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Abstract—Human activity recognition (HAR) techniques can 

significantly contribute to the enhancement of health and life 

care systems for elderly people. These techniques, which 

generally operate on data collected from wearable sensors or 

those embedded in most smart phones, have therefore attracted 

increasing interest recently. In this paper, a random forest-based 

classifier for human activity recognition is proposed. The 

classifier is trained using a set of time-domain features extracted 

from raw sensor data after being segmented into windows of 5 

seconds duration. A detailed study of model parameter selection 

is presented using the statistical t-test. Several simulation 

experiments are conducted on the WHARF accelerometer 

benchmark dataset, to compare the performance of the proposed 

classifier to support vector machines (SVM) and Artificial Neural 

Network (ANN). The proposed model shows high recognition 

rates for different activities in the WHARF dataset compared to 

other classifiers using the same set of features. Furthermore, it 

achieves an overall average precision of 86.1% outperforming 

the recognition rate of 79.1% reported in the literature using 

Convolution Neural Networks (CNN) for the WHARF dataset. 

From a practical point of view, the proposed model is simple and 

efficient. Therefore, it is expected to be suitable for 

implementation in hand-held devices such as smart phones with 

their limited memory and computational resources. 

Keywords—Human activity recognition; random forest; feature 

engineering; sensor signal processing 

I. INTRODUCTION 

In daily life, a person performs diverse set of activities 
such as standing up, sitting down, walking, climbing stairs, 
etc. Automatic recognition of human activities has interesting 
applications in healthcare [1], keeping track of elderly people 
[2], and home automation [3]. Also, it has many clinical 
applications for stroke patients [4], Parkinson's disease 
patients[5], heart rate estimation [6] and in a smart health care 
environment [7]. 

The last two decades witnessed increasing interest in 
Human Activity Recognition (HAR) techniques due to the 
availability of low cost sensors specially those built-in sensors 
available in affordable smartphones [8-10]. Commonly used 
sensor types in HAR applications are accelerometers [11-14], 
heart rate belt sensor [15], gyroscope [16, 17], magnetometer 
[17], or three-inertial sensor units mounted on chest, right 
thigh and left ankle [12]. Such inertia devices operate at low 
frequencies and require low sampling rates. There are several 
issues which make HAR task challenging such as noisy sensor 
data, insufficient training examples due to few participating 
subjects, and the need to implement HAR systems on 

relatively limited-resources smart devices. Therefore, 
numerous studies in literature have been conducted to look for 
suitable representative features for activities, as well as good 
enough recognition models [9]. Moreover, benchmark datasets 
available in literature are different in type of activities, number 
of recorded examples for each activity, experimental settings, 
i.e. controlled procedure [18] whether indoor or outdoor 
environments [19], used sensors and sensor position on 
subject body. According to aforementioned factors, there is a 
significant variance of available HAR systems accuracy in 
conjunction with different datasets [20]. 

HAR recognition techniques can be grouped into two main 
categories. The first is based on computer vision [21, 22] and 
the second is based on data collected from one or more 
sensors. What makes the latter approach appealing is that 
sensors are affordable and are usually found in reasonably 
priced smartphones. Another advantage is that computational 
and storage requirements for processing sensor data is less 
than those required for image processing techniques. 

