
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

591 | P a g e

www.ijacsa.thesai.org

Using Behaviour-driven Requirements Engineering

for Establishing and Managing Agile Product Lines
An Observational Study

Heba Elshandidy
1
, Sherif Mazen

2
, Ehab Hassanein

3
, Eman Nasr

4

Information Systems Department

Faculty of Computers and AI, Cairo University, Cairo, Egypt
1, 2, 3

Independent Researcher, Cairo, Egypt
4

Abstract—Requirements engineering in agile product line

engineering refers to both common and variability components

establishing a software. Although it is conventional for the

requirements engineering to take place in a dedicated upfront

domain analysis phase, agile-based environments denounce such

a proactive behaviour. This paper provides an observational

study examining a reactive incremental requirement engineering

approach called behaviour-driven requirements engineering. The

proposed approach uses behaviour-driven development to

establish and maintain agile product lines. The findings of the

study are very promising and suggest the following: the approach

is easy to understand and quick to learn; the approach supports

the constantly changing nature of software development; and

using behaviour-driven requirements engineering produces

reliable and coherent requirements. In practice, the

observational study showed that using the proposed approach

saved time for development team and customers, decreased costs,

improved the software quality, and shortened the time-to-

market.

Keywords—Agile product line engineering; behaviour-driven

requirements engineering; observational study; requirements

engineering

I. INTRODUCTION

Agile product line engineering (APLE) has been gaining a
momentum throughout the past decade due to its faster
delivery, lesser time-to-market, and more involvement for
customers in every development cycle. APLE is the resulting
approach of merging agile software development (ASD) and
software product line engineering (SPLE); that term was
formally coined at the first APLE’06 Workshop [1]. The
purpose of APLE is to overcome the weaknesses of both
paradigms (i.e., ASD and SPLE) while maximizing their
benefits. A software product line (SPL) is a family of software
products that share a common set of features (i.e., core assets)
in addition to the unique features (i.e., variability) associated to
each product in the family that satisfy the different needs of the
customers [2]. Thus, it is intuitive to deduce that agile product
lines (APLs) are SPLs that are either developed in an entirely
ASD environments or in traditional environments that adopt
some of the ASD practices. ASD, on the other hand, is a group
of incremental and iterative software development
methodologies that advocate quick clean software delivery and
customers’ involvement throughout the project lifetime [3].
The work in this paper focuses on behaviour-driven

development (BDD) which is an ASD process that encourages
the collaboration between the different stakeholders (i.e.,
customers, quality assurance, developers, etc.) of a software
project [4].

According to the studies in [5,6], there are eleven factors
that contribute to the success of a software project. While eight
of those factors are related to requirements engineering (RE),
ten of them are related to ASD. RE is the process of
identifying, analysing, documenting, and managing user
requirements [7,8]. The overlapping between the RE-related
and the ASD-related project’s success factors indicates that
they share the same goals. Thus, it is most likely that having an
agile-based requirements engineering process highly increases
the possibility of having a successful software project.

Having realised the advantages of APLE as a development
approach and the critical role of RE in a project’s success, it is
inquisitive to know whether it is feasible to achieve an
incremental agile-based RE approach for APLs using BDD in a
real-life empirical case study.

The rest of the paper is organised as follows: Section II
explains BDD in further details while Section III briefs the
reader about related work. Section IV summarises the proposed
behaviour-driven requirements engineering (BDRE) approach.
Section V presents the conducted observational study.
Section VI discusses the results of the study. Finally,
Section VII concludes the paper.

