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Abstract—Data Clustering is an interesting field of 

unsupervised learning that has been extensively used and 

discussed over several research papers and scientific studies. It 

handles several issues related to data analysis by grouping 

similar entities into the same set. Up to now, many algorithms 

were developed for clustering using several techniques including 

centroids, density and dendrograms approaches. We count 

nowadays more than 100 diverse algorithms and many 

enhancements for each algorithm. Therefore, data scientists still 

struggle to find the best clustering method to use among this 

diversity of techniques. In this paper we present a survey on 

DBSCAN algorithm and its enhancements with respect to time 

requirement. A significant comparison of DBSCAN versions is 

also illustrated in this paper to help data scientist make decisions 

about the best version of DBSCAN to use. 

Keywords—Unsupervised learning; clustering; density 

clustering; DBSCAN 

I. INTRODUCTION 

The fast development of the internet and the availability of 
cheap mobiles, smart sensors and social networks applications 
allow users to generate a huge amount of data continuously. 
This rapid increase of data volume makes several domains 
difficult to be understood easily using only human 
capabilities. However many algorithms for clustering have 
been developed to guide data scientists to analyse and to 
understand data despite its volume. Nowadays, these 
algorithms play a crucial role in several sophisticated systems 
and applications including recommender systems, medical 
applications, face recognition, environmental assessment and 
anomalies detection [1][2][3][4][5]. To better understand any 
phenomena under investigation, clustering algorithms must 
extract correct and efficient statistics and trends, which is a 
very hard task, because results are often influenced by the 
nature of the real-world data which can be sparse, dense, 
spatial, high dimensional or even noisy. Therefore, algorithms 
must handle all complicated issues generated by data such as 
supporting volume increases, improving the scalability, 
processing high dimensional space, dealing with shaped 
structure and detecting outliers. The quality of clustering is 
also mainly influenced by the choice of the initial parameters 
such as number of clusters or the density radius. Thus, 
algorithms must vanish, optimize or even detect the 
parameters to use in order to detect meaningful clusters. To 
deal with all mentioned difficulties in real cases, many 
clustering approaches were raised including partitioning 

methods [6], hierarchical methods [7] and density based 
methods [8], etc. 

In this paper, we are interested in density-based clustering, 
where clusters are defined by areas in which the density of the 
data points is high and clusters are separated from each other 
by areas of low density. We will focus especially on the 
DBSCAN algorithm [8] which can process spatial data 
efficiently and it can discard outliers properly. DBSCAN is a 
very simple and reliable technique, however it suffers from 
many limitations including its high complexity       , its 
sensitivity to the local density variation, its dependence on 
initial parameters and its scalability failures. Therefore, it has 
undergone several improvements to make it efficient and to 
avoid its bastard chaos as effectively as possible. For instance, 
I-DBSCAN [9] and FDBSCAN [10] enhance the time 
requirement and minimize the deviation of results, MR-
DBSCAN [11] improves scalability and deals with heavily 
skewed data and HDBSCAN [12] solves initial parameters 
issues, etc. We propose a comparison guide for all DBSCAN 
enhancements related to the complexity criterion and a 
repository for all DBSCAN versions related to time 
requirement is also presented in this work. 

This paper is organized mainly in 4 sections: Sections 1 
and 2 contains a brief refresh related to the clustering concept 
followed by an in-detail description about DBSCAN. 
Section 3 discusses the well-known DBSCAN improvements 
according to time complexity. Section 4 presents a comparison 
between DBSCAN versions based on time criteria. 

II. CLUSTERING TECHNIQUES 

This section contains a brief description of partitional, 
hierarchical and density based clustering. 

Clustering is the process of affecting each data object to a 
group based on the distance computation or on the similarity 
between each pair of observations. It is considered as the main 
process for many fields including image processing, pattern 
recognition, statistical data analysis and other business 
applications. Clustering methods can be broadly divided into 
several types including partitional, hierarchical, density based 
clustering, etc. 

A. Partitional Clustering 

Clustering has taken its roots from the partitioning method 
K-mean [6] which organizes all observations into an already 
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known number of groups (K). Each cluster is represented by 
its mean called centroid and objects are affected to the nearest 
cluster centroid. This method iterates many times over all 
observations to minimize the following objective function: 

   ∑ ∑||    ||
 

    

 

   

 

 

Where    is a Set of observations from a dataset,    
               , k is the number of clusters and     is the 
mean of points in   . 

