
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

Model-driven Framework for Requirement
Traceability

Nader Kesserwan1, Jameela Al-Jaroodi2
School of Engineering, Mathematics, and Science (SEMS)

Robert Morris University
Pittsburgh, USA

Abstract—In software development, requirements traceability
is often mandated. It is important to apply to support various
software development activities like result evaluation, regression
testing and coverage analysis. Model-Driven Testing is one
approach to provide a way to verify and validate requirements.
However, it has many challenges in test generation in addition to
the creation and maintenance of traceability information across
test-related artifacts. This paper presents a model-based
methodology for requirements traceability that relies on
leveraging model transformation traceability techniques to
achieve compliance with DO-178C standard as defined in the
software verification process. This paper also demonstrates and
evaluates the proposed methodology using avionics case studies
focusing on the functional aspects of the requirements specified
with the UCM (Use Case Maps) modeling language.

Keywords—Requirements; traceability; model transformation;
do-178c; model-driven testing; traceability scheme

I. INTRODUCTION
The largest part of traceability research so far has been

done in the last two decades by the requirements engineering
community [1]. Traceability, known as the ability to describe
and follow the life of software artifacts [2], has become more
important and traceability topics are being researched in many
other areas of software development. One example is model-
driven development where some components of the software
development process are executed automatically using model
transformations [3]. Model-driven development provides the
foundation for the use of models as primary artefacts
throughout the software development phases [4]. The variety
of different models produced in the model-driven process pose
challenges to requirements traceability and assessment. This
diversity of artifacts results in an intricate relationship
between requirements and the various models. The model-
based testing (MBT) is a technique where test cases are
generated from models [5]. MBT needs the ability to relate the
“abstract values of the specification to the concrete values of
the implementation” [6]. The relationships between artifacts
play an important role to support automation of testing
activities and it has been recognized for some time [7].
Relationships between behavioral models and test cases and
between test cases and test results support better capabilities to
measure coverage, evaluate results and perform selective
regression testing. As a result, creating and maintaining
explicit relationships among test-related artifacts is a main
challenge to the automated support of these activities.

In this paper, model transformation techniques are used to
create traceability links among MBT artifacts during the test
generation process. The approach extends previous testing
methodology presented in [8] that generates tests based on
behavioral models. This paper’s contribution is building a
traceability model to support the creation and persistence of
such relationships among heterogeneous models representing
various testing artifacts. Moreover, this work enables the
support for traceability visualization, model-based coverage
analysis and result evaluation. The case study used in this
work is an industrial product, flight management system
(FMS), to evaluate the correctness of the approach that
ensures all the generated test cases determine correctly the
behavior of the FMS and are traceable to requirements.

The rest of this paper is organized as follows. Section 2
offers background information on traceability and model-
based approaches in requirements and testing. A discussion of
some related work about model transformation, model-based
test generation, and traceability applied to automated testing
approaches is presented in Section 3. Section 4 presents and
describes the proposed approach, which is followed by
Section 5 where two case studies are used to demonstrate the
applicability and the evaluation of the approach. Section 6
offers a discussion of relevant approaches and draws future
work guidelines, while Section 7 concludes the paper.

II. BACKGROUND
In the domain of requirements engineering, the term

traceability is usually defined as the ability to follow the traces
(or, in short, to trace) to and from requirements. Two common
definitions of requirements traceability are given by Pinheiro
[9] as the ability to define, capture, and follow the traces left
by requirements on other elements of the software
development environment and the traces left by those
elements on requirements; and by Gotel and Finkelstein as the
ability to describe and follow the life of a requirement in
forward and backward directions (i.e., from inception, through
specification and development, to subsequent deployment, in
addition to on-going refinement and iterations in any of the
phases).

The Radio Technical Commission for Aeronautics updated
the guidance document DO-178C [10] “Software
Considerations in Airborne Systems and Equipment
Certification” to address the safety concerns in new
technologies such as model-based and object-oriented
technologies. The document defines objectives and design

1 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

assurance levels for assuring the quality of the software and
for an airborne system to perform its intended function with a
level of confidence in safety that complies with airworthiness
requirements.

The software verification process in DO-178C defines an
activity to verify that the system requirements assigned to
software have been developed into high-level requirements
that meet those system requirements. In order to support this
verification, trace data should be generated that show a link
between each single system-level requirement and its
propagation to test cases. The relationship between a high-
level requirement and a test case is bidirectional allowing to
trace in forward and backward directions.

Model-driven testing approach, based on transformation
rules, uses a model-transformation technique to map a source
model to a target one [11]. Model composition approaches
automate the composition of heterogeneous models by relying
on matching/merging operators [12]. Model-driven
approaches move the focus in development from the third-
generation programming language coding to more abstract
models. This aims to increase productivity and reduce time to
market by enabling the use of development concepts closer to
the problem domain than those programming languages offer.
The main challenge of model-driven development is
transforming the high-level models to platform-specific
models such that tools can use them for code generation [13].
It is possible to use models horizontally to describe different
system aspects; however, they are useful for vertical
representation to refine abstractions from the higher to the
lower levels, where at the lowest level models use
mechanisms based on implementation technology. Significant
efforts are needed to work with multiple interrelated models to
ensure their overall consistency. Furthermore, using these
models can significantly reduce the burden of several other
activities like reverse engineering, view generation,
application of patterns, and refactoring through automation
that is facilitated by the models. Such activities are usually
performed as automated processes using one or more source
models as input and producing one or more target models,
while following a well-defined set of transformation rules.
This process is referred to as model transformation.

The guidance document DO-178A [14] introduced at the
beginning of 1985 a new technique that supports test coverage
and traceability between requirements and tests. This
technique, known as requirements-based testing, has been
applied in the testing of complex software systems and
demonstrated that the systems meet the requirements.

There are several modeling languages to express system
requirements as scenarios and numerous languages that can be
used to write test scripts. This paper refers to three different
notations to capture functional requirements, describes the
software description as test specification, and implements and
executes scripts against the system under test (SUT). The key
points are: (1) system behavioral requirements are formalized
and modeled into scenarios representing the same
requirements in an alternate Use Case Map (UCM)
representation [15], [16], [17], and [18]; the UCM scenarios
can be grouped by functionality into sets, for ease of

comprehension and maintenance; (2) those UCM models are
transformed to abstract test cases using the Test Description
Language (TDL) [19], [20] , this process can be viewed as
stepwise refinement and model transformation; (3) the
obtained TDL abstract scenarios are used as the basis to
generate executable test cases in Testing and Test Control
Notation (TTCN-3) language. TTCN-3 [21] is a standard
language for test specification that is widespread and well-
established.