In this work, the relatively challenging Wearable Human 
Activity Recognition Folder (WHARF) dataset is extensively 
investigated. This dataset is collected using a tri-axial 
accelerometer placed on the right wrist of subjects; hence it 
emulates a smart watch. It is chanllenging because of its small 
sampling rate, 32 Hz, compared to other datasets collected 
using e.g. 50 Hz sampling frequency. Real-time considerations 
for HAR systems require dealing with segments of data points 
with window length between 2 seconds and 10 seconds. 
Therefore, sensors with small sampling rate will deliver fewer 
data points complicating the task of HAR system. Moreover, 
there are 12 different activities in WHARF with few number 
of examples per activity [13]. The proposed approach here 
applies data preporcessing in which signals are filtered using a 
low-pass filter and then scaled so that all features lie within 
the same range. In the second step, data is segmented into 
windows of length 5 seconds with 50% overlapping. In the 
third step, several effective time-domain functions or features 
are extracted. The proposed classifier employs the Random 
Forest (RF) algorithm which achieves the best precision and 
also the best training time compared to other classifiers such 
as Artificial Neural Networks (ANN) and Support Vector 
Machine (SVM). The proposed system is expected to be 
efficient and resource-friendly for smart devices. Besides, 
sensitivity analysis of proposed system components such as 
RF parameters, some important features and preprocessing 
scaling step is conducted. Also, feature importance is 
discussed using the statistical t-test. 

*Corresponding Author  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 2, 2021 

161 | P a g e  

www.ijacsa.thesai.org 

The contribution of this work can be highlighted as 
follows: (1) introducing RF-based effective and efficient HAR 
system with average precision of 86.1% and average accuracy 
of 84.8% which improves the state-of-the-art rate of 79.1% for 
WHARF dataset, (2) testing the proposed system on the 
challenging WHARF datase which is considered in only few 
studies in literature [23] and [24], (3) discussing the practical 
implementation issues of proposed system which is important 
in case of further system application on smart devices, and (4) 
conducting sensitivity analysis of important system 
components to determine the optimal settings for proposed 
system. 

The rest of this paper is organized as follows. In Section II, 
relevant related work in the literature is reviewed. The set of 
features to be employed and the proposed Random Forest-
based classifier are presented in Sections III and IV, 
respectively. In Section V, a set of experiments are conducted 
to evaluate the performance of the proposed model and 
compare it to other machine learning techniques. Sensitivity 
analysis is preformed to optimally select the parameters of the 
proposed model in Section VI. Finally, conclusions and 
possible future work are drawn in Section VII. 

II. RELATED WORK 

The HAR procedure from preprocessed raw sensory data 
can be divided into two steps: (1) extracting relevant key 
features from collected data signals (so-called feature 
engineering), and (2) classifying the observed activity based 
on the extracted features. The reduction of data dimensionality 
may can also be required using e.g. principle component 
analysis [25]. Due to the diversity of feature types and the 
classifiers that can be used in these two steps, respectively, the 
literature of HAR problem is wide and extensive. 

Sensors such as tri-axial accelerometer and gyroscope 
provide time domain acceleration and angular velocity 
readings in the x, y, and z axes, respectively. In the literature, 
the various types of features which are extracted from such 
raw data can be divided into two categories: 

1) Time domain features: e.g. the coefficients of an 

autoregressive (AR) model for each of the x, y, and z axes [11, 

18, 26-29], signal magnitude area (SMA) [11, 18, 26-28, 30], 

tilt angle [11, 31], Histogram [17], mean [17, 26, 31], standard 

deviation [25, 26], Jerk [32, 33], roll angle [11, 24] skewness, 

kurtosis and total integral of modulus of accelerations (IMA) 

[12], and. 

2) Frequency domain features: e.g. power spectral density 

(PSD) [12, 25], signal entropy and spectral energy [12, 31], 

largest frequency component, average frequency signal 

skewness, and frequency signal kurtosis [26]. 

It should be noted that the use of various types of features 
is important to improve the classification task. Each class of 
activities has its own set of discriminative features which is in 
general different from other classes. For example, the standard 
deviation feature can be used to distinguish between static and 
dynamic activities, and the Fast Fourier transform (FFT) 
coefficients can be used to distinguish between walking and 
running [11]. 

On the other hand, classifiers used in HAR studies can be 
classified into supervised or unsupervised. Supervised 
classifiers [20] include multilayer neural networks [17, 18, 30, 
31, 34], support vector machine (SVM) [11, 12], decision 
trees [30, 31], random forest [12], k-Nearest Neighbors (kNN) 
[12, 16] and Bayes classifier [16, 25]. Unsupervised 
technique, on the other hand, include Gaussian mixture model 
(GMM) [13], linear-discriminant analysis [27, 28], minimal 
learning machine (MLM) [16], k-means clustering, 
convolutional neural networks (CNN) [35-37] and hidden 
Markov model (HMM) [12]. 

