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Abstract—The present state of agriculture and its demand is 

very much different than what it used to be two decades back. 

Hence, Precision Agriculture (PA) is more in demand to address 

this challenging demand. With consistent pressure to develop 

multiple products over the same agricultural land, farmers find 

PA’s adoption the best rescue-based solution with restricted 

resources. PA accelerates the yield and potentially assists in 

catering up the demand of scarcity of demands of food. With the 

increasing adoption of PA-based technologies over farming, there 

are best possibilities to explore efficient farming practices and 

better decision-making facilitated by real-time data availability. 

There isan evolution of various novel technologies to boost 

agricultural performance, i.e. variable rate technology, 

Geomapping, remote sensing, automated steering system, and 

satellite positioning system. Apart from this, it is also observed 

that Internet-of-Things (IoT) and Wireless Sensor Network 

(WSN) have been slowly penetrating this area to acceleratePA's 

technological advancement. It is noticed that the adoption of 

sensing technology is a common factor in almost all the 

techniques used in PA. However, there is no clear idea about the 

most dominant approach in this regard. Therefore, this paper 

discusses existing approaches concerning standard conventional 

PA and sensing-based PA using WSN. The study contributes 

towards some impressive learning outcomes to state that WSN 

and IoT are extensive to boost PA. 

Keywords—Precision agriculture; smart farming; wireless 

sensor network; internet-of-things; remote sensing; variable rate 

technology 

I. INTRODUCTION 

Technological advancement has penetrated agriculture in 
the present time, right from small to large scale farming [1]. 
Two decades back, the Global Positioning System (GPS) usage 
permits the farmers to collect necessary farming data, which 
facilitates autonomous steering control system development 
[2]. However, the present times make use of more advanced 
technologies, e.g., fixed solutions for Internet-of-Things (IoT), 
aerial devices, sensors, etc., to carve the progressive path of 
Precision Agriculture (PA). The prime goal of PA is to 
achieve, i) opt for the appropriate crop to ensure increased 
quality yield and make more revenue in the commercial 
market, ii) using the proper data to assess the performance of 
the farming land, iii) improve the economics of farming and 
another offer better sustainability towards the environment, and 
iv) making a prediction of climatic fluctuations and taking 
necessary countermeasures to protect from upcoming threat 
towards agriculture [3]-[5]. The significant beneficial aspectof 

PA is minimizing and controlling crop waste and adverse 
influence over the environment.Farmers are facilitated with the 
appropriate anticipated yield for their farming land. 
Investigation towards PA could offer potential insight towards 
solving the crisis of food demand globally [6]. Farmers are 
now able to identify the beneficial aspects of PA introduced by 
IoT. The return of investment and quality of decision-making 
can be ensured by adoption PA by business owners.There is the 
inclusion of various metrics to carry out PA, e.g., fertilizer 
input, a sample of soil, nutrient availability of soil, rainfall 
level, temperature, etc. [7]. 

Acquisition of this information via sensors can lead to 
precision decision-making by the farmers. It can also furnish 
various real-time data of their farming land, identifying 
specific production patterns or identifying any associated risk 
factors during cultivation and harvesting season. Adopting PA 
also facilitates exclusive access to the agricultural records via 
cloud-based resources where the data can be accessed anytime 
and anywhere [8]. It also leads to an adequate formulation of 
measures towards crop protection. Usage of sensors can 
quickly identify the health statistics of a plant concerning soil 
pressure, presence of chemicals, environmental impact, pest, 
etc. [9]. This information leads to a better decision in planning 
for fertilizer input by the farmer. The most potential benefit of 
PA is associated with irrigation management. Any form of the 
crop demands an adequate water supply in appropriate 
quantities and channel them throughout the farming land. 
Usage of various controllers, actuators, and sensors further 
offers relevantwater supply statistics for better irrigation 
management. To effectively operational, PA demands the use 
of progressive technologies, i.e., usage of sensors [10], 
precision farming software [11], connectivity protocols [12], 
and location monitoring tools [13]. Irrespective of PA’s known 
benefits, it is still yet to get a discloser about the research 
progress regarding more insights over challenging state of 
farming, minimal resource waste, identifying the unique 
pattern of production or risk. Therefore, this manuscript offers 
an exhaustive review of standard and upcoming potential PA 
approaches to providea more precise research state. The 
significant contributionsin the proposed paper aredescribed as 
follows: 

 The present state of conventional approaches in PA is 
highly scattered. So this paper contributes towards 
offering a compact discussion of conventional standard 
approaches concerning its taxonomies. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 2, 2021 

305 | P a g e  

www.ijacsa.thesai.org 

 Presents an elaborative discussion of all the potential 
implementation carried out in present times towards 
conventional standard approaches in PA. 

 Discussion about the existing approaches carried out by 
Wireless Sensor Network (WSN) to identify the 
strength and weaknesses. 

 Presents a compact discussion about existing research 
trends to have a real picture of existing approaches, 
targeted issues, and technological adoption. 

 Contributes towards more in-depth insight of the study 
findings concerning learning outcomes to visualize the 
clear picture of PA approaches 

The remaining sections of the proposed manuscript 
areorganized as follows: Section II discussesthe essentials of 
precision agricultureconcerning all standard taxonomies and 
conventional research-based approaches. Since WSN is 
identified as upcoming technology and IoT in precision 
agriculture, Section III discusses various techniques used in 
WSN in precision agriculture; Section IV discusses the 
research trend. In contrast, Section V highlights about learning 
outcome of this manuscript. Finally, Section VI summarizes 
the overall contribution of the proposed review study and briefs 
about future work direction in precision agriculturebased on 
study findings. 

