
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

664 | P a g e

www.ijacsa.thesai.org

A Complexity Survey on Density based Spatial

Clustering of Applications of Noise Clustering

Algorithms

Boulchahoub Hassan
1
, Rachiq Zineb

2
, Labriji Amine

3
, Labriji Elhoussine

4

Laboratory of Systems Engineering (LaGeS), Hassania School of Public Works EHTP, Casablanca, Morocco
2

Department of Mathematics and Computer Science, Faculty of Sciences Ben M‟SIK, Casablanca, Morocco
1, 3, 4

Abstract—Data Clustering is an interesting field of

unsupervised learning that has been extensively used and

discussed over several research papers and scientific studies. It

handles several issues related to data analysis by grouping

similar entities into the same set. Up to now, many algorithms

were developed for clustering using several techniques including

centroids, density and dendrograms approaches. We count

nowadays more than 100 diverse algorithms and many

enhancements for each algorithm. Therefore, data scientists still

struggle to find the best clustering method to use among this

diversity of techniques. In this paper we present a survey on

DBSCAN algorithm and its enhancements with respect to time

requirement. A significant comparison of DBSCAN versions is

also illustrated in this paper to help data scientist make decisions

about the best version of DBSCAN to use.

Keywords—Unsupervised learning; clustering; density

clustering; DBSCAN

I. INTRODUCTION

The fast development of the internet and the availability of
cheap mobiles, smart sensors and social networks applications
allow users to generate a huge amount of data continuously.
This rapid increase of data volume makes several domains
difficult to be understood easily using only human
capabilities. However many algorithms for clustering have
been developed to guide data scientists to analyse and to
understand data despite its volume. Nowadays, these
algorithms play a crucial role in several sophisticated systems
and applications including recommender systems, medical
applications, face recognition, environmental assessment and
anomalies detection [1][2][3][4][5]. To better understand any
phenomena under investigation, clustering algorithms must
extract correct and efficient statistics and trends, which is a
very hard task, because results are often influenced by the
nature of the real-world data which can be sparse, dense,
spatial, high dimensional or even noisy. Therefore, algorithms
must handle all complicated issues generated by data such as
supporting volume increases, improving the scalability,
processing high dimensional space, dealing with shaped
structure and detecting outliers. The quality of clustering is
also mainly influenced by the choice of the initial parameters
such as number of clusters or the density radius. Thus,
algorithms must vanish, optimize or even detect the
parameters to use in order to detect meaningful clusters. To
deal with all mentioned difficulties in real cases, many
clustering approaches were raised including partitioning

methods [6], hierarchical methods [7] and density based
methods [8], etc.

In this paper, we are interested in density-based clustering,
where clusters are defined by areas in which the density of the
data points is high and clusters are separated from each other
by areas of low density. We will focus especially on the
DBSCAN algorithm [8] which can process spatial data
efficiently and it can discard outliers properly. DBSCAN is a
very simple and reliable technique, however it suffers from
many limitations including its high complexity , its
sensitivity to the local density variation, its dependence on
initial parameters and its scalability failures. Therefore, it has
undergone several improvements to make it efficient and to
avoid its bastard chaos as effectively as possible. For instance,
I-DBSCAN [9] and FDBSCAN [10] enhance the time
requirement and minimize the deviation of results, MR-
DBSCAN [11] improves scalability and deals with heavily
skewed data and HDBSCAN [12] solves initial parameters
issues, etc. We propose a comparison guide for all DBSCAN
enhancements related to the complexity criterion and a
repository for all DBSCAN versions related to time
requirement is also presented in this work.

This paper is organized mainly in 4 sections: Sections 1
and 2 contains a brief refresh related to the clustering concept
followed by an in-detail description about DBSCAN.
Section 3 discusses the well-known DBSCAN improvements
according to time complexity. Section 4 presents a comparison
between DBSCAN versions based on time criteria.

II. CLUSTERING TECHNIQUES

This section contains a brief description of partitional,
hierarchical and density based clustering.

Clustering is the process of affecting each data object to a
group based on the distance computation or on the similarity
between each pair of observations. It is considered as the main
process for many fields including image processing, pattern
recognition, statistical data analysis and other business
applications. Clustering methods can be broadly divided into
several types including partitional, hierarchical, density based
clustering, etc.