III. TIME-DOMAIN AND STATISTICAL FEATURES 

In this section, the set of features extracted from pre-
processed raw acceleration signals is listed. It is assumed that 
there is a three-dimensional dataset of size N data points 
collected from an accelerometer or a gyroscope, ax(i), ay(i), 
az(i), i =1, 2, · · · , N, for the x, y, and z dimensions. The data is 
first filtered using low pass filter to reduce noise and extract 
the body acceleration bx(i), by(i), bz(i) and gravity acceleration 
gx(i), gy(i), gz(i) components [24]. 

The set of features to be employed in classification are 
derived from both body and gravity acceleration signals as 
listed in Table I. The body acceleration signal features include 
the mean (M) and standard deviation (STD) of filtered signals, 
autoregressive model coefficients, signal magnitude area, tilt 
angle, mean, standard deviation, entropy of jerk of signals, 
mean, standard deviation, power and entropy of jerk of roll 
angle. For gravity acceleration component, the signal power 
along each axis and the mean of angle of x-axis component are 
used. 

IV. THE PROPOSED MODEL 

The proposed classifier consists of three stages as shown 
in Fig. 2. In the first stage, the data is applied to a low pass 
filter to filter out noise and separate body acceleration from 
gravity acceleration. The data is then segmented into windows 
of 5 seconds duration consisting of 160 data points. In the 
second stage, the set of features listed in Table I are extracted. 
Finally, the classification task is performed in the third stage 
using random forest classifier [12]. 

Random Forest can be described as an ensemble or set of 
decision trees as shown in Fig. 2 where each tree produces a 
prediction of the class to which the given example belongs. 
The overall decision is then made using a voting process on 
the most predicted class among all trees in the forest. Random 
forest classifier has several so-called hyper-parameters which 
affect the classification. These include the number of trees in 
the forest and the maximum depth of the trees. The default 
value for number of trees is 100 whereas the default value for 
the maximum depth is 0. This means that each tree will 
expand until every leaf is pure, i.e. all data on the leaf comes 
from the same class. Random Forest classifier first selects 
random feature vectors from the dataset, builds a decision tree 
for each sample and performs a vote to determine the most 
voted prediction. In the current work, the basic RF classifier is 
employed in HAR recognition. To find the optimal RF 
parameters, a sensitivity analysis is conducted in Section 
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TABLE I. LIST OF FEATURES AND THEIR FORMULAS 

Term Meaning Formula Scaling factor 

Autoregressive (AR) 

model coefficients 

Autoregressive model is 

used to predict time series 
data from past data 

records in x, y and z- 

directions 

   ( )   ∑ ( )

 

   

  (   )   ( ) 

 

  √     

Signal magnitude area 

A scalar feature used to 

distinguish static from 

dynamic activities such as 
standing and walking [11] 

    
 

 
∑(|   ( )|  |   ( )|  |   ( )|)

 

   

   ||(  )
 || 

Tilt Angle 

Angle between z-axis and 
gravitational vector g. It is 

used to distinguish 

postures such as standing 
and lying [11] 

  
 

 
∑       (
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||   ||
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Jerk 
The rate of change of 
body acceleration.    

    ( )

  
 - 

Roll angle 

Describes the rotation of 

accelerometer attached to 
the participant’s hand 

about x-axis as shown in 

Fig. 1 [24] 
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Angle of x-axis 

gravity signal 

This angle is used to 

estimate sensor attitude 
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Entropy of signal (S) 
Statistical measure of 

signal randomness 
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Mean 

Describes the central 

tendency or the dc level 

of the signal 
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Standard deviation 
Describes the amount of 

variation around the mean    √
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    (a)       (b) 

Fig. 1. Accelerometer Orientation during WHARF Dataset Collection [23] and (b) Roll Angle ( ) after Rotation Around x-axis. 
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Fig. 2. Block Diagram of the Proposed Human Activity Recognition System. 