II. PRECISION AGRICULTURE 

Precision Agriculture (PA) targets improving crop 
production with the adoption of advanced technologies. This 
concept deals with improving agricultural management based 
on various scientific observations [14]. The primary aim of 
precision agriculture is to construct an appropriate decision-
making system capable of optimizing productivity without 
consuming expensive resources [15]. It is believed that crop 
production is significantly affected by the terrain features 
studied in the phytogeomorphological mechanism [16]. The 
evolution of the phytogeomorphological mechanism is due to 
the realizationthat the hydrological factors of farmland are 
controlled by geomorphic components [17].The proliferation of 
various satellite navigation systems has further boosted the 
adoption of precision agriculture [18]. Adopting such a 
navigation system helps localize an appropriate location of the 
agricultural land suitable for production. Such geographic 
information obtained from satellite navigational system also 
furnishes spatial information of land concerningactual contents 
required for cultivation viz. potassium, manganese, pH level, 
nitrogen level, moisture level, crop yield, etc. [19].  A sensory-
based satellite navigation system helps further more data 
collection, right from a degree of water in the soil to the level 
of chlorophyll. More granularity can be obtained from 
hyperspectral imaging in this regard. At present, there are 
different forms of variable rate technology (e.g., sprayers, 
seeders) that are used along with satellite images for 
optimizing the resources [20]. However, the current advances 
in technologies are more inclined to use sensors planted within 
the soil. This sensor can directly forward the aggregated data to 
the user autonomously without any dependency on human 
interactivity. 

The adoption of airborne vehicles is also used in precision 
agriculture due to their cost-effective nature and does not 
require specialized skills to make them airborne. Such 
approaches make use of photogrammetric techniques by using 
different forms of the camera (for both color and hyperspectral 
images) are used over airborne vehicles to extract information 
associated with the field images [21]. The images obtained by 
this technique can be used for evaluating the different forms of 
vegetative index [22]. Apart from this, a different form of other 
information, e.g.,the elevation of land, can also be captured by 
airborne vehicles subjected to variousconditions of 
sophisticated software models for constructing topography 
[23]. Therefore, a better probability of enhancing crop 
cultivation can be achieved by studying such a topography 
map. This information can be used for improving the inputs 
towards healthy cultivation, e.g., growth regulators, different 
types of chemicals, fertilizers, water, etc. Therefore, using 
different forms of technologies in precision agriculture is used 
to study crop science, accelerate the economics associated with 
the production, and protect the environment by controlling 
different possibilities of risk and agricultural footprints. 

A. Standard Taxonomies of Technologies in PA 

The novel approaches of agricultural practices are now 
facilitated by the advent of different technologies in PA. The 
optimization is now possible for PA for both profitability and 
productivity based on decision-making and real-time 
information over the field. The prime targets of the 
technologies used in PA are mainly to control the agricultural 
input along with environmental protection. On this basis, it is 
seen that there are five standard taxonomies of precision 
farming,including 1) Satellite Positioning System, 2) Variable 
Rate Technology, 3) Geomapping, 4) Automated Steering 
System, and 5) Remote Sensing as in (Fig. 1). 

In Satellite Positioning System, the prime technological 
contributor is the Global Positioning System (GPS), mainly 
using data associated with geo-references of production and 
auto-steer system. The agricultural machines (e.g., tractors) are 
better controlled with accuracy using GPS inbuilt within the 
machine. The farming operation is improved when the driver is 
provided with error-free information with machine movement 
patterns (Fig. 2). 
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Fig. 1. Standard Taxonomies of Technology used in PA. 
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Parallel Linear Swathing Curve Following 

 
(a)   (b)  (c) 

Fig. 2. Patterns of Field Traffic enabled by GPS. a) Linear-Parallel Pattern, 

b) Curve Pattern, and c) Circular Pattern. 

In Variable Rate Technology, the agricultural inputs are 
controlled by farmers. Adopting this standard technology 
offers planting density to be optimized while increasing the 
applicate rate's efficiency towards nutrients and pest protection. 
This significantly minimizes the farming cost as well as 
effectively control the adverse impact onthe environment. 
When variable rate technology is integrated with application 
equipment, the system offers precise information about the 
field’s location and appropriate time for obtaining input for 
rates corresponding to the region-specific application. Fig. 3 
highlights the soil map used for variable-rate technology to 
find the different nutrients needed in the soil. 

In Geomapping and Remote Sensing, sensors are usually 
used to construct a map with the different crop and soil 
conditions, e.g., pest, soil pH, type of soil, nutrient level of the 
soil. Sensors are attached to different machines and vehicles to 
be dominantly used for creating soil maps. Sensors collect the 
information from the field and GPS to assess the health 
statistics of crops and soil. This information is then passed on 
to a specific location in an area. Farmers can carry out 
identification of specific events or any significant alteration in 
the properties of soil. Fig. 4 highlights the mapped field which 
is used by the sensors built over the agriculture machine. 

In the Automated Steering System, the vehicles used in 
agriculture are involuntarily steered by the navigation system. 
This technology reduces human-related errors while 
controlling the movement of the vehicle. It also permits 
effective management of the field by providing overhead 
tuning andcontrolling the machinerybased on edge information. 
The existing system uses differential correction for real-time 
kinematics to offer accuracy in the form of centimeters. Fig. 5 
highlights overlapping factors of auto-steering system and 
manual machine. 

However, to offer higher accuracy for the machinery over 
the deployed path, installing a specific communication system 
with a base station is required. A precise point positioning 
system does not require any form of data communication in the 
auto-steering system [24]. On the other hand, machinery can 
also be allowed to be moved using GPS based navigation 
system. 
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Fig. 3. Usage of Soil Map for Analyzing the Level of Nutrients in the Soil, 

a) Presence of Potassium, b) the Presence of Phosphorus, c) Presence of 

Magnesium, and d) the Presence of pH. 

 

Fig. 4. Geomapping and Remotely Sensed Soil Map with its Properties from 

the Sensor Fitted in the Machine. 

 
(a)    (b) 

Fig. 5. Automated Steering System. (a) Manual Machine Guided Field 

Overlapping (Blue), b) Auto-Steering based Field Overlapping. 
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B. Review of Studies on Conventional PA Technologies 

This section discusses the various research work being 
carried out towards different standard technologies in PA 
briefed in the prior section. 