III. RELATED WORK
It is important to establish and maintain relationships

among software artifacts because these relationships are useful
for many different software engineering activities like
software change impact analysis and software validation,
verification and testing processes. For instance, the traces can
be used to keep models consistent and to identify pairs of
related artifacts. These pairs can then be verified and validated
against each other. A commonality between MBT and
traceability is essential to manage the relationships among
different artifacts. Relationship management should assist
conception, persistence, and preservation of meaningful
relationships across software artifacts in addition to assisting
in the destruction of relationships.

Automated MBT approaches exploit two types of
relationships: (1) implicit relationships embedded in the tool’s
algorithms and models, and (2) explicit relationships created
and made explicit either automatically by the tool, or manually
by the users.

Some approaches as in [22], [23] and [24] use implicit
relationships to support test generation, execution and
evaluation; while others like in [25] use implicit relationships
to support regression testing. Further approaches use explicit
relationships to support test generation [26], test execution and
evaluation [27], or coverage analysis.

Naslavsky et al. [28] use one kind of behavioral UML
model for test generation. A control-flow representation is
used along with domain analysis of the parameters of the
sequence diagram.

Basanieri et al. [29] use a tool (COW_SUITE) that loads
UML models to create explicit relationships as edges in
hierarchical trees among them.

Anquetil et al. [30] addressed some of the challenges in
developing software product lines in two steps; (1) develop a
model-driven framework to identify traceability of variability
and (2) specify a metamodel for recording the traceability
links.

In [31], the authors integrated a model-driven approach
that exploits traceability relationships between monitoring
data and architectural model to derive recommended
refactoring solutions for the system performance
improvement.

Bünder et al. introduce a domain-specific language called
Traceability Analysis Language [32] to create and maintain
relations of all artifacts that specify, implement, test, or
document a software system. The relations are recorded in a

2 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

traceability information model and later aggregated to support
software development and project management activities with
a real-time overview of the state of development.

In [33], the authors adopt the tool (AGEDIS) that uses
user-created explicit relationships to execute and evaluate the
test scripts. The created relationships map abstract stimuli to
method invocations and abstract observations to value
checking. In addition, this tool expresses relationships
between abstract test suites and test trace results during test
execution. Manual coverage analysis is supported via the
visualization of the test traces and the abstract test suite that
generated them.

In [34], the (AsmL) tool uses user-generated explicit
relationships to execute and evaluate abstract test scripts. The
use of relationships in the AsmL tool supports the parallel
execution of the model and its implementation by relating
them and comparing their states.

An approach presented by Abbors et al. [35] provides
requirements traceability across an MBT process and the tools
used. Additional earlier research addressed using requirement-
based testing to support traceability between the requirements
and the related testing cases.

Arnold et al. propose a scenario-driven approach [36]
(supporting both functional requirements and non-functional
requirements) that helps create the traceability between
generated and executed test cases, and the executions of an
implementation under test.

Furthermore, a model-driven approach combining the
strengths of both scenario-based and state-based modeling
styles is described in [37]. The tool proposed enables tracing
from requirements to testing and from testing to requirements
in a round-trip engineering approach.

Pfaller et al. suggest [38] using varying levels of
abstraction in development to derive test cases and link them
to the corresponding user requirements.

Another approach suggested by Boulanger and Dao [39],
where requirement engineering is performed in different
phases of the V-model to enable requirements validation and
traceability.

Felderer et al., however, focus on model–driven testing of
service-oriented systems in a test–driven way [40]. They
suggest that the Telling TestStories tool can support
traceability among all types of modeling and system artifacts.
Marelly et al. discuss linking requirements and testing through
the extension of sequence charts with symbolic instances and
symbolic variables [41].

IV. TRACEABILITY APPROACH
This work builds on some of the techniques described

earlier to create the traceability approach of MBT artifacts.

The Ecore trace model is integrated into Eclipse Modeling
Framework (EMF) and it is independent of the models it
connects. The traceability approach in Fig. 1 [42] shows how
system requirements, represented in an abstract model, are
propagated through model transformation to more refined
models. Furthermore, the traceability approach shows how the
relationships among the generated models are created and
recorded in a trace model. The first step in the approach is to
represent the functional requirements of a system. The use of
the modeling tool jUCMNav [43] help describe the system
requirements as scenario models in UCM notation. In step 2,
the behavioral models, described in step 1, are flattened to
scenario definitions using the path traversal algorithm in the
jUCMNav tool. Each flattened scenario is transformed, based
on transformation rules, to test description in TDL. During the
transformation process, the traceability information between
the two models (UCM and TDL) are explicitly defined as a
trace model. Lastly, test cases generation starts in step 3; it
uses the transformed TDL test description models and data
model (additional information) to generate the TTCN-3 test
cases. Once more, during the process of generating test cases,
the traceability information between TDL and TTCN-3
artifacts are explicitly defined and made persistent based on
and guided by a traceability scheme.

The key points of the traceability approach are: (1) natural
language requirements are described as scenario models in
UCM; (2) the UCM models are transformed to test scenario in
TDL; and (3) the resulting TDL test scenarios are used along
with data model, detailing test data, to generate test cases in
TTCN-3. Since the UCM models emphasize behavior and
abstract from concrete data, this work focuses on developing a
metamodel to support the test data. The developed data model
is based on test requirements consisting of three metamodel
elements: (1) the UCM responsibilities for message exchange,
(2) A set of typed TDL data, and (3) a detailed TTCN-3 data
with concrete value. During model transformation, traceability
information is defined explicitly into a trace model
(tracemodel.ecore). In the following subsections, an example
is used to show how relationships among the testing artifacts
are created and captured in the trace model during model
transformation. The applicability and the evaluation of the
approach is demonstrated via case studies in Section 5.

A. Scenarios in UCM Metamodel
The user requirement notation standard suggested UCM

notation to capture the functional requirements of a system in
terms of visual use case. This latter represents the behavior of
a system as a casual scenario composed of responsibilities that
can be attached to abstract components. The scenario models,
as shown in Fig. 1 (step 1), represent the functional
requirements of a system. The UCM models help design and
understand systems. The UCM models could be used as a base
to derive the test specification cases which in their turn used to
develop the test cases.