K-mean is based on a very simple computation technique, 
however it is sensitive to outliers, data shapes and it assumes 
that clusters have roughly equal numbers of observations. In 
some cases, as mentioned in Fig. 1, it can lead to bad or even 
surprising results. Fig. 1(b), (f) and (d) are wrong clustering 
results. 

The K-means method has relatively low time complexity 
and high computing efficiency, but it finds only compact and 
spherical shapes and it is still not suitable for non-convex data. 
Additionally, it needs prior knowledge about the number of 
clusters (K), it selects randomly the initial centroids. Thus, 
many improvements were done to overcome the limitations 
aforementioned such as the Partitioning Around Medoids 
(PAM) [13], Clustering Large Applications (CLARA) [14], 
and K-means for outlier detection [15]. Despite all efforts 
made, this type of clustering is not used when groups of data 
are expected to differ in size and shape, when the number of 
clusters is not known and when data contains noises. For 
instance, hierarchical and density clustering are explored to 
discover arbitrary shaped and meaningful clusters from large 
amounts of spatial data by preserving the spatial proximity of 
data objects. 

B. Hierarchical Clustering 

Hierarchical techniques seek to organize data objects into a 
tree structure representation called dendrogram. They are 
based on the computation of a symmetric distance matrix and 
they use some properly defined partitioning methods such as 
Ward's method [16], single or complete linkage. Several 
algorithms were invented under this type of clustering such as 
CURE [17] such as BIRCH [18]. 

As mentioned in Fig. 2, hierarchical techniques can be 
agglomerative or additive depending on where the algorithm 
starts processing the tree, from the top or from the bottom. 
Once the tree is built, hierarchical algorithms make splits in 
the additive processing or merge in agglomerative processing 
in order to find clusters. These cuts or merges decisions must 
be made properly thereby the quality of clusters will be better. 
For instance, as illustrated in Fig. 2, the level of cutting 
defines the number of clusters to detect. The first level gives 
rise to two clusters while the second one creates four clusters.   
Hierarchical algorithms are easy to understand and to 
implement. However, they rarely provide accurate results for 
mixed data types, they work poorly on very large data sets, 
they involve lots of arbitrary decisions and unfortunately, no 
adjustment can be performed once a merge or split decision 
has been executed. Many exceptions detected in partitioning 

and hierarchical clustering can be handled by using a density 
based clustering illustrated in the next section. 

C. Density based Clustering 

Density-Based Clustering refers to finding contiguous 
regions with high density among the dataset. 

As mentioned in Fig. 3, these regions should be separated 
by low density regions called sparse regions. The idea behind 
such algorithms is that the clusters are represented by the 
detected dense regions and data objects in the sparse regions 
are typically considered noise/outliers. 

In the next sections of this paper, we will focus on the 
most popular and the most cited density based algorithm (over 
19430 times) called Density-Based Spatial Clustering of 
Applications with Noise [8]. 

 

Fig. 1. K-Means Clustering Samples. 

 

Fig. 2. Hierarchical Clustering Dendrogram. 
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Fig. 3. Example for DBSCAN Clustering. 

III. DBSCAN BASIS 

A. Definitions 

DBSCAN received many scientific awards such as the 
test-of-time award from the leading data-mining conference 
KDD2014 for its good performance and its significant 
accuracy in clustering spatial data. The main purpose of 
DBSCAN is to detect arbitrary shaped clusters within a large 
data set and to effectively distinguish noises. It measure the 
density at any object O by counting the number of objects 
falling in a hyper sphere S(O, ) where   is a radius measured 
by an Euclidean distance. A region delimited by S(O, ) is 
considered dense if the object O satisfies the following 
equation: 

                     

                                        

       is the  -neighbourhood of the object O and MinPts 
is the minimum number of points required to be present in the 
region to make hyper sphere S(O, ) dense. 

So, if objects share the same dense S(O, ) then they 
belong to the same cluster. As mentioned before and to decide 
if a region is dense or sparse, this algorithm uses two 
parameters: an Euclidean distance threshold   and a positive 
integer parameter MinPts. 

 

Fig. 4. .DBSCAN Core, Border and Noise Points. 