II. BACKGROUND

BDD was created to overcome the shortcomings of test-
driven development (TDD). In particular, the starting point of
testing, when and what to test, how much to test, understanding
why a test fails, the need to have naming conventions for tests,
and knowing whether a specification is met or whether the
code delivers a business value [4]. BDD combines the general
methods and practices of TDD with concepts from domain-
driven design and objected-oriented analysis and design [4].
This provides a shared process and a common understanding to
all the involved stakeholders (i.e., developers, designers, etc.).
Thus, helps them to successfully collaborate on software
development with well-defined outputs. As a result, BDD is
capable of delivering working and tested software in shorter
time-to-market while better managing traceability between the
different artefacts of the system [4].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

592 | P a g e

www.ijacsa.thesai.org

BDD has six main characteristics [4,9]:

 Ubiquitous language: which is a common language that
enables customers and development teams to
communicate without ambiguity. That language
contains all the terms that will be used to define the
behaviour of the systems. Although the structure of
such languages emerges from the business domain
model, BDD has its own pre-defined domain-
independent ubiquitous language.

 Iterative decomposition process: since it is often
difficult for the development team to find a starting
point through which they can collect the customers’
requirements, BDD works in an iterative manner to
resolve that issue. Although the customers themselves
might not have a clear view of the requirements they
need, they surely know the business values and the
behaviour they expect from the software project. As a
consequence, the analysis process in BDD starts with
the identification of the expected behaviour of the
system, based on the intended business outcomes,
which is later decomposed into a set of features. Each
feature is then realised by a set of user stories and each
user story is further described through a set of
scenarios. A scenario is a specific instance of a
particular user story that describes an actual context and
output for that user story.

 Plain text description with User Story and Scenario
templates: features, user stories, and scenarios are
represented in plain text predefined templates using the
BDD ubiquitous language. For example, to write a
story, the following template is used:

[UserStoryTitle] (One line describing the story)

As a [Role]

I want a [Feature]

So that [Benefit]

To write a scenario, the following template is used:

Scenario 1: [Scenario Title]

Given [context]

And [Some more contexts]

 When [Event occurs]

 Then [Outcome]

And/But [Some more outcomes]

While a user story describes an activity that is done by
a user in a given role, the scenario describes how the
system should behave when it is in a specific state for a
specific feature and an event happens. Both user stories
and scenarios are directly mapped to tests.

 Executable acceptance tests (EATs) with mapping rules:
acceptance tests (ATs) in BDD is the satisfaction
condition(s) that determines whether the behaviour of a
particular feature is successfully achieved. BDD

inherits the characteristic of executable testing from
automated TDD, where ATs are regarded as automated
specifications that verify the behaviour/interaction of
the object rather than its state. Mapping rules provide a
standardised way of mapping from scenarios to test
codes, thus, facilitates managing traceability between
the different artefacts of the system.

 Readable behaviour oriented specification code: BDD
emphasises the importance of including the code in the
system’s documentation. Thus, the code should be
readable and the specifications should be part of the
code. The mapping rules help produce readable
behaviour oriented code.

 Cross-cutting through the different software
development phases: at the planning phase, the business
outcomes are mapped to behaviours, where they are
then decomposed into a set of features in the analysis
phase. Then at the implementation phase, the EATs take
place in which testing classes are derived from
scenarios.

III. RELATED WORK

The APLE literature tackled various problems for the
different RE activities (i.e., requirements elicitation, analysis,
modelling, verification and validation, and management). After
thoroughly studying the APLE RE literature and to the best of
our knowledge, none of the previous efforts in this area
proposed a RE solution that was based on BDD.

Additionally, all the attempts [10-27], except for the efforts
in [28-31], focused on adopting ASD practices in already
existing SPLE environments. These efforts are placed on the
other spectrum of our work which is focusing on building and
managing APLE in established agile-based environments.

As a further matter, there were no efforts in the literature
that offered a reliable RE solution that addressed the five
activities of the RE process. Although there was an all-
inclusive RE solution attempt [13,14] in the literature, the
authors did not validate their work through either a theoretical
or a practical case study. Additionally, the authors collected
their data from managers only and disregarded the perspective
of the other stakeholders. Thus, directly violates the values of
ASD where the perspectives of all the involved stakeholders
should be taken into consideration throughout the development
lifetime. Finally, none of the literature mentioned in this paper
conducted a real-life empirical study to validate the respective
proposed work.