3 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

X

X

START

Resp. 1

END

Scenario 1

Scenario 2

Scenario 3

Resp. 2

Resp. 3

Resp. 4

Resp. 5

Resp. 6

Resp. 9

Resp. 7

Resp. 8

END

END

Test Configuration
 Scenario 1

Test Description
 Scenario 1

Test Configuration
 Scenario 3

Test Description
 Scenario 3

X
X

X
X

XXX TC_Scenario 1
TC 1.1
TC 1.2
…...
…...
TC 1.n

Data
Model

 TC_Scenario 3
TC 3.1
TC 3.2
…...
…...
TC 3.n

Model
Transformation

TestCase
Generation

Step 1 model creation:
UCM behavioral model

Step 2 model
transformaiton:

Test Scenario model

tracemodel.ecore
recording Relationship

between Model 1 & Model 2

tracemodel.ecore
recording Relationship

between Model 2 & TestCases

Step 3 testcase
generation:

Testcases.ttcn-3

Data Set
 Scenario 1

Data Set
 Scenario 3

Fig. 1. Traceability Approach Overview.

B. Test Scenarios in TDL Metamodel
The European Telecommunications Standards Institute

proposed TDL [44] as a standardized scenario-based approach
to specify software test cases as scenarios. TDL is a new
standard developed for specifying “formally defined Test
Descriptions used for test automation. It offers a high level of
abstraction for specifying scenarios beyond programming or
scripting languages. TDL can also be used to represent tests
generated from other sources like simulators, test case
generators, or earlier runs’ logs”. As described in [45], TDL is
a general formal language for representing Test Descriptions
which are used mainly for communication between
stakeholders as the basis for implementing concrete tests. The
TDL design is centered on three separate concepts: (1) the
metamodel principle that expresses its abstract syntax; (2)
concrete syntax, which is user defined for different application
domains; and (3) the TDL semantics that can be found in
metamodel elements.

Our approach’s main goal is to discover relationships
between testing artifacts to support requirement coverage and
test evaluation. The model-based test scenario method will
support scenario derivation from the UCM behavioral models,
and link the relationships from the behavioral model to the test
cases. TDL metamodel is used to support the description of
scenarios. An instance of TDL metamodel can describe the
essential elements of a test scenario such as messages,
behavior, actions, interacting components, etc. The TDL test
description metamodel, shown in Fig. 2, describes test
description based on the exchanged communications between
an SUT and a tester.

Fig. 2. TDL Test Description Metamodel.

C. Linking UCM Scenarios to TDL Specification
The UCM scenario model shown in Fig. 3 describes the

Internet’s Domain Name System (DNS) example that verifies
whether a DNS server can correctly map a host name to its
equivalent IP address.

ReceiveIP

X X

XX

SendIP

ReceivehostNameSendhostName

Web Browser DNS Server

ResolvehostName

Start

End

[DNS]

Fig. 3. DNS Scenario Model.

4 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

The DNS scenario model has one map contains: a Causal
path represented by a wiggly line, two rectangular boxes that
represent components Web Browser (Tester) and DNS Server
(SUT) and four responsibilities bound to components along
the path, and one scenario. The responsibilities elements in
UCM are abstract and can represent actions or tasks to be
performed by the components. The components themselves
are also abstract and can represent software entities (objects,
processes, network entities, etc.) as well as non-software
entities (e.g. users, actors, processors).

As depicted in Fig. 4, a process (ATC Builder) has been
developed to transform the UCM scenario model and data
model (additional information) into an abstract test case
expressed as a valid TDL.

The outcome of this process is a TDL specification
composed of four elements; (1) Data Set, (2) Test Objective,
(3) Test Configuration, and (4) Test Description. The DNS
scenario model shown in Fig. 3 is transformed into a TDL
specification as depicted in Fig. 5.

Fig. 4. The Process to Build a TDL Test Specification.

The Component objects, Web browser and DNS server
objects, in DNS are transformed into Test configuration items
including for example Component Instances, Gate Instance,
and Connection. Component Instances can be a part of a
Tester or a part of an SUT. Component Instances are
connected via the Gate Instance for the exchange of
information. The responsibility objects in the DNS scenario
model are transformed to Test Description elements such as
Action Reference and Interaction. The action to be performed
on the Component Instance has an attribute to identify the
latter. The gates are used to exchange abstract information
which is referenced by the Interaction elements in TDL. This
Interaction element could be seen as an exchanged message
between source and target.

D. Linking TDL Scenarios to TTCN-3 Test Cases
The UCM scenarios are used as a base to derive the TDL

elements. However, the transformed TDL test specification is
an abstraction that cannot be executed on SUT. The TDL
elements such as Data Instances and Interactions lack concrete
details about how to communicate with the SUT. In order for a
test case to be executable, it should contain detailed test data
and interface specifications. The test inputs for the test cases
were developed in a data model during the test analysis and
design process. In a UCM scenario, the responsibility object
represents an interaction or an action to perform. Therefore,
the interaction messages are developed from those
responsibilities of nature stimulus/response, mapped into TDL
Data Instances, and in turn are developed into a TTCN-3
Template as shown in Table I.

<< Test Description >>

DNS Description

<< Atomic Behavior >>

DNS behavior

<< Interaction >> [2]
Argument = IP
Source = SUT

Target = Tester

<< ActionBehavior >>

Target = SUT

<< ActionBehavior >>

Target = Tester

<< Test Configuration >>

DNS Configuration

<< Action Reference >> [1]

action = Receive hostName
actualParameter = “”

<< Action Reference >> [3]

Action = Receive IP
actualParameter = “”

<< Interaction >> [1]
Argument = hostName

Source = Tester
Target = SUT

<< Action Reference >> [2]

action = Resolve hostName
actualParameter = “”

<< ComponentInstance >>

role = Tester

<< ComponentInstance >>

role = SUT

<< GateInstance >>

TesterGate

<< GateType >>

GType

<< GateInstance >>

SUTGate

<< Connection >>

<< ComponentType >>

CType

<< ComponentType >>

CType

Fig. 5. TDL Metamodel for Test Specification Model.