 Satellite Positioning System:  This approach uses two 
prominent techniques, i.e., GPS (Global Positioning 
System) and GNSS (Global Navigation Satellite 
System). It is found that GPS, when integrated with the 
robotic application, could significantly contribute 
towards PA. However, the GPS signal’s availability 
could be impacted due to occlusion towards GPS-
enabled Real-Time Kinematic (RTK) in farming. This 
problem is addressed in Levoir et al. [25] by evolving 
out with a smart rover that uses sophisticated image 
processing and statistical analysis to perform 
localization tasks by the rover. Further studies show 
that integrating GPS with the sensory application could 
improve the data acquisition with more accuracy 
(Rodriguez et al. [26]). A prototype was developed for 
herbicide ballistic technology integrated with sensors 
and GPS to automate data acquisition. Prototyping-
based modeling is evolving in an existing system 
where GPS is integrated with a micro-
electromechanical system.The idea was to offer a 
precise steering angle of the agriculture vehicle (Si et 
al. [27]). An unscented Kalman filter did the 
computation of the steering angle. Existing study 
towards the adoption of GPS has mainly emphasized 
achieving better accuracy for the receivers (Dabove et 
al. [28]).It should be noted that GPS is an integral 
section of GNSS with variable ranges of transmission 
frequency. Literature has also studied the adoption of 
GNSS towards precision farming (Marucci et al. [29]); 
however, it does not work effectively in hilly regions. 
There is still a better possibility of improvement when 
the GNSS system is combined with different 
technologies to overcome this issue. GNSS is also 
found with various artifacts, e.g., multipath error, 
atmospheric interference, satellite configuration 
(Stombaugh et al. [30]). 

 Variable Rate Technology: This kind of technology is 
used for managing crop production specific to the 
farming region (Rubio and Mas [31], Ayaz et al. [32]). 
The recent work carried out by Nordblom et al. [33] 
have used variable rate technology in PA focusing on 
nitrogen fertilizer input. The study integrates such 
application with Geographic Information System (GIS) 
and rainfall data to determine the reason for 
waterlogging in a specific geographic area. The study 
has also simulated data distribution of financial risk in 
predictive mode to signify variable rate technology. A 
similar direction of work is also carried out by Steffani 
[34], where a statistical model is used for analyzing 
lint. The idea is to emphasize adequate control over the 
environment and maximization of profit, as discussed 
in the study of Kweon et al. [35]. A study carried out 
by Colaco [36] has analyzed the impact of this 
technology on yield, the fertility of the soil, and 
fertilizer consumption. The study outcome shows that 

the variability factor can successfully achieve increased 
production without much dependency on excessive 
fertilizers. A study carried out by Nawar et al. [37] 
highlights that this technology, when integrated with 
region delineation management approach then it could 
lead to better efficiency in farming in contrast to 
application with uniform rate. At present, the 
implementation of variable rate technology is further 
boosted by the proliferation of novel solutions by 
manufacturers of farming equipment. The work carried 
out by Thomasson et al. [38] has discussed the 
frequently adopted manufacturers using crop sensors 
associated with this technology of nitrogen fertilizers. 
The study also suggestsusing automatic differential 
harvesting as another promising actuation process for 
promoting the harvesting process over the field. 
Adoption of differential harvesting process is reported 
in Sethuramasamyraja [39], where infrared sensors 
were used over vineyards to analyze the quality of 
graph based on anthocyanin present in berries. The 
implementation is carried out as follows viz. 
i) anthocyanin contents of the grapes are sensed, ii) a 
certain level of the threshold for this content is 
considered to generate a quality map for this data, and 
iii) forwarding the generated map to the user 
(harvester). 

 Geomapping and Remote Sensing: There are various 
forms of Geomapping and remote sensing approaches 
used towards PA (Kim et al.[40]). This approach leads 
to the generation of agroecological zones where 
different attributes are subjected to analysis (Muthoni 
et al. [41]). The imageries obtained from satellite 
images are studied for boundary delineation using 
feature extraction and image segmentation method 
(North et al. [42]). The existing study has also 
witnessed increased adoption of Sentinel-2 data in PA 
(Sharifi [43]) for analyzing nitrogen usage. Nitrogen is 
the essential input for PA has also been studied by Yao 
et al. [44] using an active crop sensor.  Apart from 
these conventional approaches, the advanced integrated 
approach of drone technology and Internet-of-Things 
are also deployed in precision farming (Uddin et al. 
[45]). Another interesting study carried out by Xu et al. 
[46] has used data from cameras and terrestrial laser 
scanning to monitor crop health in PA. The majority of 
the approaches associated with Geomapping and 
remote sensing are associated with capturing the field 
image followed by performing analysis. Proximal 
sensing is most recently integrated with remote sensing 
from multiple sources to study the leaf area index 
(Asad et al. [47]). This work connects the health 
statistics of the leaf with the topographical map of the 
earth. This model has three distinct modules viz. i) data 
processing with semantic segmentation of ground 
images, ii) training using deep learning model, and iii) 
performing prediction. The study outcome suggests 
that it is capable of performing better prediction even 
with images with low resolution. 
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The current study has also discussed spectral feature usage, 
where the prime challenge is to address the issues associated 
with data collection and training. This issue is addressed in 
Ashourloo et al. [48], which carried out a comparative study of 
different variants of spectral bands. The outcome shows 
support vector machine to be useful for large scale of data 
using time-series approach.  However, such an approach is less 
utilized for computing as well as predicting yield. This 
problem is addressed in the work of Fieuzal et al. [49] 
considering leaf area index. The data considered for this 
analysis is from synthetic aperture radar, where multiple 
sources are considered for analysis for evaluating a crop’s dry 
mass. A similar study is also carried out by Zalite et al. [50], 
where time series is considered. The study limits its evaluation 
from the wetlands, which is another research challenge found 
in current times. The prime cause of this challenge is spectral 
similarity and the degree of heterogeneity involved in 
landmasses. A study to address this challenge is seen in 
Hempattarasuwan et al. [51], where quantitative analysis is 
carried out over historical data. The study implements a 
classification approach by combining three standard 
approaches, i.e., Mahalanobis distance, maximum likelihood, 
and decision tree. The outcome shows a decision tree to offer 
better classification performance. A study concerning leaf area 
index is also carried out by Pan et al. [52], where water content 
information is also used for modeling. The emphasis on water 
attributes was also seen in the study of Patil et al. [53]. The 
current study also claims that useful classification can be 
carried out using a PA's deep learning approach (Sun et al. 
[54]). From an approach perspective, the random forest has 
also registered itself to be assisting in the classification of 
satellite images of land (Zafari et al. [55]). In such an approach, 
a unique classifier is designed for constructing a similarity 
kernel. There are also studies where correlated factors, e.g., 
development stage and fractal dimension,are studied (Shen et 
al. [56]). Such study mainly explores different factors that 
affect production, i.e., soil background and different farming 
practices. A unique study carried out by Dong et al. [57] has 
used chlorophyll index for assessing the internal processing of 
crops in PA.  The study carried out over simulated environment 
shows the potential linear correlation among different variants 
of vegetation index. The study contributes towards the impact 
of red edge reflectance associated with chlorophyll during 

