this investigation is both 
challenging and intriguing. This hope that our paper will serve 
as a useful resource in this field of study. The following are 
some of the contributions made as a result of this paper: 

• Develop a new residual learning structure that is 
focused on QNNs. 

• Calculate the current training algorithm using the Res-
HQCNN model. Examine the performance from the 
level of information propagation feedforward and 
backward, subset of the training algorithm. 

• concentrates on using Artificial Neural Networks to 
evaluate the risks to such IoT networks. For data 
acquisition reasons, a classifier is constructed using 
recurrent and convolutional neural networks to perform 
effective analysis on threat intensity, type, and source. 

• Res-HQCNN has better performance across both clean 
and noisy quantum information than previous QNNs at 
the cost of implementation. 

The remaining part and the aim of this paper have 
explained the RES-HQCNN optimization technique for IoT; 
Section 2 defines the highlight of the previous effort that can 
be done by the scholars in this domain; Section 3 offering the 
methodology architecture model and its mechanism, Section 4 
represents the result and discussion and Section 5 represents 
the work achieved in conclusion and future work. 

II. RELATED WORK 
The author in [8] evaluates Quantum Computing (QC) has 

grown in popularity as a result of its unique characteristics, 
which, in terms of performance and operation methods, differ 
from typical computers This research proposes hybrid models 
and approaches for large-scale mixed-integer programming 
issues that successfully combine the complementary strengths 
of deterministic algorithms and quality control techniques to 
solve a combinatory difficulty. Large-scale instances of these 
application problems across multiple dimensions, ranging 
from molecular design to logistics optimization, are 
computationally demanding for deterministic optimization 
algorithms on classical computers. To address the computing 
challenges, hybrid QC-based approaches are suggested, with 
comprehensive computational experimental results 
demonstrating their pertinence and productivity. The 
suggested QC-based solution approaches offer high 
computational efficiency in terms of solution quality and 
computation time by leveraging the unique properties of both 
classical and quantum computers. 

The author in [9] introduces a Deep residual network with 
adequate depth but bounded width has recently been proven to 
be capable of universal approximation in the sense of the 
supremum norm. Illustrate to adapt existing deep residual 
network training methods to establish approximation bounds 
for the test error in the supremum norm based on the training 
error using these results. This technique is based on control-
theoretic interpretations of these networks in discrete and 
continuous time, and they show that constraining the set of 
parameters to be learned in a way that is consistent with most 
commonly used training procedures is sufficient. 
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The author in [10] is proposed to use a combination of 
modified deep learning and reinforcement learning in an 
incentive-based demand response (DR) algorithm. A modified 
deep learning model based on recurrent neural network 
(MDL-RNN) was initially suggested to forecast future 
environmental uncertainties by projecting day-ahead 
wholesale energy price, photovoltaic (PV) power output, and 
power load. Then, using reinforcement learning (RL), 
researchers looked at the best incentive rates for each hour that 
would maximize earnings for both ESPs and EUs. When 
compared to other methods, the findings demonstrated that the 
proposed upgraded deep learning model can produce more 
precise forecasting predictions A short-term DR program was 
developed for peak electricity demand periods, and trial 
results show that peak electricity demand can be reduced by 
17%. This helps to improve power system security by 
reducing supply-demand imbalances. 

The author in [11] improve the feature mapping process, 
introduce a hybrid quantum-classical convolutional neural 
network (QCCNN), which is based on convolutional neural 
networks (CNNs) but is optimized for quantum computing. In 
terms of both the number of qubits and the depths of the 
circuits, QCCNN is favorable to existing noisy intermediate-
scale quantum computers, while keeping crucial aspects of 
classical CNN, such as nonlinearity and scalability. Also, offer 
a methodology for computing the gradients of hybrid 
quantum-classical loss functions automatically, which may be 
extended to other hybrid quantum-classical algorithms 
directly. By using a Tetris dataset to demonstrate the 
architecture's capabilities, show that QCCNN can perform 
classification tasks with learning accuracy that exceeds that of 
standard CNN. 