V. EXPERIMENTAL RESULTS 

A. Dataset 

In this section, the benchmark Wearable Human Activity 
Recognition Folder (WHARF) dataset by Bruno et al. [13], is 
used to examine the performance of the proposed HAR 
technique. The dataset was collected by an ad-hoc tri-axial 
accelerometer sensor attached to the right wrist of the 
participant. The participants are 17 volunteers; 11 males, with 
age ranging from 19 to 81 years; and 6 females, with ages 
between 56 and 85 years [11]. The digital resolution of the 
sensor is 6 bits and the sampling rate is 32 Hz. The dataset 
contains the following 12 activities: Brush_teeth (BT), 
Climb_stairs (CS), Comb_hair (CH), Descend_stairs (DS), 
Drink_glass (DG), Getup_bed (GB), Liedown_bed (LB), 
Pour_water (PW), Sitdown_chair (SD), Standup_chair (SU), 
Use_telephone (UT) and Walk (WK). The examples of each 
activity class are contained in a separate folder and raw signals 
for each single activity are saved in one text file. 

B. Classification Rates 

According to recent studies in the literature [23, 26, 35], 
classification results of different classifiers and settings have 
been reported in terms of the Precision (or positive predictive 
rate) and the Recall (or sensitivity) as the most crucial metrics 
in HAR applications. Let TP, FP and FN denote true positive, 
false positive and false negative, respectively, then the 

precision (P) can be calculated as   
  

     
, whereas the 

recall (R) is expressed as   
  

     
  

All experiments were conducted using machine learning 
package Sklearn in Python. Each activity signal is segmented 
into windows of 5 seconds duration [24] in order to fulfil real-
world demands of HAR systems [26]. In Table II, a 
comparison is made between the proposed model using 
random forest against SVM and ANN. The results show that 
SVM and ANN have better precision than random forest in 
some activities. For example, SVM achieves 92.1% for 
Walking while ANN achieves 97% for Descend_stairs 
activity. However, the proposed model outperforms both SVM 
and ANN in terms of the average precision achieving 86.1% 
over all activities. 

TABLE II. COMPARISON OF THREE CLASSIFIERS USING THE SAME FEATURE SET IN TERMS OF PRECISION METRIC (%). THE ACTIVITIES ARE BRUSH_TEETH 

(BT), CLIMB_STAIRS (CS), COMB_HAIR (CH), DESCEND_STAIRS (DS), DRINK_GLASS (DG), GETUP_BED (GB), LIEDOWN_BED (LB), POUR_WATER (PW), 
SITDOWN_CHAIR (SD), STANDUP_CHAIR (SU) , USE_TELEPHONE(UT) AND WALK (WK) 

 BT CS CH DS DG GB LB PW SD SU UT WK Av. Pre. 

SVM 83.1 73.8 86.3 87.8 85.3 66.4 46.2 83.6 75.6 65.4 97.3 92.1 78.6 

ANN 92 74.3 96.9 97 88.2 63.8 68.4 79.2 79.2 64.2 82.6 82.4 80.7 

RF 94.6 85 91 94.1 90.7 75.2 72.2 81.6 88.8 85.1 92.7 82.4 86.1 
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VI. SENSITIVITY ANALYSIS AND DISCUSSION 

A. RF Hyper-Parameters 

The hyper-parameters of a random forest, number of trees 
and maximum tree depth, has a significant effect on the 
performance of the proposed classifier. To determine the 
optimal values for these parameters, the classifier is 
extensively tested using different sets of parameters to obtain 
the best possible precision. The results of this experiment is 
shown in Fig. 3 where it can be noticed that as the number of 
estimators increases, the size of the model on the disk 
significantly increases, however, without significant increase 
in the precision. Therefore, the best precision obtained is 
86.1% with 100 trees and maximum depth 20. The model size 
on the disk, in this case, is 16 MB which is reasonable. 