5 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

TABLE I. REFINEMENT OF TEST DATA FROM ABSTRACTION TO
CONCRETE [42]

Test Data
Input/ Output

Abstract Data
in UCM

Data Instance
in TDL

Data template
In TTCN-3

Stimulus SendhostName instance
SendhostName

Template String
SendhostName
:="myHostName"

Response ReceiveIP instance
ReceiveIP

Template String
Receiveip:=
"192.124.35.5"

Stimulus SendhostName instance
SendhostName

Template String
SendhostName
:="myHostName"

Response ReceiveIP instance
ReceiveIP

Template String
Receiveip:=
"192.124.35.5"

Based on data specifications, this work included
developing a data model composed of different test data
abstraction:

• Stimulus/response: a subset of abstract test data
requirements characterized as input and output
messages expressed as responsibility objects in UCM.

• Test data instances: the abstract subset of test data
requirements is developed to Data Instances and Data
Sets in TDL.

• Test data template: using the TTCN-3 templates that
define the concrete data, the Data Sets are finally
developed and detailed.

The generation of TTCN-3 test cases from the TDL test
specification and the data model becomes feasible after
applying the transformation rules between the two languages.
Transformation rules are defined between TDL and TTCN-3
metamodels resulting in four TTCN-3 modules that together
constitute an executable test case: (1) the Configuration
module which usually contains several linked test components
with unique communication ports, (2) the Description module
that consists of behavioral program statements specifying the
dynamic behavior of the test components, (3) the Oracle
module that contains the expected responses, and (4) the Input
module that contains test input data to be transmitted over the
communication port. The modules (3) & (4) are derived from
the Data Sets and data model. Each requirement to be tested in
the data model has an input domain that is subdivided into a
set of templates (partitions) and used as a concrete test data.
This type of structure will create dependency relationships
between a requirement and the relevant test case data. This
will help improve regression testing as mentioned in [46].
Since the model transformation starts with flattening the
scenario model into scenario definitions, a scenario coverage
strategy is applied. Each flattened scenario is transformed to a
test scenario and enriched with test data to derive the test
cases. This way, straightforward relationships are established
between the scenario and the test cases.

E. Traceability Metamodel
In the context of model-driven development, traceability

schemes are usually explicitly expressed in metamodels,
which are also usually linked to models specifying model
transformations. Currently there is no single standardized

traceability metamodel. The traces among testing artifacts can
be produced on-line, where case traces are stored
automatically by a tool as a by-product of the development
activity. It can also be done off-line, where traces are recorded
(automatically or manually) after the actual development
activity has ended. The approach proposed earlier uses a trace
metamodel inspired from Jouault et al. [47] that supports
traceability. This work’s contribution is externalizing and
maintaining the relationships between the test-artifact models
(i.e. the UCM scenario models, Test scenario models and Test
cases models) and recording them in the new trace model. The
relationships are recorded semi automatically in the trace
model to support various activities like results evaluation,
regression testing and coverage analysis. The traceability
metamodel to hold the relationships among testing artifacts is
defined in UML class relationship diagram as shown in Fig. 6.
A class relationship diagram describes the types of objects in
the model and selected relationship among them. The
relationships can be of type (1) 'Generalization' that relates a
specific classifier to a more general classifier. Generalization
is denoted by an arrow with an unfilled, triangle head.
(2) 'Association' that denotes responsibilities and are shown as
lines connecting classes. (3) 'Dependency' where a class A
depends on another class B. Dependency is indicated by a
dashed line ending at a navigability arrow head.
(4) 'Aggregation' can be read as “is part of” or, in the opposite
direction as “has a”. Aggregation is denoted by an arrowhead
drawn as an unfilled diamond. (5) “Composition” implies that
the “lifetime” of the parts is bound to the lifetime of the
whole. Composition is denoted by an arrowhead drawn as a
filled-in diamond.

F. Traceability Scheme
The first step of model creation constructs the UCM model

with integrated features (path traversal algorithm) capable of
exporting scenario models that conform to the EMF
metamodel, Ecore, and implementation of the UCM notations.
The implementation of the second step, model transformation,
is based on the “UCM scenario to test scenario” model
transformation. To support traceability, the transformation tool
is extended in this work to create traces that relate the model
elements between UCM scenarios and TDL specification.
Guided by the traceability scheme defined in Table II, the
produced traces in the traceability model called
“tracemodel.ecore” were recorded. Implementation of the
third step, test case generation and traceability information,
takes place when the transformed TDL specifications and the
data model developed earlier are ready. These traces were
again recorded as a product of the transformation, with the
guidance of the traceability scheme.

aTraceModel

aModelRef bModelRef

aSourceModel bTargetModel

aSourceElement bTargetElement

ref ref

abTraceLink

aTraceLinkEnd bTraceLinkEnd

SourceElements

aElementRef bElementRef
ref ref

TargetElements

Fig. 6. Traceability Model (Kesserwan Dissertation [42]).

6 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

TABLE II. TRACEABILITY SCHEME

Testing artifacts/
Traces

What information
to record Constraints Source

UCM Scenario
Component,
Interaction,
Action Reference

 Scenario
Definition

TDL Test
Specification

Test Configuration,
Test Description,
Gate,
Interaction,
Action Reference,
Data Instance, and
Data Set

No
duplication
in Gate

Connected
components
Set of
Interaction

No
duplication
in Data Set

Action reference
Component
Interaction
Data model

TTCN-3
Testcase

Port, Record,
Record field,
Send, Receive
Template, and
Function

No
duplication
in Port

Gate
Interaction
Data Set
Data Instance
Action reference

V. APPROACH APPLICABILITY AND EVALUATION
The application and the evaluation of the traceability

framework have been demonstrated by conducting two case
studies from the avionics industry. The first case study is
called the landing gear system [48], used to demonstrate the
applicability of the approach, where the second one is the
FMS used for the evaluation.

A. Test Cases and Trace Model Generation
The description of the landing gear behaviour is captured

in UCM scenarios and explained in the following. The goal of
the landing gear in an aircraft is to provide support during taxi,
take-off and landing. Before landing, the landing order of an
airplane is: unlock the landing gear doors, extend the gears
and lock the landing gear doors. Fig. 7 depicts a successful
deployment of extending sequence scenario
[DeploymentSucceeded], and two unsuccessful deployment
scenarios; [DeploymentFailed] and [NormalModeFailed].