As described below, DBSCAN introduces many 
definitions to categorize data objects into core, border or noisy 
objects [8]. 

DEFINITION 1: Core objects 

An object O is considered core object if the number of 
objects inside the hyper sphere S(O, ) is greater than MinPts 
parameter value. The points B, G, M are core objects in cluster 
1 and V is a core object cluster 2. 

DEFINITION 2: Border objects 

An object is border if it belongs to some ε-neighbours of 
some core objects and the number of its own ε-neighbourhood 
is less than MinPts value. Thus, an object O is considered as a 
border object if it belongs to a cluster without being a core 
object.  In Fig. 4, A,C,D,E,I,J,H,F,K,L,H,N and O  are border 
objects for cluster 1 and P,Q,R and S are border objects for 
cluster 2. 

DEFINITION 3: Noise objects 

If an object O is not a core or border object then it is 
considered as a noise or outlier. In Fig. 4, the points T, W, X, 
Z, and Y are outliers. 

DEFINITION 4: Directly Density reachability and Density 

reachability 

If an object O is a core object, so all objects within the ε-
neighbourhood of P are called directly density reachable 
objects from O. In Fig. 4, border objects A,C,D,E are directly 
reachable form the core point B and border objects P,Q,R,S 
are directly reachable from the core point V. 

Two objects O1 and On are density reachable, if a chain of 
objects O1, O2, …, On is found within the dataset where Oi+1 
is directly density-reachable from Oi with respect to the initial 
parameters ε, MinPts and        . For instance the chain A  
B  E  G  H  M  L, in Fig. 4, makes a density link 
between the objects A and L. Thus A and L are density 
reachable. 

DEFINITION 5: Maximality and Connectivity 

Maximality: If a core object O belongs to a cluster, then all 
the objects density-reachable from O also belong to the same 
cluster. 

Connectivity: If two objects O1, O2 belong to the same 
cluster so there is another object O in the same cluster such 
that both O1 and O2 are density-reachable from O. In Fig. 4, 
B and G are connected because they are density reachable 
through the chain BEG 

B. DBSCAN Algorithm 

Based on the previous definitions and the previously 
mentioned parameters   and MinPts, we illustrate the 
DBSCAN algorithm in Table I. 
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TABLE I. DBSCAN ALGORITHM 

DBSCAN ALGORITHM . DBSCAN( Data,ε,MinPts) 

ClusterId = 0; // a cluster identifier 

for each object O in Data do 

     if O is not marked as “seen” then 

           Mark O as “seen”; 

           Find Neighbors(ε,O,Data); // Neighbors of the object O using ε 
param  

           if  card(Neighbors(ε,O,Data))<MinPts then 

                 Mark O as “noise”; 

           else  

                 Mark O as “seen”; 

                 ClusterId = ClusterId +1; 
                 Mark each object of  Neighbors(ε,O,Data) with cluster identifier 

ClusterId; 

                 Add each object of Neighbors(ε,O,Data) which is not marked as 
“seen” to the queue(ClusterId) 

                 while queue(ClusterId) is not empty do  

                         Take an object P from queue(ClusterId)  and mark it as 

“seen” 

                         if card(Neighbors(ε,P,Data)>MinPts then  

                              Mark each object of Neighbors(ε,P,Data) with cluster 
identifier ClusterId; 

                              if any object of Neighbors(ε,P,Data) is marked “noise” 

then remove this mark. 
                              Add each object of Neighbors(ε,P,Data) which is not 

marked as “seen”  to  

                              queue(ClusterId) 

                         end if 
                         Remove y from queue(ClusterId) 

                   end while 

             end if 

         end if 

      end for 

Output all objects of Data along with their ClusterId or “noise” mark. 

The previous algorithm describes DBSCAN where 
“Neighbors (ε, P, Data)” is the sub-set of objects in “Data” 
that are present in the hyper-sphere of radius at S(P, ε). 
“Card(Neighbors(ε,P,Data)” is the cardinality of the set 
“Neighbors(ε,P,Data)”. Each object from “Data” is marked 
with a cluster identifier (ClusterId) which gives the cluster to 
which the object belongs or it is marked as “noise” indicating 
that the object is a noisy one. To distinguish between the 
objects which are processed from that which are not, the mark 
“seen” is used. Note that all objects of Neighbors(ε,P,Data) 
are initially marked as “noise”, except the object P,  then they 
can later become a border point of a cluster and hence the 
“noise” mark can be deleted. 