photosynthesis. Such models emphasize the internal processing 
of plant nutrients but do not focus on balancing them. 
Balancing the nutrient demand is essential when it comes tothe 
management of agricultural land in PA. Such an approach was 
discussed by Gimenez et al. [58],where remotely sensed data is 
integrated with the model for land management. The study 
contributes towards yielding useful information associated with 
farm practices and balancing the nutrients demands on it.  
Existing studies have also evolved with a unique clustering 
approach on its features over the standard scale to assess the 
monitoring of crops in PA (Yuzugullu et al. [59]). The work 
carried out by Ali et al. [60] has developed a model for remote 
sensing where multitemporal attributes have been used for 
evaluating biomass. The study has used an integrated machine 
learning approach where neuro-fuzzy logic, neural network, 
and linear regression have been used over remotely sensed data 
to extract biomass estimates. 

 Automated Steering System: The research work 
towards this approach is mainly associated with 
developing agricultural machinery to give them a 
direction towards its orientation. The existing system 
has used fuzzy logic (Duan et al. [61]), manual priority 
(Fu et al. [62]), renewable energy (Ghobadpour et al. 
[63]), proportional integral derivative (Liu et al. [64], 
Yin et al. [65]), designing electro-hydraulic circuit 
(Mungwongsa et al. [66]), field robots (Gonzalez-de-
Santos et al. [67]), and automatic pilot system (Wang 
et al. [68]). The idea of the majority of such 
implementation orients about developing a system that 
can assist the agricultural machinery to accomplish 
specific objectives while farming. It reduced iterative 
human efforts andcan undertakea specific task that is 
not feasible for humans to carry out for a given 
constraint of extensive agricultural lands. However, 
most of the approaches are associated with hardware-
based development, and less advancement is done on 
the computational model. 

Table I highlights the summary of the most significant 
conventional PA-based approaches studied above-concerning 
issues, methodology, advantages, and limitations connected to 
them. 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 2, 2021 

309 | P a g e  

www.ijacsa.thesai.org 

TABLE I. SUMMARIZATION OF THE EXISTING STUDIES IN PA [SPS: SATELLITE POSITIONING SYSTEM, VRT: VARIABLE RATE TECHNOLOGY, GRS: 
GEOMAPPING AND REMOTE SENSING, ASS: AUTOMATED STEERING SYSTEM 

 Author Problem Methodology Advantages Limitation 

S
P

S
 

Levoir et al. [25] 
High complexity localization, 

occlusion of GPS 

Autonomous GPS-based rover 

vehicle, image processing, 
statistics 

Higher accuracy 
Lacks standard 

benchmarking 

Rodriguez et al. [26]). Data acquisition 
Prototyping by integrating sensor 

and GPS 

Assists in differential data 

acquisition 

Lacks comparison with the 

existing system, does not 

consider signal unavailability 
in GPS 

Si et al. [27] 
Calculating steering angle of 

farming vehicle 

Prototyping with gyroscope, 

unscented Kalman filter, GPS 
Higher accuracy 

Involves higher computation 

to compute steering angle 

Dabove et al. [28] 
Receiver effectiveness with 

GPS 

Discussion of different variants of 

GPS-based receiver and antenna 
Simplified discussion 

It does not conclude the best 
performing receiving in 

adverse environmental 

condition 

Marucci et al. [29] Effectiveness of using GNSS 
An experimental model 
combining RTK with GNSS 

Improved accuracy of 
trajectories 

It does not deal with 

heterogeneous environments 

of farming 

V
R

T
 

Nordblom et al. [33] 
Search for the reason for 
waterlogging 

Simulation-based study 
Simplified probability 
model, risk analysis 

Region-specific study 

Steffani [34] 
Risk analysis of cotton 

production 
Statistical modeling Simplified risk analysis Region-specific study 

Kweon et al. [35] 
Testing of organic matter of 

soil 

Prototyping, field study, sensors, 

linear regression (multivariate) 
Comprehensive analysis 

Computational complexity is 

higher and not addressed 

Colaco& Molin [36] Fertilization of citrus 
Discussion of variable rate 
fertilization, yield map 