Pilot LGCU

X

X X

X
X

X
X

X

X

X

XX
StartExtending Handle_Down

Timer_0 Timer_1

EndExtending

RedON

Timer_6
Timer_5

Timer_4

Timer_3

Timer_2

OpenDoors

LockDoorsIn
OpenedPos

ReleaseUp_
Lock

AmberON

Lock_Down
Gears

GreenON_
AmberOFF

CloseDoors

LockDoorsIn
ClosedPos

ConfirmGearsDown

EndNormalMode

EndFailure

[Alt<2500ft & Speed <200 kt]

DeploymentFailed

NormalModeFailed
NormalModeFailed

DeploymentSucceeded

[timeout]
[timeout]

[timeout]

[timeout]

[timeout]

[timeout]

[timeout]

Fig. 7. Visual UCM Scenario Describing the Extending Sequence Case.

The creation of the UCM model was described as step 1 of
the approach (Fig. 1). The next step is to transform the UCM
model into a TDL test specification, and create the traceability
information. The test data for the successful scenario
[DeploymentSucceeded] is shown in Table III.

The graphical representation of the transformed model,
composed of test description and test configuration elements,
is depicted in Fig. 8. Traceability information for the test
configuration is depicted in Fig. 9, while part of the
traceability information for the test description is depicted in
Fig. 10.

In Fig. 9, the traceability model is named
TraceUCMModel2TDLModel. It relates models
UCMScenarioModel and TDLTestScenarios. It has one trace
link named DSScenarioTraceLink that relates the
UCMDSScenario in the UCMScenarioModel to the
TDLDSTTestSpecification in the TDLTestScenarios.
DSSScenarioTraceLink has many children; the figure shows
the link DSTestConfigurationTraceLink, which relates the
component Instances (Pilot and LGCU) in the
UCMDSScenario to the gate instances (Tester and SUT) in the
TDLDSTestSpecification.

In Fig. 10, the trace link DSSScenarioTraceLink has
another child DSTestDescriptionTraceLink, which relates the
interactions and action references in the UCMDSScenario to
the interactions and action references in the
TDLDSTestSpecification. The figure shows one “Interaction”
and one “Action Reference”.

The last step in the approach is the generation of test cases
and the creation of the traceability information in the TDL test
model and the generated test cases. Information from the data
model in Table II, from the trace model in Fig. 10 and from
the test specification model in Fig. 8 is used to complete the
step. The data model is developed from the testing
requirement and represents the input space for the scenario
model [DeploymentSucceeded] under transformation. The
instances in the data model are grouped into two sets; stimulus
(Tester) and response (SUT) to build the TDL Data Sets
elements. Each Data Set is mapped to records and variables
elements in TTCN-3 using the transformation rules between
the two languages. In Fig. 11, the trace link
DSSScenarioTraceLink has a child
DSTestDataModuleTraceLink, which relates the Data Set,
Data Instance and Interaction in the TDLDSTestSpecification
to the Record, Record field and Send in the TC_DS_[seq]. The
figure shows one “Data Set”, one “Instance” and one
Interaction. The TDL test scenario [DeploymentSucceeded] is
transformed into a test case in TTCN-3. The approach defined
in [8] applies structural transformation where each TDL
element is transformed into a number of TTCN-3 modules.
Based on transformation rules, the resulting test case is
composed of three types of modules: (1) a Test Configuration
module, (2) a Test Description module, (3) and a Data
module. The TTCN-3 data module is refined with test input
and expected output when this data becomes available. A new
test case is added “TC_DS_01” to the test suite “TTCN-
3_DC_TestSuite” for each new pair of test input and expected
output found in the Data model in Table II.

7 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

TABLE III. THE DEVELOPMENT OF TEST DATA FOR [DEPLOYMENTSUCCEEDED] SCENARIO [42]

Test Data Requirement UCM responsibility Stimulus/Response TDL Data Instance TTCN-3 Template
Send stimulus when handle is
pushed down Handle_Down instance Handle_Down Template String Handle_Down_Type

Receive a response when locking
doors in opened position LockDoorsInOpenedPos instance

LockDoorsInOpenedPos
Template String
LockDoorsInOpenedPos_Type

Receive a response when Gear is
in transition AmberON instance AmberON Template String AmberON_Type

Receive a response when locking
Gears in down position GreenON_AmberOFF instance GreenON_AmberOFF Template String

GreenON_AmberOFF_Type
Receive a response when locking
doors in closed position LockDoorsInClosedPos instance

LockDoorsInClosedPos
Template String
LockDoorsInClosedPos_Type

<< Test Description >>

DeploymentSucceeded

<< Atomic Behavior >>

SD_Behaviour

<< ActionBehavior >>

Target = SUT

<< ActionBehavior >>

Target = Tester

<< Interaction >> [1]
Argument = Handle_Down

Source = Tester
Target = SUT

<< Interaction >> [3]

Argument = AmberON
Source = SUT

Target = Tester

<< Interaction >> [4]

Argument =
GreenON_AmberOFF

Source = SUT
Target = Tester

<< Action Reference >> [2]

action = Lock_DownGear
actualParameter = “”

<< Action Reference >> [1]

action = ReleaseUp_Lock
actualParameter = “”

<< Interaction >> [2]

Argument = LockDoorsInOpenPos
Source = SUT

Target = Tester

<< Interaction >> [5]

Argument =
LockDoorsInClosedPos

Source = SUT
Target = Tester

<< Test Configuration >>

DeploymentSucceeded

<< ComponentInstance
>>

role = Tester

<< ComponentInstance
>>

role = SUT

<< GateInstance >>

TesterGate

<< GateType >>

GType

<< GateInstance >>

SUTGate

<< Connection >>

<< ComponentType
>>CType

<< ComponentType
>>CType

Fig. 8. Test Specification Model for [DeploymentSucceeded] Scenario (Kesserwan Dissertation [42]).

TraceUCMModel2TDLModel

aModelRef bModelRef

UCMScenarioModel TDLTestScenarios

UCMDSScenario TDLDSTestSpecification

ref ref

DSScenarioTraceLink

TraceModel

aTraceLinkEnd bTraceLinkEnd

SourceElements

ComponentInstance
Pilot

GateInstance
Tester

ref ref

TargetElements

ComponentInstance
LGCU

GateInstance
SUT

aElementRef bElementRef

DSTestConfigurationTrace
Link

Child

a1TraceLinkEnd

a1ElementRef

b1TraceLinkEnd

b1ElementRef

SourceElements TargetElements

ref

ref

a2TraceLinkEnd

a2ElementRef

b2TraceLinkEnd

b2ElementRef

SourceElements

TargetElements
ref ref

Fig. 9. Traceability Model shows Traceability Links between the UCM and TDL Models for [DeploymentSucceeded] Scenario (Kesserwan Dissertation [42]).