The author in [12] analyze in classical systems, Control 
parameter optimization is frequently achieved using 
supervised machine learning and reinforcement learning; 
however, in quantum systems, parameter optimization is 
primarily accomplished using gradient-based greedy methods. 
To use differential evolution methods to avoid the non-convex 
optimization stagnation problem. To improve quantum control 
fidelity for noisy systems by averaging across the objective 
function. To reduce processing costs, this paper proposes 
methods for early run termination and adaptive search 
subspace selection. The implementation is massively parallel 
and vectorized to further reduce execution time. Quantum 
phase estimation and quantum gate design are two instances 
where these methods outperform greedy algorithms in terms 
of fidelity and scalability. 

III. PROPOSED METHODOLOGY 
In this section, the Res-HQCNN architecture model is 

defined based on QNN. According to the mechanism Res-
HQCNN is defined based on a training algorithm. 

A. Architecture Model of Res-HQCNN 
In Res-HQCNN describe a residual block structure. The 

Res-HQCNN structure with many layers is offered. Thus offer 
Res-HQCNN examples with a unit hidden layer to further 
understand the mechanism [1]. Finally, examine the difference 
between the past QNNs and the Res-HQCNN. Thus, Fig. 2 

shows the residual block diagram. In Res-QCNNN, a new 
residual block diagram is defined as follows by including a 
few assumptions and notations at the start for your 
convenience. 

The procedure for combining the residual block structure 
with the quantum neural network in Res-HQCNN layer k 
defines a quantum perceptron as an arbitrary unitary operator 
with Uk-1 input qubits and one output qubit. For L=1,2,…Uk 
the quantum perceptron Qk

L is a (Uk-1+1) for qubit unit. 
Quantum perceptron’s with K hidden layers make up the Res-
HQCNN. It uses the layer unitary operator Qk in the form of a 
matric product of quantum perceptron’s to work on an input 
state 𝜌𝑘𝑖𝑛  of input qubits and obtain a mixed state k+1 out for 
the output qubits: 𝑄𝑘 = 𝑄𝑢1𝑘 𝑄𝑢1−1𝑘 … .𝑄1𝑘. For 1,2,…Qk, acts 
on the qubits in layers k-1 and 1, because the unitary operators 
are arbitrary and do not always commute, the layer unitary 
order is critical. The residual block structure provides the new 
input state for layer k+1 by adding the input state with the 
output state of layer k for k=1,2, …. During the processing of 
information from 1 into K+1 out and K. 

In Fig. 3, “Res” denotes the Res-HQCNN residual block 
structure. The “Res” can be connected not just layer by layer 
continuously, but also by skipping one or more levels [13]. 
Res-architecture HQXNN propagates data from input to 
output, progressively passing through a network of quantum 
feeder neurons. 

 
Fig. 2. Residual Block Diagram. 

 
Fig. 3. Res-HQCNN Architecture. 
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Fig. 4. Res-HQCNN Architecture with unit Hidden Layer. 

The mechanism example for Res-HQCNN with one 
hidden layer in Fig. 4 helps with the comprehension. 𝑄1 =
𝑄31𝑄21𝑄11, which is a matrix product of quantum perceptron. 
The layer unitary between the input layer and the hidden layer 
is defined as 𝑄2 = 𝑄22𝑄12. The quantum perceptron’s are 
applied layer by layer from top to bottom in the first stage, and 
the output state 𝜌1𝑜𝑢𝑡 of the hidden layer is then computed as; 

𝜌1𝑜𝑢𝑡 = 𝑖𝑠𝑖𝑛(𝑄1(𝜌1𝑖𝑛 ⊗ |000⟩ℎ𝑖𝑑�000|)𝑄1+) 

Then, apply the residual block diagram to 𝜌1𝑖𝑛  and 𝜌1𝑜𝑢𝑡 to 
get a new input state for the output layer: 

𝜌2𝑖𝑛 =  𝜌1𝑜𝑢𝑡 + (𝜌1𝑖𝑛⨂|0⟩⟨0|) 

In the following step, to obtain the final output state of 
Res-HQCNN from Fig. 5: 