According to the previous description, we can easily notice 
that DBSCAN does not require the pre-determination of the 
number of clusters and it requires only two parameters to 
determine when a region is considered to be dense or sparse, 
however it still suffers from several limitations including its 
high complexity which can reach       , its failure with 
local density variation, its handicap related to data scalability 
and its huge memory consumption.  Many works have been 
adopted to bring a significant optimization of the DBSCAN 
algorithm and to overcome its major drawbacks. For instance, 
E. Schubert et al. [19] discussed the relationship of the 
indexability of the dataset and the quality of clusters. They 
proposed some indicators of bad parameters to guide data 
scientists in choosing appropriate parameters   and MinPts. 

For time reduction, B. Borah and D. K. Bhattacharyya used a 
sampling-based method [20] and J. Gan and Y. Tao used 
approximation techniques [21]. Derya Birant and Alp Kut 
tried to cover no spatial and spatial–temporal data by 
DBSCAN [22]. Moreover, other improvements were released 
to cluster in high dimensional space [23], to use parallel 
processing opportunities [24], [25] and to fix local density 
variation issues [26]. Knowing that complexity is a powerful 
criterion to decide about the efficiency of an algorithm, we 
propose a survey in the rest of this paper, a review of some 
well-cited DBSCAN extensions which significantly affect the 
time requirement. 

IV. DBSCAN COMPLEXITY ENHANCEMENTS 

Complexity criterion is among the ultimate indicators 
which qualify the efficiency of an algorithm. Thereby we 
decided to cover in this section some well-cited DBSCAN 
papers published between 2000 and 2019 and aiming to 
enhance the time requirement of the original algorithm. In the 
rest of this paper, “n” will represent the number of samples in 
the dataset and “d” will refer to the number of features 
studied. As mentioned in the first section, DBSCAN computes 
the empirical density for each dataset element and it measures 
mutual distances for the entire observations. Hence it requires 
a large volume of memory and a huge period of time to 
achieve large datasets clustering. Thus, it is qualified, by data 
scientists, as a very expensive algorithm and it is widely 
criticized due to its quadratic time requirement. Originally, 
Ester et al. [8] claimed that the DBSCAN will terminate in O 
(nlog(n)). However, the neighbourhood queries consume a big 

part of the running time. It requires ∑ |        |
   

 

      to measure distances between all objects regardless of 
the initial parameters MinPts and  . Fortunately, this time 
requirement can be reduced significantly to reach            
[27] if some suitable indexing structure is used such as R*-tree 
[28] where m is the number of entries in a page of R*-tree. 
However, the use of R*-tree is suitable only when the 
dimensionality of the data is low. Thereby, researchers are still 
trying to run DBSCAN in some subquadratic time (i) by 
reducing the queries time and (ii) by minimizing the number 
of queries needed. As results of their efforts, many new 
methods appeared including hybrid methods [9] [29] which 
used only some accurate objects as prototypes rather than 
using all dataset objects. This approximation used by the 
hybrid methods can, in some cases, lead to clusters with bad 
quality. In the next paragraphs, we will weigh the pros and 
cons of some well cited DBSCAN time reducing methods. 

B Borah et al. proposed IDBSCAN in 2004 to incorporate 
a sampling technique for searching the core object's 
neighbourhood. They used only outer objects as seeds and 
they ignored no representative objects. Therefore, they omit 
unnecessary queries by adding an extra function to the original 
algorithm based on Marked Boundary Objects (MBO) 
technique [20]. This function adds a complexity of O(sd) 
where s is the neighbourhood size. However, the overall 
complexity of IDBSCAN is            where m is the 
number of entries. Chen et al. [30] proposed an exact and 

approximate algorithm with                         time for 

high dimensional space and                   for two 
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dimensional spaces. P. Viswanath and Rajwala Pinkesh [9] 
proposed another fast hybrid density method called L-
DBSCAN based on leaders clustering technique [31]. They 
derived some representative objects at the coarser level and 
others at the finer level of the clustering process. Authors used 
a first category of leaders to reduce the time requirement and 
second category to optimize the deviation of the results. This 
hybrid scheme uses only a set of pairs denoted by    
             |     where ℓ is a leader and ℒ a set of 
leaders. According to experiments showed by the authors, L-
DBSCAN can run in            where k represents the 
number of derived leaders which is much smaller than n. 
However, this technique can give raise to big margin error, 
when a leader is not originally dense but it is estimated dense 
according to ℒ*. This method reduces the computation time, 
but it requires two additional thresholds: τc and τf. 