A. Partitional Clustering

Clustering has taken its roots from the partitioning method
K-mean [6] which organizes all observations into an already

https://paperpile.com/c/TzDPrL/plHia
https://paperpile.com/c/TzDPrL/plHia
https://paperpile.com/c/TzDPrL/4qb7W
https://paperpile.com/c/TzDPrL/4qb7W
https://paperpile.com/c/TzDPrL/0HJOX
https://paperpile.com/c/TzDPrL/WfMaO
https://paperpile.com/c/TzDPrL/J72hY
https://paperpile.com/c/TzDPrL/gYc5b
https://paperpile.com/c/TzDPrL/gYc5b
https://paperpile.com/c/TzDPrL/lezOx
https://paperpile.com/c/TzDPrL/4t5aw
https://paperpile.com/c/TzDPrL/Gnbx6
https://paperpile.com/c/TzDPrL/Bofz5
https://paperpile.com/c/TzDPrL/WfMaO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

665 | P a g e

www.ijacsa.thesai.org

known number of groups (K). Each cluster is represented by
its mean called centroid and objects are affected to the nearest
cluster centroid. This method iterates many times over all
observations to minimize the following objective function:

 ∑ ∑|| ||

Where is a Set of observations from a dataset,
 , k is the number of clusters and is the
mean of points in .

K-mean is based on a very simple computation technique,
however it is sensitive to outliers, data shapes and it assumes
that clusters have roughly equal numbers of observations. In
some cases, as mentioned in Fig. 1, it can lead to bad or even
surprising results. Fig. 1(b), (f) and (d) are wrong clustering
results.

The K-means method has relatively low time complexity
and high computing efficiency, but it finds only compact and
spherical shapes and it is still not suitable for non-convex data.
Additionally, it needs prior knowledge about the number of
clusters (K), it selects randomly the initial centroids. Thus,
many improvements were done to overcome the limitations
aforementioned such as the Partitioning Around Medoids
(PAM) [13], Clustering Large Applications (CLARA) [14],
and K-means for outlier detection [15]. Despite all efforts
made, this type of clustering is not used when groups of data
are expected to differ in size and shape, when the number of
clusters is not known and when data contains noises. For
instance, hierarchical and density clustering are explored to
discover arbitrary shaped and meaningful clusters from large
amounts of spatial data by preserving the spatial proximity of
data objects.

B. Hierarchical Clustering

Hierarchical techniques seek to organize data objects into a
tree structure representation called dendrogram. They are
based on the computation of a symmetric distance matrix and
they use some properly defined partitioning methods such as
Ward's method [16], single or complete linkage. Several
algorithms were invented under this type of clustering such as
CURE [17] such as BIRCH [18].

As mentioned in Fig. 2, hierarchical techniques can be
agglomerative or additive depending on where the algorithm
starts processing the tree, from the top or from the bottom.
Once the tree is built, hierarchical algorithms make splits in
the additive processing or merge in agglomerative processing
in order to find clusters. These cuts or merges decisions must
be made properly thereby the quality of clusters will be better.
For instance, as illustrated in Fig. 2, the level of cutting
defines the number of clusters to detect. The first level gives
rise to two clusters while the second one creates four clusters.
Hierarchical algorithms are easy to understand and to
implement. However, they rarely provide accurate results for
mixed data types, they work poorly on very large data sets,
they involve lots of arbitrary decisions and unfortunately, no
adjustment can be performed once a merge or split decision
has been executed. Many exceptions detected in partitioning

and hierarchical clustering can be handled by using a density
based clustering illustrated in the next section.

C. Density based Clustering

Density-Based Clustering refers to finding contiguous
regions with high density among the dataset.

As mentioned in Fig. 3, these regions should be separated
by low density regions called sparse regions. The idea behind
such algorithms is that the clusters are represented by the
detected dense regions and data objects in the sparse regions
are typically considered noise/outliers.

In the next sections of this paper, we will focus on the
most popular and the most cited density based algorithm (over
19430 times) called Density-Based Spatial Clustering of
Applications with Noise [8].

Fig. 1. K-Means Clustering Samples.

Fig. 2. Hierarchical Clustering Dendrogram.

https://paperpile.com/c/TzDPrL/IzY7f
https://paperpile.com/c/TzDPrL/ByGrE
https://paperpile.com/c/TzDPrL/dMnCU
https://paperpile.com/c/TzDPrL/7vdfk
https://paperpile.com/c/TzDPrL/imGaC
https://paperpile.com/c/TzDPrL/q0yvH
https://paperpile.com/c/TzDPrL/gYc5b

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

666 | P a g e

www.ijacsa.thesai.org

Fig. 3. Example for DBSCAN Clustering.

III. DBSCAN BASIS

A. Definitions

DBSCAN received many scientific awards such as the
test-of-time award from the leading data-mining conference
KDD2014 for its good performance and its significant
accuracy in clustering spatial data. The main purpose of
DBSCAN is to detect arbitrary shaped clusters within a large
data set and to effectively distinguish noises. It measure the
density at any object O by counting the number of objects
falling in a hyper sphere S(O,) where is a radius measured
by an Euclidean distance. A region delimited by S(O,) is
considered dense if the object O satisfies the following
equation:

 is the -neighbourhood of the object O and MinPts
is the minimum number of points required to be present in the
region to make hyper sphere S(O,) dense.