𝜌1𝑜𝑢𝑡 = 𝑖𝑠ℎ𝑖𝑑(𝑄2�𝜌2𝑖𝑛 ⊗ |00⟩𝑜𝑢𝑡⟨00|𝑄2+� 

When comparing the previous QNNs to Res-HQCNN, that 
notice the trace value of the input state 𝜌𝑘+1𝑖𝑛 for some k 
changes as a result of the addition operation in the residual 
block structure [14]. Indicate k=2, 
𝜌2𝑖𝑛 =  �𝜌1𝑖𝑛⨂�0⟩𝑢1−𝑢0⟨0�� + 𝜌1𝑜𝑢𝑡 , and 𝜌3𝑖𝑛 =
 �𝜌2𝑖𝑛⨂�0⟩𝑢2−𝑢1⟨0�� +  𝜌2𝑜𝑢𝑡, next trace values of the 𝜌2𝑖𝑛 
and 𝜌3𝑖𝑛 are the 2 and 4, respectively. In theory, 𝜌2𝑖𝑛 and 𝜌3𝑖𝑛 
are not density matrices, hence the training procedure cannot 
be used in a quantum computer. Every coin, however, has two 
sides. The residual block structure increases the cost function's 
performance, especially for deeper networks, as shown in the 
experiment section. It’s also worth noting that the residual 
block structure can be applied to all concealed layers except 
the last output layer. Assumed Uk-1 ≤ Uk for k = 1,2,….k and 
U0 = Uk+1, then the qubits in layer k in general. The final 
output of the network will be 𝜌𝑜𝑢𝑡 =  𝜌𝑘+1𝑖𝑛 + 𝜌𝑘+1𝑜𝑢𝑡 if the 
residual block structure is applied to the 𝜌𝑘+1𝑜𝑢𝑡 because the 
dimension of the 𝜌𝑘+1𝑖𝑛 is the equal to the dimension, that 
should use the partial trace on the 𝜌𝑘+1𝑖𝑛 to maintain the 
matrix addition rule. 

The previously stated, the Res-HQCNN residual block 
structure has trouble similar to individuality mapping. But, by 
doing it will lose some 𝜌𝑘+1𝑖𝑛 information, which is 
incompatible to adopt the residual technique [15]. This also 

highlights the inefficiencies of applying residual block 
structure to the last output layer via an experiment. 

B. Res-HQCNN Training Algorithm 
N number pairs of training statistics, that are possibly 

unknown by the quantum states, are randomly generalized in 
the form of (|∅𝑎𝑖𝑛�, |∅𝑎𝑜𝑢𝑡⟩) with a=1, 2,….., and N. It is also 
permissible to employ adequate copies of a training pair 
(|∅𝑎𝑖𝑛�, |∅𝑎𝑜𝑢𝑡⟩) of a given a to avoid quantum projection noise, 
when compared to the cost functions derivative [16]. The 
intended output |∅𝑎𝑜𝑢𝑡⟩ as |∅𝑎𝑜𝑢𝑡⟩ = T |∅𝑎𝑖𝑛� is choose to 
consider with an T as unknown unitary operation. 

The cost function is used based on the mean fidelity of the 
Res output HQCNN and the expected results for all training 
data. However, to define the Res-HQCNN cost function to 
divide 2v, where v is the residual block number structures in 
Res-HQCNN, according to the residual block definition 
structure and fidelity linear fidelity: 

𝑅(𝑓) =
1

2𝑣𝑁
�(
𝑁

𝑎=1

∅𝑎𝑜𝑢𝑡|𝜌𝑎𝑜𝑢𝑡(𝑓)|∅𝑎𝑜𝑢𝑡⟩ 

To know the near network output state and the desired 
output state are, the higher fidelity. If the cost function equals 
1 and 0, consider the Res-HQCNN to be the best performer to 
be the worst. As a result, the goal in the training process is to 
maximize the cost function. For each Res-HQCNN layer, that 
denote 𝜌𝑎

𝑙𝑖𝑛 as the layer input state l and 𝜌𝑎
𝑙𝑜𝑢𝑡 as the output 

layer state l with l=1,2,….L and a = 1,2,…….N. Consider the 
scenario in which each layer is added with a residual block 
structure and there is no skipping layer, then v=L. The Res-
HQCNN training algorithm is explained in the following flow 
chart in Fig. 5. 

 
Fig. 5. Training Algorithm Flowchart. 
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Using a quantum hash function secure the data 
communication with encryption and decryption. They may 
occur some threat intrusion. Some types of threats and 
intrusion are following. 

C. Types of Threats 
By encrypting and decrypting data using the quantum hash 

function, data communication can be secured. They may be 
subjected to some sort of danger incursion [17]. Threats and 
intrusions of all kinds are on the way. Threats come in various 
forms: 

• Malware. 

• Data Loopholes. 

• Feeble IoT network outlines. 

• Service Denial. 