Reduction in input, 
Study-specific to region and 
crop 

Nawar et al. [37] Zone delineation management 
Discussion of various techniques 

and their contribution 

Pin-pointed findings to 

prove increased yield 

It does not discuss the 

inclusion of high-end 
analytics 

Thomasson et al. [38] Automation technologies 
Discussion of robotics and 

automation in PA 

Discusses the importance 

of robotics in PA 

It does not discuss the 

significant approach 

G
R

S
 

North et al. [42] Boundary delineation 
Image segmentation, feature 

extraction 

Higher suitability towards 

the classification of land 
Area-specific study 

Uddin et al. [45] Health monitoring of crop 
Drone with IoT, dynamic 
clustering of data 

Wide applicability, cost-
effective 

Hypothetical model 

Xu et al. [46] Health monitoring of crop 
Scanning with terrestrial laser, 

cloud data 
Higher precision 

It does not support 

heterogeneous modeling 

Asad et al. [47] Index area mapping of leaf Deep learning 

The prediction does not 

demand high image 

resolution 

Iterative mechanism, 

Ashourloo et al. [48] 
Data collecting during remote 
sensing 

Time-series, support vector 
machine 

Assists in involuntary crop 
mapping 

Training time is higher. 

Fieuzal et al. [49] 

Lack of well-sampled data in 

time series, analysis of leaf 
area index 

Combined analysis of satellite 

data and agrometeorological data 

Effective simulation of 

temporal feature 

Study restricted to specific 

crop (sunflower) 

Hempattarasuwan et al. 

[51] 
Wetland classification Integrated classification approach 

Decision tree found to 

offer higher accuracy 

This leads to computational 

complexity 

Pan et al. [52] Analysis of multispectral data 
Integrating leaf area index and 

water content, neural network 
Good accuracy 

It does not include the 

environmental uncertainty 

factor 

Patil et al. [53] Water productivity assessment Energy balance for surface Lower predictive errors Specific to desert farming 

Zafari et al. [55] Classification of land Randomized tree, kernel 
Able to solve high-

dimensional data 

Study-specific to support 

vector machine 

(Shen et al. [56]). Crop type classification Deep learning Reliable map generation 

Does not address the 

computational complexity of 

training. 
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Dong et al. [57] Assessing vegetation index 
Algorithm for extracting 

reflectance of active chlorophyll 

Capable of assessing the 

impact of vegetation 
impact 

Study-specific to chlorophyll 

Gimenez et al. [58] Classification of land usage 
Integrating remotely sensed data 

with a model of land management 

Increasing accuracy in the 

information of land usage 
Increased processing time 

Ali et al. [60] Biomass estimation Machine learning 
Enhanced estimation 

approach 

Accuracy depends upon the 
amount of trained data, 

presence of anomalies from 
the satellite signal 

A
S

S
 

Duan et al. [61] 
Real-time control on 

machinery 
Fuzzy Logic 

Improve accuracy in 

steering 

It depends upon ruleset 

construction 

Fu et al. [62], Liu et al. 
[64], Mungwongsa et al. 

[66] 

Automated steering Electro-hydraulic steering, sensor Reduced response time Lacks smart feature 

Ghobadpour et al. [63] Automated steering Renewable energy system Discusses increasing trend 
It does not highlight the 
effective approach 

Gonzalez-de-Santos et 

al. [67] 
Intelligent farming Robotics 

Discusses autonomous 

robots 
Research gap not identified 

Wang et al. [68], Yin et 
al. [65] 

Autonomous robots Embedded system Good accuracy No benchmarking 

III. WSN IN PRECISION AGRICULTURE 

With the advent of the dominant adoption of sensors, 
current research work towards PA has been revolutionized 
more toward incorporating smart sensing. One of the prime 
motivations towards this research trend is the increasing 
awareness of Internet-of-Things (IoT), where sensors are 
integral. IoT is one dominant research topic for improving 
agricultural yields (Kour and Arora [69]). It has contributed 
towards opening avenues for smart farming and PA, although 
there is some dominant research gap (Kour and Arora [69]). In 
this aspect, various forms of sensors have also been 
investigated towards PA, where it is found that support vector 
machine and random forest are dominant classification 
approaches (Kamath et al. [70]). Apart from this, there is also 
dedicated research work being carried out where machine 
learning approaches are claimed to optimize IoT performance 
in PA to facilitate predictive operation for farming. 

With the adoption of various sensors for capturing field 
information, the data are forwarded using various IEEE 
standards of the family (e.g., 802.15.4/11 as seen in the work of 
Kone et al. [71]), which further forwards it to the gateway node 
and then to cloud where the application of analytics resides 
(Ahmed et al. [72]). The study offers some specific information 
that was not found in conventional PA-based approaches, e.g., 
i) energy being one of the practical constraintsof using sensors 
in PA, and ii) routing and topology is another essential 
operation, which is also challenged in adverse environmental 
condition. There are various MAC protocols in wireless sensor 
networks [72], but they do not combine to ensure downlink 
scheduling, multi-hop decisions, heterogeneous duty cycles, 
and traffic adaptive. To perform a full scenario to capture 
environment information of farming process, all this 
characteristic is demanded in IoT. The adoption of IoT 
technology in PA is depicted in Fig. 6. The figure shows how 
sensor devices, gateways, and WiFi technology integrated with 
cloud infrastructure enableIoT-PA ecosystems. There are 
basically severalwireless sensor nodes deployed in the farm 
and agriculture fields in rural regions. The sensor nodes capture 
significant events related to agriculture and send them to the 

cloud computing system via WiFi and gateway-based 
networking systems. The sensed data collected to the cloud is 
further stored and processed by an analytics engine and fog 
networking to enable framers managing farms to boost the 
quality and quantity of products and optimizes the cost 
associated with human labor required. However, in this 
scenario, the biggest impediment is a trade-off concerning 
supportability and efficiency between the protocols in IoT and 
Wireless Sensor Network (WSN). 
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Fig. 6. Adoption of IoT in PA. 