P. Viswanath and V. Suresh Babu [29] enhanced the 
density approximation of leaders in their technique called 
rough-DBSCAN by combining the leaders clustering method 
[31] and the rough set approach [32]. They added a mapping 
between every leader and its belonging objects (followers). 
This mapping is represented by ℒ* = {(followers (l), count 
(l)} where l is a leader form ℒ. Then, they used a lower and 
upper approximation, as shown in equation 1, 2 and 3, to find 
the exact neighbours of a leader        . 

          
         

                 
                 (1) 

          
       ∪              

    
           (2) 

          
       ∪              

    
            (3) 

               | ||    ||      

             | ||    ||        

Rough-DBSCAN needs only          where k is the 
number of leaders, but it improves the clustering quality by 
minimizing the approximation error. 

FDBSCAN [33] is another non-linear searching algorithm 
proposed by B. Liu, in 2007, to reduce redundant searching by 
using a fast merging algorithm. It sorts objects using 
dimensional coordinates and then selects only unlabelled 
objects outside a core object's neighbourhood in order to 
decrease region queries. Another interesting paper is 
proposed, in the same year, by Yi-Pu Wu et al. [34] to 
optimize the process of Nearest Neighbour Search by using 
Locality-Sensitive Hashing (LSH) technique. Authors used the 
hash collisions to detect and represent similarities between 
two objects A and B form a dataset D. On the other hand, to 
capture object similarity they compute the probability 
distributions over a set of hash functions ℋ as             
             where     and S is a similarity function 
defined as            . This LSH algorithm makes a 
significant decrease in DBSCAN running time which becomes 
O (N) and maintains the quality of detected clusters [35]. 

Cheng-fa Tsa and Chien-Tsung Wu, inspired by the fast 
merging method of FDBSCAN [33], proposed the GF-
DBSCAN algorithm to segment data into several grid-cells 
and to limit the neighbourhood searches only to the cell scope 

instead of exploring the entire grid. They merge clusters if 
they are intersected and the overlapping objects include some 
core object. By introducing this grid approach and this 
merging process, GF-DBSCAN minimizes significantly the 
number of searches and increases the clustering accuracy [36]. 
Gunawan [27] demonstrated that DBSCAN‟s performance can 
be improved to           by applying the following process 
in order (i) partitioning data using a grid-cell (ii) determining 
all core points (iii) merging density-connected core points into 
clusters and finally (iiii) determining border points and noise. 
He used the hash table to discard cells without any point. 
However this faster algorithm is experimented only in two 
dimensional space. Therefore, J.Gan and Y.Tao extend 

Gunawan‟s thesis to   and they get a running time of 

           
 

           nd      
(  

 

[
 
 ]  

  )

            
where the parameter δ specifies the accuracy of the 
approximation. J.Gan and Y.Tao also proposed a new 
algorithm called ρ-approximate suitable for large datasets 

which can be computed in an expected time of  (
 

    ) . They 

are inspired by Chen et al.‟s paper [30] which already 
discussed how to compute DBSCAN in            
        . 

GPUs opportunities and parallelization strategies are also 
used by some algorithms including G-DBSCAN algorithm 
[37] to speed up the original algorithm. G-DBSCAN 
constructs firstly a data graph G(O, E) where O are objects 
(nodes) connected by edges E if they are within a minimum 
proximity R (threshold parameter) of each other. Then it 
identifies clusters by using breadth-first search (BFS) 
technique [38]. Thereby, a complexity of O (n + ne) is added 
by the BFS search where „ne‟ is the number of edges. G-
DBSCAN uses graphics processing units (GPU‟s) capabilities 
to achieve acceleration greater than 100×, but unfortunately it 
doesn't reduce the original complexity. 