B. Effect of Feature Scaling and Normalization 

In the proposed model, the use of normalized (scaled) 
features leads to an average precision of 86.1% as shown in 
the first row in Table III. Using un-normalized features, 
however, reduces the average precision to 83.5% as shown in 
the second row in Table III. This emphasizes the importance 
of feature normalization. 

C. Feature Reduction based on the T-Test 

It is important to check the validity and strength of features 
independently of the classifier to be used afterwards. This 
simplifies the analysis of the model and reduces the overhead 
of re-running the whole model several times to check the 
effect of every feature on the performance. 

To evaluate the power of a given feature fi in 
discriminating between two classes, the following t-test 
formula can be used 

 (  )  
|         |

√
    

 

  
 
   

 

  

 

where    denotes the i-th feature,    and     are the sample 
means,     and     are the sample standard deviations, and    
and    are the size of the two classes, respectively. 

Fig. 4 shows the percentage of effective features in each 
model. For each feature column, a two-sample t-test was 
carried out between one independent activity class and the 
other classes in each dataset, is a so-called one-versus-all 
binary classification. It is possible to conclude that if average 
t_val is less than or equal to a critical threshold of 10, the 
feature is not discriminative enough and could be safely 
eliminated. It is found that the average t-value for 13 features 
is less than or equal to 10 and, hence, the size of feature vector 
reduces to only 24 features. The previous experiments are 
repeated using the reduced feature vector and the results are 
shown in Table III. It can be seen from Table III that using the 
reduced set of features, the average precision decreases from 
84%, using full set of features, to only 82% which may not be 
acceptable. 

Table III also shows that the precision is high for some 
classes and low for others. As can be noticed in Table III, for 
the activities which made by hand, such as Brush_Teeth, 
Comb_Hair, Drink_Glass and Use_Telephone, good precision 
is obtained. Recalling that the sensor is attached to the wrist of 
the right hand, it can be realized that the position of the sensor 
helps in capturing these activities in a better way. 

D. Size on the Disk and Training Time 

In this part, we compare the proposed model using random 
forest to ANN and SVM in terms of model size in memory 
and training, and inference times. The results are shown in 
Table IV where it can be seen that the proposed model is 
superior to SVM in terms of training time. The proposed 
model is even better compared to ANN, although the 
difference is not significant if the number of iterations used in 
training ANN is reduced. On the other hand, the size of the 
proposed random forest classifier, 16 MB, is large compared 
to the other two classifiers and its inference is slower. The 
large size of the RF classifier is due to the large number of 
trees, 100, employed. Although the proposed model has large 
size and slower inference time, which is only 0.01 seconds, 
they are still reasonable. This combined with fast training 
time, makes the proposed classifier suitable for use in 
smartphones and hand held devices. 

 

Fig. 3. Average Precision and Size on Disk for Several Combinations of the Number of Trees (Estimators) and the Maximum Depth in the RF. 
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Fig. 4. Estimated Discriminating Power of Features using T-Test. 

TABLE III. PRECISION (P) FOR PROPOSED MODEL USING FULL SET OF 37 FEATURES, FEATURES WITH NO SCALING AND REDUCED SET OF 24 FEATURES FOR 

EACH ACTIVITY CLASS IN WHARF DATASET FOR RANDOM FOREST WITH 100 ESTIMATORS AND DEPTH 20 

Feature Settings BT CS CH DS DG GB LB PW SD SU UT WK 
Av. Pre. 