The most recent study carried out by Gulec et al. [73] has 
discussed improving the lifetime of WSN focusing on PA in a 
distributed environment. The study uses connected dominating 
sets as a backbone of communication in WSN considering 
harvester and regular sensors in farming. The study outcome is 
obtained from both experimental and simulated versions stating 
that the proposed system is energy efficient. Existing research 
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shows certain dedicated attempts to model WSN in PA with 
uniform sensory node distribution over the farming area. The 
work carried out by Bacco et al. [74] has developed a channel 
model that is used by the ground sensors to perform data 
transfer. However, the emphasis was more on the usage of 
IEEE standards and less on WSN. Adopting the heterogeneous 
sensor network is witnessed in Sylvian et al. [75] and 
Kaiwartya et al. [76]. In this work, prototyping is carried out 
using different sensors to capture different information 
associated with farm fields and crops. 

Further, WSN also claims to offer a decision support 
system for facilitating water usage (Khan et al. [77]). A 
prototype is designed where the temperature is used for 
environmental monitoring in PA. The study analyzes the 
consumption of current while functioning over different 
degrees of temperatures. Importance over plant water is 
another investigation in the existing system, an essential part of 
the leaf sensing system in WSN with PA. The current study 
claims that the adoption of backscatter-based sensor nodes 
could enhance the PA performance from the perspective of 
power-saving (Daskalakis et al. [78]). The study has also used 
Morse code, which is computationally cost-effective for carrier 
signal modulation. Focus on power saving can also be 
implemented using non-orthonormal multiple access in WSN 
(Hu et al. [79]). The study outcome shows that this mechanism 
significantly controls outage probability and the rate of 
summed data. 

The majority of the existing studies emphasize estimating 
soil parameters in PA; however, the modeling attributes are 
less emphasized towards power. A study on such issues is 
carried out by Estrada-Lopez et al. [80], where a WSN 
topology is constructed using both cloud and IoT considering 
soil parameters. The data analysis is carried out by an artificial 
neural network followed by using a unique power management 
scheme. Apart from the terrestrial application, the adoption of 
WSN is also carried out over the underground ecosystem. 
Salam et al. [81] have developed such a system to model 
channel impulse. The study has also analyzed various time-
domain attributes, e.g., gain in multipath power, channel 
capacity, delay, etc. A study on a similar direction towards the 
underground ecosystem is also investigated by Castellanos et 
al. [82], where soil parameters are collected using a narrow-
band communication scheme of Long Term Evolution (LTE). 
The study uses unmanned aerial vehicles to collect data from 
underground sensors over the potato crop field. Another study 

of the underground ecosystem is carried out by Sambo et al. 
[83], where a path loss model is presented along with 
predictive framework development using a complex dielectric 
constant. 

Deployment of WSN in PA was also claimed to enhance 
productivity by using dataloggers and actuators (Lozoya et al. 
[84]). The current study of WSN is also focused on 
incorporating intelligence in the process of irrigation in PA. 
The work carried out by Jamroen et al. [85] has developed an 
irrigation scheduling mechanism using fuzzy logic in WSN. 
The outcome witnessed an increase in crop yield. The current 
study also discusses the usage of WSN for assisting in 
localizing in PA. Sahota and Kumar [86] have implemented a 
model where the received signal strength has been used for 
distribution over WSN. The study develops a node localization 
model considering distance propagation invarious degrading 
effective over the signal considering fading and path loss 
model. The study contributes to predicting loss in nitrogen. A 
similar received signal strength-based approach for assisting in 
localization has also been carried out by Abouzar et al. [87]. 
This study has used a spanning tree for developing belief 
propagation. 

A unique concept towards promoting energy harvesting in 
PA is discussed by Konstantopoulos et al. [88]. According to 
this study, the electric potential produced within a plant is used 
as a power source for WSN. The study uses nonnegative matrix 
factorization to process this electric potential signal. From the 
viewpoint of power saving, it is also found that data registers' 
frequency plays a crucial role. The energy-saving in WSN can 
be facilitated using this data register frequency variation to 
impact PA (Santos and Cugnasca [89]). Another essential 
factor to be considered is the presence of partitioned sensors in 
PA, which leads to disruption in the network. The work carried 
out by Maheswararajah et al. [90] hypothesizes that the 
presence of such nodes leads to noise in the measurement. A 
Kalman-filter-based optimization strategy is developed to 
restore such nodes. Existing literature further hypothesizes that 
monitoring environmental values is essential when deploying 
WSN in PA. The work of Kampianakis et al. [91] has 
presented a prototype that employs the networking principle of 
sensor nodes (especially modulation of analog frequency) 
along with software-defined radio. 

The summary of the practical approaches in WSN in PA is 
tabulated in Table II. 
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TABLE II. SUMMARY OF WSN-BASED PA APPROACHES 

Author Problem Methodology Advantages Limitation 

Gulec et al. [73] Network lifetime 
Connected dominating sets, solar 

energy harvesting 
Reduced energy consumption 

Lacks considering different 

resource retention 

Bacco et al. [74] Coverage and Connectivity Channel model Simplified design 
Only focus on IEEE 802.15.4 

usage 

Sylvian et al. [75], Kaiwartya 
et al. [76] 

Health monitoring of crops Multi-sensor prototype Effective field measurement Lacks benchmarking 

Khan et al. [77] 
Water utilization in the 

farming area 
Decision support system Higher accuracy 

does not consider energy 

factor 

Daskalakis et al. [78] Plant water monitoring Backscatter Power saving 
Cost is still incurred in the 

usage of multiple equipments 

Hu et al. [79] Enhancing Network lifetime 
Non-Orthonormal Multiple 
Access 

Reduces outage probability 
Not applicable for the sparse 
network. 

Estrada-Lopez et al. [80] 
Power management, soil 

parameter estimation 

Artificial neural network, cloud, 

IoT 

Enhanced reliability and 

better system performance 

The study uses a specific 

sensor node, which demands 
more training for accuracy. 