The aforementioned research gaps were further confirmed
by five systematic literature reviews [32-36]. These studies
concluded that RE was not addressed properly or sufficiently in
APLE regardless of the agility degree of the used development
approach. Based on these findings and in addition to the crucial
role of RE in the success of software projects, it has become
imperative to have a systematic lightweight RE approach to
reactively and incrementally develop and manage APLs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

593 | P a g e

www.ijacsa.thesai.org

IV. SUMMARY OF THE BDRE APPROACH

The BDRE approach depends on BDD to have an
incremental evolutionary flexible RE process. The full details
about the BDRE approach are available in [37]. In BDRE, it is
assumed that business goals, both functional and non-
functional, are already identified and available for the
development team to start their RE process. Generally,
business goals are derived from the business need of finding
solutions for a particular business problem.

The BDRE approach consists of five key activities:
requirements elicitation, analysis, modelling, validation and
verification, and management. Each activity is briefed as
follows:

 Requirements elicitation: This is the first step in the
BDRE approach where the work starts outside-in. The
input to this activity is the set of solution hypotheses for
the already identified business problem. The
development team uses prototyping to determine the
relevancy of the proposed solutions set to the
underlined business goal. After agreeing on the final set
of solution, the development team determines the scope
of the system accordingly. After that, the development
team and the customer’s representative decide the initial
set of features, reflecting the needed behaviour of the
system-under-development (SUD), to be developed in
the next iteration. This concludes the elicitation activity
with that initial set of features as an output.

 Requirements analysis: This is the second activity in the
BDRE approach where the initial user requirements are
further examined. The initial set of features from the
previous activity in addition to the already existing
features, of other products in the same SPL, are fed as
an input for the analysis activity. The personnel
representing the roles of business analyst, developer,
and quality assurance conduct specifications workshops
(aka. the three Amigo’s meetings) to further analyse
and negotiate that given inputs. Firstly, they examine
the relevancy and the clarity of the given features in
comparison to the business goals. Then, they come to a
consensus on which features to consider as core assets
and which ones to consider as variabilities. In case they
detect an abnormality in the given requirements, they
may go back to the requirements analysis activity for
further inspection. Otherwise, they conclude this
activity by producing an initial set of user stories for
each core asset/variability feature.

 Requirements modelling: This is the third step in the
BDRE approach with the initial set of user stories,
produced at the analysis activity, as an input. The main
goal of this activity is to illustrate each user story by an
example. This is achieved through developing a series
of real scenarios with actual values for each user story.
After meetings and negotiations, the development team
finalises the initial set of scenarios (i.e., the output of
this activity) for each user story of each feature. If a
scenario or a user story needs further clarification, the
development team may go back to the analysis activity.

Otherwise, they proceed to the next step in the BDRE
approach.

 Requirements validation and verification (V & V): This
is the fourth step in the BDRE approach. The three
Amigo’s meetings take place again for refining the
scenarios, produced from the modelling activity,
according to their relevancy and importance. The
purpose of this activity is to make sure that all the
scenarios are done. To ensure that this happens, all the
associated test cases of each scenario must successfully
pass. Before producing the final set of scenarios, the
development team negotiates and discusses all the
examples with the customer’s representative. In case of
a disagreement, the three Amigos may decide to go
back to the modelling activity or start over from the
elicitation activity based on the severity level of the
situation. Otherwise, the development team automates
the produced final set of scenarios; thus, producing
executable (aka. automated) specifications. The output
of this V & V activity is the actual implementation, till
the current development iteration, of the SUD.

 Requirements management: This is a cross-cutting
activity in the BDRE approach through which all the
other activities of the approach are maintained and
managed.

V. OBSERVATIONAL STUDY

This section presents an evaluation to investigate the
feasibility and usefulness of the proposed BDRE approach.