D. Types of Intruders 
The types of intruders are trying to intoxicate the network 

are following: 

1) Outer intruder: This is an intruder from a different 
network from the one they're attempting to intoxicate. They 
use other networks, but they come to the network to distribute 
threats and recover data, among other things. 

2) Inner network: This is an invader from a network other 
than the one they're trying to infect. They use other networks, 
but they come to the network for a variety of reasons, 
including propagating threats and recover data. 

The internet connectivity of intruders on both online and 
offline: 

1) Online Intruder: A danger has been identified as 
emanating from an internet source. This is particularly 
prevalent because they take advantage of relatively common 
IP addresses and can simply steal information from users of 
the addresses by messing with the network's coded backdrop. 

2) Offline intruder: This is an invader who has gained 
access to the network but does not have internet access. There 
is virtually little technology available to deal with and counter 
this type of intrusion threat, yet this is a highly dangerous 
group of people. 

E. Threat Proximity 
This information is necessary to demonstrate the degree to 

which a network user is close to the threat described in the 
studies [18]. Unfortunately, this method can only be accessed 
by users of the same network. Due to differences in the 
functioning of the network, it would be more difficult to draw 
such a conclusion in the case of an external incursion. 

To carry out the threat analysis, the input threat is exposed 
to a combination architecture of RNN and CNN that chucks 
the data into bits [19]. The data has a gaussian relationship, 
and it is assumed that the eventual output, after categorization 
and regrouping, will be a Gaussian distribution in a very 
precise manner. The following algorithms were used on the 
training model: 

• Levenberg-Marquardt Algorithm: This approach has 
been utilized for neural network optimization and is 
highly useful because the threat is measured on a 
summation basis [20]. The intrusion is described as a 
collection of minor threats that add up to a level that is 
regarded as a threat numerically. Because desire a 
predefined category of various clusters, the neural 
network was trained with an input that specifies a 
certain objective. 

• Feed Forward Algorithm: The connections employed in 
the node do not establish a rotating back dependence, 
which is ideal for the study. This algorithm is used to 
train the nonlinear optimization model [21]. It is 
represented in mathematical as: 

 𝑓(𝑎) = 1
1+𝑒−𝑎

 

 𝑓ʹ(𝑎) = 𝑓(𝑎)�1 − 𝑓(𝑎)� 

• Backward learning algorithm: Sensitivity to the 
impacts of the feed-forward approach for model 
training. As a result, the feed-forward is primarily 
reliant on derivative functions, resulting in anticipation. 
Backward training is a strategy for optimizing a model 
that involves integration techniques [22]. It minimizes 
J and so optimizes the cost function for the Jacobian 
Matrix application. 

F. Quantum Hash Function 
The hash capacity is presented just in one-way great detail. 

Selecting the work verification, all single-direction QW work 
is considered [23]. The single path, solid impact opposition, 
and fragile crash obstruction are the main characteristics of H-
work. The following are the quantum hash attributes 
capacities: 

1) One-direction: It is possible to process the S regard 
S(G) by giving a data G, but it is computationally impossible 
to discover the basic data G with a given S regard S(G). 

2) Frail crash obstruction: Based on the G data, it is 
impossible to find another data by computer G1 so that 
S(G)=S(G1). 

3) Solid effect opposition: It is computationally 
impossible to locate the optional two unmistakably data G and 
G1 such that S(G)=S(G1). When grasping an S work, these 
three qualities are key models to consider. Quantum hash 
work, in comparison to old-style hash work, has more 
favorable circumstances, such as simple execution and a 
higher degree of security. Our information verification 
strategy will become more secure over time. the quantum hash 
work’s nitty-gritty technique is depicted in the diagram below. 

Parameter to be selected are [c, 𝜃1,𝜃2, 𝜏] under the 
requirements: c is an odd number and {0< 𝜃1,𝜃2, 𝜏 < 𝜋

2
} here 

τ – coin state|0⟩ = cos𝜏|0⟩ + sin𝜏|1⟩, c- number of cycles. In 
addition, 𝜃1 and 𝜃2 are the two controllers of C-QW. The 
two-coin admin controllers are 𝜑1𝑎𝑛𝑑 𝜑2. 