The DBSCAN neighbour search operation can be 
optimized by using a graph-based index structure method, as 
demonstrated by K. Mahesh Kumar, and A. Rama Mohan 
Reddy [39]. Their idea is to prune out outliers objects early to 
vanish unnecessary distance computations which may be 
introduced by noises. RNN-DBSCAN [40] uses reverse 
nearest neighbour counts and k nearest neighbour graph 
traversals to estimate observation density. It reduces 
complexity of DBSCAN by using a single parameter (choice 
of k nearest neighbours) and also improves the ability of 
handling large variations in cluster density (heterogeneous 
density). Mark de Berg et al. [41] presented another O (n log 
n) approximate algorithm for DBSCAN in two dimensional 
space. They represented data objects using a smaller box 
graph       where nodes are disjoint rectangular boxes with 
a diameter of at most ε and edges connect pairs of boxes 
within distance ε from each other. Then they detected another 
graph        including only core points where the connected 
components of        are considered as clusters. Mark de 
Berg et al. improved the quality of clusters by assigning 
borders to their nearest core point rather than the first cluster 
that finds them. Table II summarizes all aforementioned 
DBSCAN complexity enhancements. 
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TABLE II. TIME COMPLEXITIES OF THE WELL CITED DBSCAN VERSIONS 

Year Name Time  Method used Ref. 

1996 DBSCAN 

       
Density based 

technique  
[8]  

         R*-tree 

2000 
FDBSCAN: A fast 

DBSCAN algorithm 
         

Representative 
points 

technique 

[10] 

2004 IDBSCAN            

Marked 

Boundary 
Objects 

(MBO) 

[20] 

2005 

GEOMETRIC 

ALGORITHMS 

FOR DENSITY-
BASED DATA 

CLUSTERING 

 (   
 

   ) if 

d>=3 

                  
for d=2 

Computational 
geometry 

techniques. 

 -fuzzy 
distance 

[30] 

2006 L-DBSCAN 
           

K is the number of 

leaders 

Leaders 

Clustering 
Method [31] 

[9] 

2006 FDBSCAN          

Representative 

points 

technique 
kernel function 

[33] 

2007 

A Linear DBSCAN 

Algorithm Based 
On LSH  

   ) 

LSH : Locality 

sensitive 
hashing 

 [35] 

2009 Rough DBSCAN 
        

K is the number of 
leaders 

Set theory  
[32]  

leaders 
clustering 

method[31] 

[29] 

2009 GF-DBSCAN 

1/100 of the time 

cost of 
FDBSCAN 

Fast merging 

and 
Grid cells. 

[36] 

2010 TI-DBSCAN 

Up to three orders 

of magnitude 

faster than 
DBSCAN. 

Triangle 
Inequality 

property 

[42] 

2013 
A faster algorithm 

for DBSCAN 
         for d=2 

Grid partition 

Hash Table 
[27]  

2013 G-DBSCAN 

Over than 100x 

faster than its 

sequential version 
using CPU 

Data-graph 
(node and 

edges) 

breadth-first 
search BFS 

[38] 

[37] 

2015 
ρ-approximate 
DBSCAN  

         
 

  for 

d=3 

   
  

 

[
 
 ]  

  

  for 
d>3 

  is a small 
positive constant 

Approximation 
technique 

[21] 

2016 

A fast DBSCAN 

clustering algorithm 
by accelerating 

neighbour searching 

using Groups 
method 

improves the 

speed of 

DBSCAN by a 
factor of about 

1.5–2.2 

Graph-based 

method 
[39] 

2017 

Faster DBSCAN 

and HDBCAN in 

Low-Dimensional 
Euclidean Spaces 

         

            

Box graph 

method 
[41] 

V. CONCLUSION 

DBSCAN is a powerful technique for data clustering; 
however it still suffers from its huge time requirement which 
can reach       in the worst case.  This paper weighs the pros 
and cons of the well-known and well-cited DBSCAN 
variations with respect to the time requirement. We present the 
current state of art related to DBSCAN complexity and also 
we mentioned some techniques used to enhance the original 
version of the algorithm. According to the papers studied, 
researchers can use the leaders clustering method, Graph-
based method, breadth-first search BFS, Triangle Inequality 
Property or Locality sensitive hashing to bring new 
enhancements in this field. We noticed that DBSCAN 
complexity vary between      and      . Another analysis 
of all these DBSCAN variations based on real data 
experiments will be presented in our further works. 
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