A. Research Instruments

A research instrument is a tool that is used to measure,
obtain, and analyse data subjects. Research instruments could
be qualitative, quantitative, or a mix. In this observational
study, a mixed approach seemed to be the better option as our
level of understanding and familiarity with the product-under-
study evolved throughout the lifetime of the development. The
following are the research instruments [38] we used:

 Qualitative Methods: A qualitative research instrument
is an exploratory tool that is used to have a better
understanding of the subject at hand. It provides an in-
depth look into the problem and/or helps developing
ideas or solution hypotheses. In this research, we used
two qualitative methods:

o Observation: When using the observation research

instrument, the observer can play the role of either

a participant-observer or an observer participant. A

participant-observer becomes a member of the

community being observed; thus, enables them to

earn the right to participate in the various activities

accordingly. An observer participant, on the other

hand, is treated as a visitor who can only observe

the behaviour and the working environment of the

development team, with no actual participation in

their activities. Most of the time, we were an

observer participant with few participations in

some hands-on activities.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

594 | P a g e

www.ijacsa.thesai.org

o Interviews: They are an integrated part of any

agile-based environment. Interviews are basically

a set of questions, regardless of their form (i.e.,

structured, semi-structured, unstructured, or a

mixed-form interviews), with respective answers.

Although agile advocates face-to-face

communications, this might not be feasible at all

times in practice. Alternatively, interviews can be

mediated via telephones or other electronic means.

We mainly used three types of interviews: in-

depth interviews, face-to-face interviews, and

discussion groups.

 Quantitative Methods: Quantitative research
instruments are techniques that transform data from
opinions/feelings into numbers and consequently from
being subjective into being objective. One of the most
popular quantitative research instruments is
questionnaires. In this technique, questions can be in the
format of multiple choices, dichotomous, short answers,
checkboxes, drop-down, rating scales, and more.
Depending on the research needs, one or more question
formats can be adapted. In this research, we used the
rating scale questions format. In this format, a
participant is required to give an answer based on a
well-defined evenly spaced range.

B. Working Environment

We tested the proposed approach in a small-sized (i.e., 100
– 200 employees) start-up agile-based company that is based in
Egypt. The company has an intensive experience in agile
development; in particular, Lean and Scrum agile methods.

The company focuses on the main agile practices such as
iterative and incremental development; refactoring; automated
testing; short iterations; pair programming; self-organising
cross-functional teams; continuous deployment; progressive
discovery; user story maps; and objectives and key results.

As the BDRE approach shares the same already
implemented agile practices in place, the development team
welcomingly embraced the proposed approach.

C. The Product under Development: RevoSuite

RevoSuite is a Business-to-Business Enterprise Software-
as-a-service (SaaS). It is an artificial intelligence (AI)-enabled
customer relationship management (CRM)/customer lifecycle
management (CLM)/business intelligence (BI) system for
pharmaceutical and life sciences businesses. The development
of the product started in 2012 and evolved throughout the
years. New enhancements are still added to the product despite
being realised in the market late 2012.

D. The Observational Study Goal

The goal of this observational study is to investigate the
feasibility of the BDRE approach in a real-life industrial case
study. The elements of the observational study are inferred
from the values of BDD. Table I lists the five elements of the
observational study and the required observation from each one
of them.

The participants in this study volunteered to take a part in
our observational study. All the participants, except for the
customer’s representative, have worked on RevoSuite
throughout its lifetime. The total number of volunteering
participants is 24, categorised as follows: six business analysts,
eleven developers, six quality assurance, and one customer’s
representative.

Prior to starting the observational study, we explained the
BDRE approach to the participants and offered them training
on how to implement the approach. Afterwards, the
participants took parts in various complexity pilot projects
throughout the RevoSuite different development iterations.
Thus, enabled us to monitor and observe the participants’
performance. Additionally, we developed a questionnaire
addressing the elements listed in Table I in further details and
asked our participants to anonymously answer the
questionnaire from the perspective of each one’s role.