8 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

TraceUCMModel2TDLModel

aModelRef bModelRef

UCMScenarioModel TDLTestScenarios

UCMDSScenario TDLDSTestSpecification

ref ref
DSScenarioTraceLink

TraceModel

aTraceLinkEnd bTraceLinkEnd

SourceElements

Interaction
Handle_Down

Interaction
Handle_Down

ref ref

TargetElements

ActionReference
ReleaseUp_Lock

Action Reference
ReleaseUp_Lock

aElementRef bElementRef

DSTestDescrptionTraceLink

child

a3TraceLinkEnd

a3ElementRef

b3TraceLinkEnd

b3ElementRef

SourceElements TargetElements

ref ref

a4TraceLinkEnd

a4ElementRef

b4TraceLinkEnd

b4ElementRef

sourceElements TargetElements

ref ref

Fig. 10. A Small Part of Traceability Links between the Two Models for [DeploymentSucceeded] Scenario (Kesserwan Dissertation [42]).

TraceTDLModel2TestcasesModel

aModelRef

bModelRef
TDLTestScenarios

TTCN-3_DS_TestSuite

TDLDSTestSpecification

TC_DS_[01]

ref

ref
DSScenarioTraceLink

TraceModel

aTraceLinkEnd bTraceLinkEnd

SourceElements

Instance
AmberON

Record Field
AmberON

ref

ref

TargetElements

Data Set
SUT

Record
SUT

aElementRef

bElementRef

DSTestDataModuleTraceLink

child

a1TraceLinkEnd

a1ElementRef

b1TraceLinkEnd

b1ElementRef

SourceElements

TargetElements

ref

ref

a2TraceLinkEnd

a2ElementRef

b2TraceLinkEnd

b2ElementRef

sourceElements TargetElements
ref ref

a3TraceLinkEnd

a3ElementRef
sourceElements

b3TraceLinkEnd

b3ElementRef

targetElements

Interaction
Handle_Down

ref

Send
Handle_Down

ref

Fig. 11. Traceability Information between TDL and TTCN-3 (Kesserwan Dissertation [42]).

9 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

B. Traceability Links and Alignment with Test Result
To evaluate the extended testing methodology in this

work, the experiment method described in [8] is reused to
generate the test case. The new obtained result is a trace model
(tracemodel.ecore) which relates UCM scenario models to
TTCN-3 test cases grouped in test suites. Each test case,
generated with a unique identifier, is a sequence of actions and
interactions with defined input parameter values and output
parameter values. The execution of the test case results in the
assignment of a test verdict; pass or fail. In the trace model,
the links between requirements and test cases may have
several possible cardinalities:

• One-to-one: one requirement is tested exactly by one
test case and this test case tests only this requirement.

• One-to-many: one requirement is tested by several test
cases and these test cases participate to test only this
requirement.

• Many-to-many: one requirement is tested by several
test cases, which are used to test several requirements.

Fig. 12 shows the relationships between the testing
artifacts for the [DeploymentSucceeded] scenario. The
traceability link DSScenarioTraceLink [1] relates the model
UCMDSScenario to the model TDLDSTestSpecification
which is related to several test cases via the traceability link
DSScenarioTraceLink [2]. The generated test cases are
children of the test suite TTCN-3_DS_TestSuite.

The trace model takes a significant importance in the test
generation process. On one hand, it provides a clear meaning

for each generated test case: the tested requirement(s) gives
the purpose of the associated test case(s). It is a kind of
rationale for the generated test suite. On the other hand, the
trace model exhibits clearly which requirements are actually
tested (and how), and which requirements are not tested. For
the not tested requirements, this suggests completing the test
suite to obtain full functional coverage. During test execution
of the test case, the traceability links in the trace model help to
identify the related requirements when it fails. Similarly, when
the test case passes, they certify that the related requirements
were implemented and tested.

C. Requirement Coverage and Compliance with DO-178C
The trace model helped analyze the generated TDL test

description from UCM models to check if the test cases cover
the requirements. The trace model showed full coverage
between UCM scenarios and their developed TDL
specifications. The trace model realized complete requirement
and scenario coverage. For each path in the UCM model, there
is a TDL test scenario linked to it and the number of links in
the trace model equals the number of scenarios found in the
UCM model.

Furthermore, the trace model helped analyze the generated
TDL test description to check if they are actually traceable to
the original software requirements (UCM elements). The trace
model meets the traceability objective as defined by DO-178C
standard where an association between a requirement and its
related items is necessary. The trace model contains links
between the UCM models and the TDL test scenarios which in
turn are traced to the generated test cases in TTCN-3.
Therefore, compliance with DO-178C is achieved.

Source Target

UCMDSScenario TDLDSTestSpecification

DSScenarioTraceLink [1] DSScenarioTraceLink [2]
Source Target

TC_DS_01

TC_DS_n

…………..

TTCN-3_DS_TestSuite

Req.1

Req.2

Req.n

Dev. Req.1

Dev. Req.2

Dev. Req.n

Fig. 12. Traceability Links among Testing Models for [DeploymentSucceeded] Scenario.

10 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

VI. DISCUSSION AND FUTURE WORK
Similar to the approaches discussed in the related work

section (Section 3), this paper proposes to create traceability
links among testing artifacts. However, this work differs from
them as the proposed method extends the model-driven testing
methodology to create explicit relationships in a trace model
among testing artifacts. The approach creates UCM behavioral
models and relates them to test cases via abstract test models
during model transformation where n-ary links among models
could be visualized. This is an important factor in visualizing
relationships among models because it is almost impossible to
represent more than one link in a two-dimensional traceability
matrix in an understandable way. Moreover, the number of
relationships in traceability matrices is high and fixed. The
trace model records a small number of relationships from
model to a testcase to enable the support for model-based
coverage analysis, visualizing traceability and result
evaluation.

Another important difference is creating a semiautomatic
process for trace recording. This reduces some of the
repetitive and time consuming tasks testers need to do to
generate these traceability connections. Most models
discussed require manual recording. This also distinguishes
this work from the earlier research in this specific topic as it
extends the scope and capabilities of the model developed and
improves its processes.