Salam et al. [81] 

Underground channel 

development in WSN for 
assessing soil health 

Assessing impulse response 

Approach with practical 

constraints, reduced energy 
depletion, reduced delay 

The routing aspect is not 

considered in WSN 

Castellanos et al. [82] Computation of link quality 
Narrow-band communication, 

path loss model 

Applicable for both under and 

above ground operation 

It does not ensure scalability 

owing to the defined range. 

Sambo et al. [83] 
Underground monitoring in 
PA 

Path loss model, predictive Higher accuracy 
Performs a highly iterative 
operation 

Jamroen et al. [85] Irrigation scheduling Fuzzy logic 
Reduces energy consumption, 

increased crop yield 

Increased dynamic attributes 

may cause an increase in 
fuzzy rules 

Sahota and Kumar [86], 

Abouzar et al. [87] 

A crop network architecture 

in PA 

Received signal strength, 

maximum likelihood 

Resistive against multipath 

fading 

Cannot sustain over 

intermittent links in WSN 

Konstantopoulos et al. [88] Energy harvesting Nonnegative matrix factorization 
Highly cost useful energy 
source 

Workability over extensive, 

dense, and uncertain network 

is not evaluated 

Maheswararajah et al. [90] The partitioned node in WSN Kalman Filter Reduced error rate 

Error computation is 

resource-dependent and 

hence not scalable for large 

networks. 

Kampianakis et al. [91] Environmental monitoring 
Prototyping, software-defined 
radio 

Higher precision 
It demands excessive power 
consumption 

IV. REVIEWING RESEARCH TREND 

From the perspective of the global trend, it is seen that IoT, 
along with the inclusion of software and different variants of 
sensing technology, is going to minimize the skilled labors in 
agriculture in the coming days. The global market is not 
consistently evolving with the rise of real-time kinetic 
technology, remote sensing technology, networking, variable 
rate technology, robotics, and fertilizers and sprayer 
controllers. 

A. Trend in PA Research 

The last decade has witnessed approximately 1710 research 
papers in PA approaches while only 230 are found to be 
journals in IEEE Xplore digital library. A nearly similar trend 
is found in other reputed publishers like ACM digital library, 
Springer, ScienceDirect, and Elsevier. There are very few 
studies towards automated steering systems, while more 
studies are populated in the adoption of satellite positioning 
systems (GPS, GNSS). Not much work is carried out towards 
variable rate technology. However, some potential work in a 

large number has been carried out towards remote sensing and 
soil mapping. More inclination is seen towards remote sensing 
approaches using hyperspectral images or other equivalent 
forms of images from an unmanned flying object (drones).  
However, the trend is more on adopting a single crop field is 
extensively more investigated, and multi-crop land is less 
found in consideration, which could impedeupcoming research 
work. Agriculture 4.0 is an upcoming standard for automating 
PA; however, studies show few implementations associated 
with such upcoming standard formulation. Image processing 
remains the dominant approach, and its adoption is consistently 
increasing; however, there is a shift of this approach with data-
centric technologies in IoT. 

B. Trend in Technological Adoption 

The present scenario of implementation in PA is highly 
scattered. More work is carried out using prototyping, and less 
mathematical or computational modeling is noticed. Adoption 
of machine learning or artificial intelligence is also found to be 
less prominent in this aspect. Although machine learning has 
been used in existing studies, it is not evaluated fromits 
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computational complexity. The engineering area, e.g., robotics, 
embedded system, machinery compilation, etc. is more 
focused, limiting investigation strength and giving less 
exposure to unknown challenges in PA. Adopting IoT and 
WSN has just started its research work, and it has more way to 
go to achieve its state of maturity as a research standard model. 
The development of a test-bed for analyzing farming data is 
another inclusive research trend in PA. 

C. Trend in Target Issues 

The issues mainly considered in the existing system in PA 
are mainly associated with environmental monitoring. The 
existing research trend is also to consider a specific issue 
connected with a specific crop, making the model heavily case-
specific and less applicable to different environments. Data 
acquisition is another target issue considered in the existing 
research trend in PA. Different techniques have been carried 
out towards acquiring data. However, less emphasis is offered 
to analyze this collected data. The trend towards analytics over 
multi-crop land is less found. Adopting sensors integrated with 
different networking principles also assists in data acquisition; 
however, there are various open-end challenges associated, 
e.g., non-inclusion of the energy model makes such a solution 
limited to theoretical concepts. 

V. DISCUSSION AND PERSPECTIVE 

Based on the observation being carried out towards 
conventional approaches used in PA and the upcoming 
adoption of WSN in PA, it is noticed that there are various 
concluding remarks associated with the overall techniques used 
in PA. This section briefs about the learning outcomes of the 
proposed review work as follows: 

 A tradeoff between Demands and Available 
Technology: A closer look into the available 
approaches shows that PA needs to consider multiple 
attributes simultaneously, e.g., soil health, plant-related 
features, surrounding environment, and weather. There 
are many more sub-attributes for this core attribute, 
which require equal attention for improved crop 
cultivation and environmental risk reduction. All the 
existing approaches using a conventional approach or 
WSN based approaches use only a limited number of 
such attributes in modeling its PA. On the other side, 
there has been an immense advancement in prototyping 
as well as computational modeling. However, 
prototyping is the most dominant approach in PA in 
existing studies. Hence, the demand to offer productive 
PA performance is immensely more which are not 
found to be considered while modeling with existing 
technological advancement. 

 Lack of Uncertainty-based Modelling: There are 
various attributes like crop health, rainfall, 
temperature, soil health, etc. they are stochastic. 
Existing approaches focus on modeling predefined 
ecosystems, which is more or less impractical than 
real-world scenarios. There isa various uncertain 
scenario that could develop either using conventional 
or WSN based approaches, e.g. rate of energy 
depletion,incoming streamed data, mobile of 

machinery, occlusion in GPS-based data, etc. Until and 
unless such uncertainty conditions are not included in 
the modeling, the outcome may eventually result in 
outliers.  Apart from this, various studies where 
machine learning has been used do not consider this, 
leading to its solution inapplicable to real-time 
application. 