TABLE I. OBSERVATIONAL STUDY ELEMENTS

Study Element Required Observation

Learnability

Whether the participants are able to use the BDD

ubiquitous language to express features, user stories, and
scenarios

Coherence
Whether the participants are able to produce consistent

outputs compared to that of the required business goals

Restrictions/Co
nflicts

Whether the participants are able to find all the explicit

and implicit constraints and conflicts through executable

specifications

Evolution

Whether the participants are able to start a feature,

integrate new changes as they come in, and eventually
deliver the feature in a manner consistent with the

behaviour expected by the customer.

Readability
Whether the participants are able to read and understand

the documentation, including the code, of the system.

VI. RESULTS AND DISCUSSION

This section presents and discusses the results of both the
pilot projects and the questionnaire.

A. Pilot Projects Results

The participants’ performance was measured by two
factors: the time spent on each feature from beginning to end;
and the uniformity of their output compared to that expected by
the respective business goal. In general, the time spent on each
feature was directly proportional to the complexity degree of
that feature. Consequently, the time spent in high-complexity
pilot projects varied between double to tribble that of the low-
complexity projects. Despite that, the performance of all the
participants was almost consistent regardless of the complexity
of the features. The only exception was for the one customer’s
representative whose performance was inversely proportional
to the complexity of the feature at hand.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

595 | P a g e

www.ijacsa.thesai.org

In projects with low-medium complexity, we observed that:

 Learnability: almost all the participants were able to
successfully use the BDD ubiquitous language to
illustrate features, user stories, and scenarios.

 Coherence: more than 80% of the participants were able
to have consistent outputs to those of the required
business goals.

 Restrictions and conflicts: more than 75% of the
participants were able to deduce all the explicit
restrictions and conflicts. However, only half of them
were able to spot all the implicit constraints.

 Evolution: more than 80% of the participants were able
to start a feature, integrate new changes as they merge,
and eventually deliver the feature (i.e., a core asset or a
variability) in consistency with the expected behaviour
of the system.

 Readability: all the participants were able to read and
understand the system’s documentation with minor
difficulties.

In projects with high complexity, on the other hand, the
participants spent more time on the features although they
attained the same performance as that of the low-medium
complexity projects. The only exception was the customer’s
representative whose performance dropped as the complexity
of the feature increased.

B. Questionnaire Results

We used a five points Likert-scale, ranging from strongly
disagree to strongly agree, to record the questionnaire
responses. Fig. 1 illustrates the average responses per role for
each question in the questionnaire. According to the recorded
responses, the participants have come to a consensus that the
BDRE approach is flexible, easy to understand, and easy to
apply in practice. Some participants, however, shared their
concerns about the potentiality and reliability of the BDRE
approach in terms of scalability or when used with more
complex systems. Lastly, finding implicit constraints was
tricky and out of the comfort zone for some developers as well
as for the customer’s representative.

VII. CONCLUSION

APLE is increasingly gaining momentum in software
development. Nonetheless, adopting APLE in practice calls for
a special focus on RE. We proposed the BDRE approach to
provide a flexible lightweight incremental RE process through
using BDD throughout the different activities of RE. In this
paper, we presented an observational study to examine five
aspects of the BDRE approach in an empirical real case study.
The results of the study were encouraging and shed the light on
the strengths and weaknesses of the approach.

ACKNOWLEDGMENT

The authors would like to thank RevoSuite Company for
their guidance and cooperation throughout the conduction of
the observational study presented in this paper.

Fig. 1. Average Responses per Role to the Likert-Scale Questions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

596 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] K. Cooper, X. Franch, “APLE First International Workshop on Agile
Product Line Engineering”. IEEE Computer Society, pp. 205–206.
Silver Spring, USA, 2006.

[2] K. Pohl, G. Böckle, F. Linden, Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Germany 2005.

[3] L. Williams, A. Cockburn, Agile Software Development: It’s About
Feedback and Change, Computer 36(6), 39–43, 2003.