This work is the start of research efforts to offer more
effective ways to ensure traceability and create better
pathways for validation. Following this contribution, future
work will focus on enhancing the model to provide additional
traceability aspects and addressing some of the current
limitations. More research into enhancing the traceability
process such that it could use additional sources (other than
UCM) to provide access to non-functional requirements. This
will further improve the traceability model and provide a more
robust coverage of requirements. In addition, methods to
automate the steps in this process will be investigated and a
fully automated process of recording traces in the trace model
will be explored. This will create a faster and more effective
process for test traceability.

As a result, non-functional requirements, generally not
captured by UCM, cannot be used. In addition, the semi-
automatic recording improved the process, yet it still requires
manual work to complete the process.

VII. CONCLUSION
Our main contribution in this paper is the proposal and

presentation of a model-based approach that leverages
available methods to generate test artefacts based on model
transformations. This approach enables creating traceability
links among testing artifacts. It also extends the
transformation methodology to create and document
relationships as a set of metadata in a trace model through
consecutive transformation steps. A traceability scheme with
constraints that determines which testing artifacts and at which
level of detail the traces can be recorded was defined. The
proposed traceability scheme guides the recording of traces
(manual) and makes them persistent. Relationships are created

and made explicit among scenario definitions in UCM models,
their test specifications in TDL notation, and the
corresponding test suite scenario in TTCN-3 language. The
documented relationships in a trace model enable the support
for visualizing traceability, coverage analysis and test result
evaluation. This paper shows the developed infrastructure and
workflow for MBT that applies model transformation and test
generation techniques to create test scenarios, test cases, and
traceability models.

REFERENCES
[1] Tanvir Hussain and Robert Eschbach, "Automated Fault Tree

Generation and Risk-Based Testing of Networked Automation
Systems," in Proceedings of 15th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA 10) Bilbao, Spain, 2010.

[2] Lago, P., Muccini, H., van Vliet, H.: A scoped approach to traceability
management. J. Syst. Softw. 82(1), 168–182 (2009).

[3] Winkler, Stefan, and Jens von Pilgrim. "A survey of traceability in
requirements engineering and model-driven development." Software &
Systems Modeling 9.4 (2010): 529-565.

[4] Galvao, I., & Goknil, A. (2007, October). Survey of traceability
approaches in model-driven engineering. In 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007) (pp.
313-313). IEEE.

[5] Aichernig, Bernhard K., Wojciech Mostowski, Mohammad Reza
Mousavi, Martin Tappler, and Masoumeh Taromirad. "Model learning
and model-based testing." In Machine Learning for Dynamic Software
Analysis: Potentials and Limits, pp. 74-100. Springer, Cham, 2018.

[6] J. Dick, Faivre, A., Automating the Generation and Sequencing of Test
Cases from Model-Based Specifications, Springer-Verlag, 1993.

[7] D. J. Richardson, Aha, S. L., O'Malley, T. O., Specification-based test
oracles for reactive systems, Proceedings of the 14th international
conference on Software engineering, ACM Press, Melbourne, Australia,
1992, pp. 105-118.

[8] Kesserwan, N., Dssouli, R., Bentahar, J., Stepien, B. and Labrèche, P.,
2017. From use case maps to executable test procedures: a scenario-
based approach. Software & Systems Modeling, pp.1-28.

[9] Pinheiro, F.A.C.: Requirements traceability. In: Sampaio do Prado Leite,
J.C., Doorn, J.H. (eds.) Perspectives on Software Requirements, pp. 93–
113. Springer, Berlin (2003).

[10] DO-178C, available from RTCA at www.rtca.org. Retrieved
01/22/2021.

[11] Bernhard Schatz. 2011. 10 Years Model-Driven -- What Did We
Achieve?. In Proceedings of the 2011 Second Eastern European
Regional Conference on the Engineering of Computer Based Systems
(ECBS-EERC '11). IEEE Computer Society, Washington, DC, USA, 1-.
DOI=http://dx.doi.org/10.1109/ECBS-EERC.2011.42.

[12] Kienzle, Jörg, et al. "A unifying framework for homogeneous model
composition." Software & Systems Modeling 18.5 (2019): 3005-3023.

[13] Eclipse Modeling Framework (EMF), available at
http://www.eclipse.org/modeling/emf/, retrieved 01/22/2021.

[14] DO-178A Software Considerations in Airborne Systems and Equipment
Certification, Document Number: DO-178A, Issue Date: 3/22/1985,
Committee: SC-152, Category: Software.

[15] Zaman, Qamar uz, Aamer Nadeem, and Muddassar Azam Sindhu.
"Formalizing the use case model: A model-based approach." Plos one
15, no. 4 (2020): e0231534 Buhr, R.J.A.: Use case maps as architectural
entities for complex systems. IEEE Trans. Softw. Eng. 24(12), 1131–
1155 (1998).

[16] Buhr, R.J.A.: Use case maps as architectural entities for complex
systems. IEEE Trans. Softw. Eng. 24(12), 1131–1155 (1998).

[17] ITU-T Z.151 - the International Telecommunication Union, available at
https://www.itu.int/en/pages/default.aspx, retrieved 01/22/2021.

[18] https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.9896&rep
=rep1&type=pdf.

11 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

[19] G. Spanoudakis, Zisman, A., Software Traceability: A Roadmap,
Advances in Software Engineering and Knowledge Engineering, World
Scientific Publishing, 2005.

[20] Philip Makedonski, Gusztav Adamis, Martti Käärik, Andreas Ulrich,
Marc-Florian Wendland, Anthony Wiles. “Bringing TDL to users: A
Hands-on Tutorial” User Conference on Advanced Automated Testing
(UCAAT 2014), Munich.

[21] TTCN-3 Standards, available at http://www.ttcn-
3.org/index.php/downloads/standards.

[22] F. Fraikin, Leonhardt, T., SeDiTeC — Testing Based on Sequence
Diagrams, 17th IEEE International Conference on Automated Software
Engineering, 2002, pp. 261 - 266.

[23] Gagarina, Larisa G., Anton V. Garashchenko, Alexey P. Shiryaev,
Alexey R. Fedorov, and Ekaterina G. Dorogova. "An approach to
automatic test generation for verification of microprocessor cores." In
2018 IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), pp. 1490-1491. IEEE, 2018.