𝜑1 = �cos𝜃1 sin𝜃1
sin𝜃1 − cos𝜃1�      𝜑2 = �cos𝜃2 sin𝜃2

sin𝜃2 − cos𝜃2� 
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The underlying one-information bit selects "0" as its value 
of 𝜑1 chooses 𝜑2. The likelihood dispersion is created by 
rolling one coin and walking DTQW on a cycle substantially 
influenced by information G [24]. To frame a twofold H 
computation, multiply all qualities in the following likelihood 
circulation by 10i times and maintain only their entire number 
component modulo 2j with a ≥ b. The S respect has a bit 
length of mj. This is the methodology used in the most recent 
QH works conspire, which has a higher level of safety than 
previous ones. To deservedly chose this QH capability as the 
approval work. 

G. Encryption 
The encryption framework works with given data and is a 

key to creating a figured data that may be delivered through 
insecure channels without risk of being deciphered by anyone 
that doesn’t have the interpreting key. The key was initially 
subject to two sets of keys, one open and one private, for 
security concerns [25]. Initially, to encode, then to untangle, 
and finally in a different way; this is achievable due to the 
usage of particular mathematical constraints, which have non-
reversible features. 

Encryption = S (amount of A/T, S, \open key, A/T) 

Decryption = ((mk) | modified A/T (W)\) * open key 

Hash efficiently communicates on little information to 
produce a string with a known length of G. The IoT sight and 
sound data are validated by the quantum value, open keys, and 
restricted irregularity has been able to abuse reduced the S-
esteem in light of this worth [26]. The quantum value, open 
keys, and restricted irregularity have been able to exploit 
bargain the H-esteem in light of this worth to certify IoT sight 
and sound data. 

 
Fig. 6. Hashing Mechanism for Data Authentication. 

Fig. 6 demonstrates the general information procedure 
confirmation. G is the data that will be transferred from the 
sender to the recipient. W is denoted as verification work is 
used to scramble the primary information of G. “| |” is a 
technique for teaching the underlying knowledge as well as 
the figure script. During correspondence, the square edge is 
used to symbolize the channel. The key that is utilized to 
encrypt the underlying data is R. 

IV. RESULT AND DISCUSSION 
The result examines the Res-HQCNN robustness to noisy 

quantum data. To compare to employ the same rule to test the 
robustness. The numerical output from running the two neural 
networks, RNN and CNN, is shown in the results. As can be 
seen, the entire input is fed into two robust neural platforms, 

which optimize the model that has been trained using learning 
algorithms, and the output is a classification of threats with 
subfolders indicating the severity of the threats. The level of 
threats is shown in Fig. 7. 

 
Fig. 7. Threat Ranges. 

To produce an N better training pairs as (|∅𝑎𝑖𝑛�,𝑇|∅𝑎𝑖𝑛�), 
then n destroy by changing them with the training noisy pairs. 
At each period the changed subgroup is selected arbitrarily. 
Then, the cost function is measured for all the better test pairs. 
By select the example, Res-HQCNN [4, 5�, 4], with ƞ = 1/1.8 
and ɛ = 0.1 is represented on Fig. 8. 

 
(a) 

 
(b) 

Fig. 8. Noisy Training Data Behavior. 
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In Fig. 8(a), the orange line is the Res-HQCNN results and 
the blue line are the results, respectively. The Fig. 8(b), plots 
the cost function variations between the orange lines and blue 
lines. The x-axis in Fig. 8 demonstrates the number of better 
training pairs is changed by noisy pairs. Assume a small 
number of training rounds and pairs, for example, 50 training 
rounds and 30 training pairs. The cost value for both [4, 5�, 4] 
and [4,5,4] decrease as the amount of noisy pairs raises and 
the cost value variation is always positive. This demonstrates 
the [4, 5�, 4] superiority for noisy training data with the 
minimum training rounds and the minimum training pairs. 
Next, assume the amount of training rounds and pairs are 
increases as training rounds are 200 and training pairs in 100. 
Res-HQCNN and QNNs both offer robust toughness to the 
noisy quantum data when the number of noisy pairings is 
modest, such as less than 35. The cost values for the orange 
and blue lines begin to decrease at the same time as the 
number of noisy pair increases. 