[4] D. North, Introducing BDD Available at:
http://dannorth.net/introducing-bdd, 2006, last accessed 2018/1/1

[5] L. Westfall, Software Requirements Engineering: What, Why, Who,
When and How?, Retrieved from
http://www.westfallteam.com/Papers/The_Why_What_Who_When_and
_How_Of_Software_Requirements.pdf, last accessed 2018/11/12

[6] Standish Group, The CHAOS Report 2015, Retrieved from
https://www.standishgroup.com/sample_research, last accessed
2015/10/2

[7] G. Kontonya, I Sommerville, Requirements Engineering: Processes and
Techniques. John Wiley & Sons, 1998.

[8] M. Chemuturi, Requirements Engineering and Management for
Software Development Projects. Springer Publishing Company, 2012.

[9] D. Astels, A new look at test driven development.
http://techblog.daveastels.com/files/BDD_Intro.pdf, last accessed
2019/3/1

[10] M.A. Noor, R. Rabiser, P. Gr nbacher, “A collaborative approach for
reengineering-based product line scoping”, In: the 1st International
Workshop on Agile Product Line Engineering (In conjunction with
SPLC), 2006.

[11] M.A. Noor, R. Rabiser, P. Gr nbacher, Agile Product Line Planning: A
Collaborative Approach and a Case Study, Journal of Systems and
Software, Vol. 81(6), pp. 868–882, 2007.

[12] M.A. Noor, P. Gr nbacher, C. Hoyer, “A collaborative method for reuse
potential assessment in reengineering-based product line adoption”, In:
Balancing Agility and Formalism in Software Engineering. LNCS, vol.
5082, pp. 69–83. Springer, Heidelberg, 2008.

[13] K. Feng, M. Lempert, Y. Tang, K. Tian, K. Cooper, X. Franch,
“Developing a survey to collect expertise in agile product line
requirements engineering”, In: Agile 2007 Conference, International
Research-in-Progress Workshop on Agile Software Engineering, pp. 1–
4, 2007.

[14] K. Feng, Towards an Agile Product Line Requirements Engineering
Framework: Knowledge Acquisition and Process Definition, Ph.D.
Dissertation, The University of Texas at Dallas, 2009.

[15] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, M. Toro,
Automated Error Analysis for the Agilization of Feature Modeling,
Journal of Systems and Software, vol. 81(6), pp. 883–896, 2008 .

[16] R. Paige, X. Wang, Z. Stephenson, P. Brooke, “Towards an agile
process for building software product lines”, In: Proceedings of the 7th
International Extreme Programming and Agile Processes in Software
Engineering, Springer, Heidelberg, pp.198–199, 2006.

[17] G. Kakarontzas, I. Stamelos, P. Katsaros, “Product line variability with
elastic components and test-driven development”, In: Proceedings of the
2008 International Conference on Computational Intelligence for
Modelling Control and Automation, IEEE Computer Society. 146–151,
2006.

[18] M. Raatikainen, K. Rautiainen, V. Myllärniemi, T. Männistö,
“Integrating product family modeling with development management in
agile methods”, In:Proceedings of the 1st International Workshop on
Software Development Governance, pp. 17–20, 2008.

[19] L. Taborda, The Release Matrix for Component-Based Software
Systems, In: Proceedings of Component-Based Software Engineering,
LNCS, vol. 3054, pp. 100–113, Springer, Heidelberg, 2004.

[20] R. Kurmann, “Agile SPL-SCM agile software product line configuration
and release management”, In: 1st International Workshop on Agile
Product Line Engineering (In conjunction with SPLC), 2006.

[21] R. Carbon, M. Lindvall, D. Muthig, P. Costa, “Integrating product line
engineering and agile methods: flexible design up-front VS. incremental
design”, In: Proceedings of the 1st International Workshop on Agile
Product Line Engineering In conjunction with SPLC, pp. 1–8, 2006.

[22] R. Carbon, J. Knodel, D. Muthig, G. Meier, “Providing feedback from
application to family engineering – The product line planning game at
the Testo AG”, In: Proceedings of the 12th International Software
Product Line Conference, IEEE Computer Society, pp. 180–189, 2008.