[24] J. Wittevrongel, Maurer, F., SCENTOR: Scenario-Based Testing of E-
Business Applications, Tenth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises,
2001, pp. 41 - 46.

[25] L. C. Briand, Labiche, Y., A UML-Based Approach to System Testing,
4th International Conference on the Unified Modeling Language
(UML), Toronto, Canada, 2001, pp. 194-208.

[26] F. Basanieri, Bertolino, A., Marchetti, E., The Cow_Suite Approach to
Planning and Deriving Test Suites in UML Projects, Proceedings of the
5th International Conference on The Unified Modeling Language,
Springer-Verlag, 2002, pp. 383-397.

[27] W. Grieskamp, Nachmanson, L., Tillmann, N., Veanes, M., Test Case
Generation from AsmL Specifications - Tool Overview, 10th
International Workshop on Abstract State Machines, Taormina, Italy,
2003.

[28] Naslavsky, Leila, Hadar Ziv, and Debra J. Richardson. "Towards
traceability of model-based testing artifacts." Proceedings of the 3rd
international workshop on Advances in model-based testing. ACM,
2007.

[29] F. Basanieri, Bertolino, A., Marchetti, E., The Cow_Suite Approach to
Planning and Deriving Test Suites in UML Projects, Proceedings of the
5th International Conference on The Unified Modeling Language,
Springer-Verlag, 2002, pp. 383-397.

[30] Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J. C.,
Rummler, A., & Sousa, A. (2010). A model-driven traceability
framework for software product lines. Software & Systems Modeling,
9(4), 427-451.

[31] Arcelli, D., Cortellessa, V., Di Pompeo, D., Eramo, R., & Tucci, M.
(2019, March). Exploiting architecture/runtime model-driven
traceability for performance improvement. In 2019 IEEE International
Conference on Software Architecture (ICSA) (pp. 81-90). IEEE.

[32] Bünder, H., Rieger, C., & Kuchen, H. (2017). A Model-Driven
Approach for Evaluating Traceability Information. Model-Driven
Software Development, 436.

[33] A. Hartman, Nagin, K., The AGEDIS tools for model based testing,
2004 ACM SIGSOFT international symposium on Software testing and
analysis, ACM Press, Boston, Massachusetts, USA, 2004, pp. 129-132.

[34] W. Grieskamp, Nachmanson, L., Tillmann, N., Veanes, M., Test Case
Generation from AsmL Specifications - Tool Overview, 10th
International Workshop on Abstract State Machines, Taormina, Italy,
2003.

[35] F. Abbors, D. Truscan, and J. Lilius, "Tracing requirements in a model-
based testing approach," in 2009 First International Conference on
Advances in System Testing and Validation Lifecycle (VALID),
Piscataway, NJ, USA, 2009, pp. 123-8.

[36] D. Arnold, J. P. Corriveau, and Shi Wei, "Modeling and validating
requirements using executable contracts and scenarios," in 8th ACIS
International Conference on Software Engineering Research,
Management and Applications (SERA), CA, USA, 2010, pp. 311-20.

[37] A. Goel, B. Sengupta, and A. Roychoudhury, "Footprinter: Round-trip
engineering via scenario and state-based models," in 31st International
Conference on Software Engineering - Companion Volume - ICSE-
Companion, Piscataway, NJ, USA, 2009, pp. 419-420.

[38] C. Pfaller, A. Fleischmann, J. Hartmann, et al., "On the integration of
design and test: A model-based approach for embedded systems," in
Proceedings of the 2006 international workshop on Automation of
software test (AST) 2006, pp. 15-21.

[39] J. L. Boulanger and V. Q. Dao, "Requirements engineering in a model-
based methodology for embedded automotive software," in IEEE
International Conference on Research, Innovation and Vision for the
Future in Computing 484 & Communication Technologies(RIVF), Ho
Chi Minh City, Vietnam, 2008, pp. 263-268.

[40] M. Felderer, P. Zech, F. Fiedler, et al., "A Tool based Methodology for
System Testing of Service-oriented Systems," in Second International
Conference on Advances in System Testing and Validation Lifecycle
(VALID), Los Alamitos, CA, USA, 2010, pp. 108-13.

[41] R. Marelly, D. Harel, and H. Kugler, "Multiple instances and symbolic
variables in executable sequence charts," in 17th International
Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA 2002), USA, 2002, pp. 83-100.

[42] Kesserwan, N. (2020). Automated Testing: Requirements Propagation
via Model Transformation in Embedded Software (Doctoral dissertation,
Concordia University).

[43] http://istar.rwth-aachen.de/tiki-index.php?page=jUCMNav
[44] ETSI ES 203 119-1 V1.3.1 standard, available at

http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.03.01_
60/es_20311901v010301p.pdf, retrieved 01/22/2021.

[45] Ulrich,A., Jell, S.,Votintseva, A.,Kull, A.: The ETSI TestDescription
Language TDL and its application. In: 2014 2nd International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pp. 601–608. IEEE (2014, January).

[46] P. Stocks, Carrington, D., A Framework for Specification-Based
Testing, IEEE Transactions on Software Engineering, 1996, pp. 777-
793.

[47] M. Didonet Del Fabro, Bézivin, J., Valduriez, P., Weaving Models with
the Eclipse AMW plugin, Eclipse Modeling Symposium, Eclipse
Summit Europe 2006, Esslingen, Germany, 2006.

[48] Boniol, F.,Wiels, V.: The landing gear system case study. In: ABZ 2014:
The Landing Gear Case Study, pp. 1–18. Springer (2014).

12 | P a g e
www.ijacsa.thesai.org

http://www.ttcn-3.org/index.php/downloads/standards

	I. Introduction
	II. Background
	III. Related Work
	IV. Traceability Approach
	A. Scenarios in UCM Metamodel
	B. Test Scenarios in TDL Metamodel
	C. Linking UCM Scenarios to TDL Specification
	D. Linking TDL Scenarios to TTCN-3 Test Cases
	E. Traceability Metamodel
	F. Traceability Scheme

	V. Approach Applicability and Evaluation
	A. Test Cases and Trace Model Generation
	B. Traceability Links and Alignment with Test Result
	C. Requirement Coverage and Compliance with DO-178C

	VI. Discussion and Future Work
	VII. Conclusion