When the number of noisy pairings hits 60, the cost 
variation increases, reaching a maximum when the number of 
noisy pairs reaches 70. This contains three unstable points (55, 
-0.0115), (90, -0.0161) and (100, -0.0012) then the variation is 
negative. There are 21 orange line pairs and blue lines. For 
every period, the better training data (|∅𝑎𝑖𝑛�,𝑇|∅𝑎𝑖𝑛�), and 
(|∅𝑎𝑖𝑛�, |∅𝑎𝑜𝑢𝑡⟩) as noisy training data are produced randomly. 
The (|∅𝑎𝑖𝑛� 𝑎𝑛𝑑 |∅𝑎𝑜𝑢𝑡⟩) elements are casually chosen out a 
normal spreading before regularization. The training data 
randomness produces some uneven ideas, it is shown on 
comparable results. Then, the Res-HQCNN [4, 5�, 4] it shows 
better robustness to the noisy data than [4, 5, 4] QNNs. 

To detect the deeper network as [4,5�, 6� , 4] to noisy data is 
shown in Fig. 9. When the amount of training pairs and rounds 
are minimum like training rounds as 150 and training pairs as 
30 on the figure. To notice a sign of improvement from the 
figure. The cost function variances are always positive. With 
an increase in the number of noisy pairs, the variation reduces. 
There is an amount of training rounds and pairs are large, like 
training rounds as 600 and training pairs 100 in Fig. 10. It’s 
great to have all cost function variances are always positive 
and there are no unstable points. The greatest variance value is 
greater than 0.35, but the one in the figure is less than 0.12. 
This noisy data is deeper as [4,5�, 6� , 4] it shows great 
improvement than [4,5�, 4]. It going via the studies for Res-
HQCNN with or without noise and found that it outperforms 
QNNs in terms of cost function performance. Although this 
does not exhibit an outcome for Res-HQCNN with the four or 
more hidden layers, believe that due to the mechanism of its 
training method, deeper Res-HQCNN would increase cost 
function performance more. 

Fig. 10 and Table I depicts the final results of the 
presented parameters in the evaluation. To find the encryption 
size, disentangling size, memory, and execution time as a 
function of record size. The result shows that as the archive 
size grows, so does the encryption and unscrambling size. As 
a result, the execution time grows as well. The result shows 
that as the archive size grows, so does the encryption and 
unscrambling size. As a result, the execution time grows as 
well. In any event, the given paradigm, which differs from 

various methodologies, secures IoT data in a high-level 
manner. 

Fig. 11 depicts the throughput rate as a function of 
database size. For every information base size, the QH work 
provides an ideal level of safety. In QH work, the level 
throughput is normally excessive, averaging 90%. 

 

 
Fig. 9. Deeper Network Detection to Noisy Data. 

 
Fig. 10. Amount of Data with Values of Quantum Hash. 
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TABLE I. QUANTUM HASH FUNCTION 

Size of files Encrypted Decrypted Memory Processing 
time (ms) 

20 27 20 2156432 87231 
40 36 40 468769 9423758 
60 45 60 476545 10978 
80 50 80 576653 113547 
100 58 100 563523 115764 

 
Fig. 11. Amount of Data with the Value of Throughput. 

V. CONCLUSION 
In this research, to enhance the routine of the cost function 

for the deeper networks, a quantum-conventional hybrid 
neural network with deep residual learning was used. Based 
on the QNNs, a new structure of residual blocks in the 
quantum concept was developed. Then, the Res-HQCNN 
training algorithm was also made for different cases. The 
residual block structure, from the standpoint of information 
propagation, is similar to the ANN mechanism with deep 
residual learning in that it permits information to travel from 
the input layer to any deeper layer. The replications are 
demonstrated by Res-HQCNN's although it can only work on 
a regular computer. Due to its non-linear disordered dynamic 
execution and large key space, quantum hashing work has 
been proposed as a phenomenal tool for secure IoT 
communication. The benefits of quantum hashing work have 
been presented in this research effort as the latest 
breakthroughs in achieving secure data distribution and 
information assurance based on Q advancements. For the IDS 
system, a solution result was modelized using RNN and CNN. 
It consists of all learning models requested by various network 
providers. The provided approaches are characterized in terms 
of increased precision, safety, throughput, and toughness over 
a few well-known assaults, making them suitable for use in a 
variety of IoT and cloud applications. In the future, use 
simulation to investigate the QCNN model, which is more cost 
effective and has best performance. It is necessary to develop 
an effective data encoding principle for quantum systems and 
real information. Finding a way to evaluate threats authorized 
by offline cyber-attacks is a future suggestion. This study was 
limited to just online attacks that would be heavily discussed. 
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