[23] P. O’Leary, M.A. Babar, S. Thiel, I. Richardson, “Product derivation
process and agile approaches: exploring the integration potential”, In:
Proceedings of the 2nd IFIP Central and East European Conference on
Software Engineering Techniques. pp. 166–171, 2007.

[24] P. O’Leary, M.A. Babar, S. Thiel, I. Richardson, “Towards agile product
derivation in software product line engineering”, In: Proceedings of the
4th International Workshop on Rapid Integration of Software
Engineering Techniques, pp. 19–32, 2007.

[25] P. O’Leary, S. Thiel, G. Botterweck, I. Richardson, “Towards a product
derivation process framework”, In: Proceedings of the 3rd IFIP TC2
Central and East European Conference on Software Engineering
Techniques, pp. 189–202, 2008.

[26] P. O’Leary, F. McCaffery, I. Richardson, S. Thiel, “Towards agile
product derivation in software product line engineering”, In:
Proceedings of the 16th European Conference on Software Process
Improvement, pp. 81–86, 2009.

[27] P. O’Leary, R. Rabiser, I. Richardson, S. Thiel, “Important issues and
aey Activities in product derivation: experiences from two independent
research projects”, In: Proceedings of the 13th International Software
Product Line Conference, pp. 121–130, 2009.

[28] Y. Ghanam, S. Park, F. Maurer, “A test-driven approach to establishing
and managing agile product lines”, In: Proceedings of the 5th Software
Product Lines Testing Workshop in conjunction with SPLC’08, pp.
151–156, 2008.

[29] Y. Ghanam, F. Maurer, “An iterative model for agile product line
engineering”, In: The SPLC Doctoral Symposium, 2008 - in conjunction
with the SPLC’08, pp. 377–384, 2008.

[30] Y. Ghanam, F. Maurer, “Extreme product line engineering: managing
variability and traceability via executable specifications”, In: Agile
Conference, AGILE ’09, IEEE Computer Society, pp. 41–4, 2009.

[31] Y. Ghanam, F. Maurer, “Extreme product line engineering refactoring
for variability: a test-driven approach”, In: Proceedings of 11th
International IV Conference on Agile Processes in Software Engineering
and Extreme Programming, XP 2010, LNBIP, vol. 48, pp. 43–57,
Springer, Heidelberg, 2010.

[32] F. F. Farahani, R. Ramsin, “Methodologies for agile product line
engineering: a survey and evaluation”, In: Proceedings of the 13th
International Conference SoMeT_14, Amsterdam: IOS Press BV,
pp.545-564, 2014.

[33] I.F. da Silva, P. Neto, P. O'Leary, E. de Almeida, S.R. de Lemos Meira,
Agile Software Product Lines: A Systematic Mapping Study, Software:
Practice and Experience, vol. 41(8), pp. 899–920, 2011.

[34] J. Díaz, J. Pérez, P.P. Alarcón, J. Garbajosa, Agile Product Line
Engineering – A Systematic Literature Review, In: Software Practice
and Experience, vol. 41(8), pp. 921–941, 2011.

[35] V. Alves, N. Niu, C. Alves, G. Valença, Requirements Engineering for
Software Product Lines: A Systematic Literature Review, In:
Information and Software Technology, vol. 52(8), pp. 806–820, 2010.

[36] D.F.S. Neiva, RiPLE-RE: A Requirements Engineering Process for
Software Product Lines, M.Sc. Dissertation, Universidade Federal de
Pernambuco, Brazil, 2009.

[37] H. Elshandidy, “Behaviour-driven requirements engineering for agile
product line engineering”, In: Proceedings of the 2019 IEEE 27th
International Requirements Engineering Conference (RE), Jeju Island,
Korea (South), pp. 434-439, 2019.

[38] R. Trigueros, M. Juan, F. Sandoval, Qualitative and Quantitative
Research Instruments Research tools, 2017.

http://dannorth.net/introducing-bdd
http://techblog.daveastels.com/files/BDD_Intro.pdf