 Use Case Specific Study: Almost all the existing PA 
approaches have considered a specific use case of crop 
or study environment (e.g., soil health, water, 
temperature, etc.). On the other side, the conventional 
study approach has focused on the adoption of specific 
machinery. The modeling is carried out considering a 
specific form of crops using any of the approaches in 
PA. This means that there is no generalized algorithm 
to solve a similar problem when environmental 
variables change. It also incurs more cost when it 
comes to deploying commercial products and their 
adoption. It is only cost-effective of a simplified model 
(or product) that can address multiple PA problems 
altogether. 

 Less Emphasis over Routing: Routing or deploying a 
communication protocol is significant usingthe larger 
farming area with challenging communication 
scenarios (e.g., forest, terrain, etc.). It is already 
observed that the adoption of the hybrid approach is 
the most effective one to mitigate the limitation of 
single-approach. For example, GPS integrated with 
sensor nodes or drones could offer more effective data 
capture than considering any of them. This also means 
that there isa good possibility of hybridizing different 
types of machinery and different nodes to facilitate an 
effective data transmission in PA. However, this 
challenge can be addressed if a unique routing protocol 
is designed and developed for such a scenario. No 
studies are being carried out in evolving a novel 
routing scheme in PA;instead, it reuses the adopted 
techniques' routing scheme. This also offers more 
impediments towards data transmission when the farm 
environment is subjected to priority-based data 
transmission or exercising specific time-critical 
applications. 

 IoT and WSN still in the Nascent Stage: IoT is slowly 
making its entry from the roof of research and 
development to the commercial world. Apart from this, 
the study shows that most PA approaches have a 
deployment of sensor nodes for soil mapping, remote 
sensing, etc. (conventional approach in PA), but they 
do not have a deployment of WSN, which makes a 
network of sensors. With the inclusion of automation 
standard 4.0, there is a need for smart farming using 
IoT, which is still under development. Apart from this, 
WSN is an integral part of IoT. However, there has 
been immense work towards addressing multiple 
problems in WSN in past decades, and their solutions 
are not directly applicable in IoT. There is always a 
tradeoff between IoT and WSN with the inclusion of 
IoT based routing scheme and WSN based routing 
scheme that requires smooth integration. Hence, 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 2, 2021 

314 | P a g e  

www.ijacsa.thesai.org 

current approaches in WSN on PA aresignificantly less 
and insignificant in contrast to conventional PA 
approaches. 

 Lack of inclusion of Resource: Sensor nodes of any 
form are characterized by the limited capability of 
processing as well as they have limited availability of 
resources too (e.g., memory, channel capacity, energy, 
etc.). None of the existing studies where WSN is 
considered in PA has any inclusion of novel resource 
management model exclusively focusing on constraints 
associated with PA's farming environment. Without the 
inclusion of the resource factor, modeling any solution 
will be more impractical. 

 Few Studies towards Optimization: By optimization, it 
can represent a technique that offers increased 
performance yield with low inclusion/dependencies of 
resources. Machine learning has been used for this 
purpose to some extent. At present, many optimization-
based approaches fit on solving various problems 
associated with PA. A closer look into the existing 
system also shows that it does not ensure 
computational cost-effectiveness in its algorithm. 
Hence, the adoption of appropriate optimization 
techniques is highly demanded. 

VI. CONCLUSION 

The manuscript discusses the PA approaches and 
techniques that are mainly associated with implementing a 
management scheme towards facilitating effective responses 
toward crops, measurement, and observation towards animals 
and fields. Adoption of PA leads to enhanced yields in the 
crop, cost reduction, and process input optimization. However, 
there are various challenges associated with it. There is an 
inclusion of higher initial capital to implement PA in real-time, 
and such investment is carried out for long-term plans. In order 
to reach the PA implementation maturity stage, several years 
may be consumed prior to even possessing adequate data to 
implement even the conventional approaches completely. The 
final challenge in PA implementation is its data aggregation 
followed by an analysis, which could be an extensively 
demanding task. Based on the presented findings of existing 
research work, it could be just said that effective 
implementation of PA demands i) precise management, 
ii) identification and adoption of appropriate technology, and 
iii) data. 

1) Overall summary: The essential findings of the proposed 

study are summarized as follows: i) existing approaches of PA 

has an increasing concern over interoperability of different 

innovative systems and tools, ii) adoption of PA by ordinary 

farmers will be a big task as the technologies involved in it are 

highly advanced and require a thorough knowledge of it, 

iii) despite various studies using IoT, narrowband, GPS, WSN, 

etc., coverage and connectivity in rural areas will be a 

potentiallytricky task, iv) An appropriate PA implementation 

leads to generate a massive score of big farming data which is 

impossible to analyze from a single data point in the crop field.  

With the increasing adoption of multi-crop land, there will be 

massive growth of data and understanding the significance and 

priority of such data will be near to impossible for average 

farmers in existing times, v) IoT and WSN is the most 

promising technology in PA, but adoption of current schemes 

only induces scalability problems along with troublesome 

configuration issues, vi) there is a lack of mathematical 

modelling seen in the existing system using WSN, which has 

better future scope. 

2) Future work: The future direction of work will consider 

adopting IoT and WSN, which is the most demanding 

upcoming technology for reshaping the existing system to 

Farming 4.0. In this context, the next work is to design and 

develop an IoT scenario with multi-crop land powered by 

heterogeneous WSN. The focus will be first to include all real-

time constraints, e.g., energy, coverage and connectivity, 

resource management of the sensors. The secondary focus is to 

formulate a novel routing scheme thatoffers flexibility, 

scalability, and resource efficiency. It is also necessary to 

perform the complete modeling using the computational model, 

considering its applicability to practical world scenarios. The 

inclusion of multiple challenging test-bed and an effective 

validation technique could further offer more reliability to PA's 

upcoming solution. 
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