(%) 

Model feature set 26.49 58 20.16 26.09 21.04 08.00 09.99 50.49 55.52 58.00 29.45 59.22 86.1 

No scaling 52.02 58.85 29.08 26.82 02.94 06.50 51 09.50 05 51 58.24 52.96 83.5 

Reduced Features 26.25 54.90 50.8 52.06 52.02 49.52 011 04.42 44.40 46.14 55.12 50.12 82.2 

TABLE IV. SIZE ON DISK, TRAINING AND INFERENCE TIME FOR PROPOSED RF, ANN AND SVM CLASSIFIERS USING FULL 37 SET OF NORMALIZED FEATURES 

 Size on the disk Training time (seconds) Inference time (seconds) 

RF (100 estimators, depth 20) 16 MB 1.85 .011 

ANN (55 hidden neuron) 113 KB 
18 (1000 iterations) 
12 (500 iterations) 

2.88 (100 iterations) 

.001 

SVM (Grid search training) 930 KB 150 (via grid search) < .000001 sec 

E. Comparison with other Studies on WHARF Dataset 

In this section, we compare the proposed model to other 
models on the same dataset [24] and [23]. First, Jordao [24] 
used the same activities used in the current model. However, 
the author first performed data augmentation and calculated 
the attitude estimation as features to improve the convolution 
neural network performance. On the other hand, Aguirre [23] 
dealt with the raw data, performed feature extraction and then 
introduced the features to a SVM classifier. In the 
aforementioned studies, accuracy the model has been reported, 
thus for the proposed model here average accuracy is 
calculated as the ratio of total number of correctly predicted 
labels to total number of tested labels. Results of classification 
accuracy shown in Table V reveal the superiority of proposed 
model. 

F. Limitations of the Current Work 

The proposed model (features + classifier) is tested only 
on one dataset. However, in order to well investigate the 
generalization of such model, there is a need to test more 
benchmark datasets for human activity recognition. In 
addition, the model needs to be refined in order to achieve real 
time requirements such as considering smaller window size. 
Also, current study lacks to consider the effect of variant 
sampling rates of employed sensors. For WHARF data set, 
sensor is 32 Hz whereas sensors embedded in smartphones are 
usually 50 Hz. Similarly, sensor or device orientation is 
expected to affect such HAR models performance. Here, the 
effect of roll angle is considered, however other dynamic 
movements of human limbs (i.e. wrist, shoulder, waist or leg) 
are vital for determining the most suitable feature set. 
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TABLE V. COMPARISON OF THE PERFORMANCE OF THE PROPOSED MODEL TO PREVIOUS STUDIES [24] AND [23] ON THE WHARF DATASET 

 Feature Extraction Features domain Classifier Average Accuracy (%) 

Aguirre [23] Engineered Time-domain SVM 66.48 

Jordao [24] Raw acceleration signals Activations of convolution layers CNN 79.31 

Proposed model Engineered Time-domain RF 84.86 

VII. CONCLUSION AND FUTURE WORK 

In this work, a simple classification model based on 
random forest classifier has been proposed for human activity 
recognition tasks. HAR becomes a very attractive field not 
only due to the wide range of applicability of machine 
learning tools, but also for important applications like 
rehabilitation, health monitoring and clinical applications. The 
proposed technique employs a feature vector consists of 
several time-domain features extracted from accelerometer 
sensor data such as AR model coefficients, mean, and 
standard deviation. The proposed model is shown to achieve 
better average accuracy compared to other methods proposed 
in the literature such as SVM and ANN. RF also has a better 
classification rate compared to CNN on the same WHARF 
dataset. The proposed system was trained for segmented data 
as done in some previous studies. 

Examining the implementation of the proposed model on 
smart devices can be examined in future work. It also possible 
to use more than one sensor embedded in smartphones instead 
of using one wearable sensor as in WHARF. This opens a 
window for an interesting extension in HAR field concerning 
implementation of efficient and accurate models on personal 
devices and examining them in practical environments. 
Another reasonable extension for this work is to deal with 
signals that may contain readings of more than one activity. 
For example, the user may be in a continuous movement 
where he or she switches between some activities like 
walking, climbing stairs, sitting and others. It is therefore 
interesting to examine the performance of the proposed 
models in literature in real-time situations and ensure that they 
achieve results similar to those obtained off line. 
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