So, if objects share the same dense S(O,) then they
belong to the same cluster. As mentioned before and to decide
if a region is dense or sparse, this algorithm uses two
parameters: an Euclidean distance threshold and a positive
integer parameter MinPts.

Fig. 4. .DBSCAN Core, Border and Noise Points.

As described below, DBSCAN introduces many
definitions to categorize data objects into core, border or noisy
objects [8].

DEFINITION 1: Core objects

An object O is considered core object if the number of
objects inside the hyper sphere S(O,) is greater than MinPts
parameter value. The points B, G, M are core objects in cluster
1 and V is a core object cluster 2.

DEFINITION 2: Border objects

An object is border if it belongs to some ε-neighbours of
some core objects and the number of its own ε-neighbourhood
is less than MinPts value. Thus, an object O is considered as a
border object if it belongs to a cluster without being a core
object. In Fig. 4, A,C,D,E,I,J,H,F,K,L,H,N and O are border
objects for cluster 1 and P,Q,R and S are border objects for
cluster 2.

DEFINITION 3: Noise objects

If an object O is not a core or border object then it is
considered as a noise or outlier. In Fig. 4, the points T, W, X,
Z, and Y are outliers.

DEFINITION 4: Directly Density reachability and Density

reachability

If an object O is a core object, so all objects within the ε-
neighbourhood of P are called directly density reachable
objects from O. In Fig. 4, border objects A,C,D,E are directly
reachable form the core point B and border objects P,Q,R,S
are directly reachable from the core point V.

Two objects O1 and On are density reachable, if a chain of
objects O1, O2, …, On is found within the dataset where Oi+1
is directly density-reachable from Oi with respect to the initial
parameters ε, MinPts and . For instance the chain A
B E G H M L, in Fig. 4, makes a density link
between the objects A and L. Thus A and L are density
reachable.

DEFINITION 5: Maximality and Connectivity

Maximality: If a core object O belongs to a cluster, then all
the objects density-reachable from O also belong to the same
cluster.

Connectivity: If two objects O1, O2 belong to the same
cluster so there is another object O in the same cluster such
that both O1 and O2 are density-reachable from O. In Fig. 4,
B and G are connected because they are density reachable
through the chain BEG

B. DBSCAN Algorithm

Based on the previous definitions and the previously
mentioned parameters and MinPts, we illustrate the
DBSCAN algorithm in Table I.

https://paperpile.com/c/TzDPrL/gYc5b

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

667 | P a g e

www.ijacsa.thesai.org

TABLE I. DBSCAN ALGORITHM

DBSCAN ALGORITHM . DBSCAN(Data,ε,MinPts)

ClusterId = 0; // a cluster identifier

for each object O in Data do

 if O is not marked as “seen” then

 Mark O as “seen”;

 Find Neighbors(ε,O,Data); // Neighbors of the object O using ε
param

 if card(Neighbors(ε,O,Data))<MinPts then

 Mark O as “noise”;

 else

 Mark O as “seen”;

 ClusterId = ClusterId +1;
 Mark each object of Neighbors(ε,O,Data) with cluster identifier

ClusterId;

 Add each object of Neighbors(ε,O,Data) which is not marked as
“seen” to the queue(ClusterId)

 while queue(ClusterId) is not empty do

 Take an object P from queue(ClusterId) and mark it as

“seen”

 if card(Neighbors(ε,P,Data)>MinPts then

 Mark each object of Neighbors(ε,P,Data) with cluster
identifier ClusterId;

 if any object of Neighbors(ε,P,Data) is marked “noise”

then remove this mark.
 Add each object of Neighbors(ε,P,Data) which is not

marked as “seen” to

 queue(ClusterId)

 end if
 Remove y from queue(ClusterId)

 end while

 end if

 end if

 end for

Output all objects of Data along with their ClusterId or “noise” mark.

The previous algorithm describes DBSCAN where
“Neighbors (ε, P, Data)” is the sub-set of objects in “Data”
that are present in the hyper-sphere of radius at S(P, ε).
“Card(Neighbors(ε,P,Data)” is the cardinality of the set
“Neighbors(ε,P,Data)”. Each object from “Data” is marked
with a cluster identifier (ClusterId) which gives the cluster to
which the object belongs or it is marked as “noise” indicating
that the object is a noisy one. To distinguish between the
objects which are processed from that which are not, the mark
“seen” is used. Note that all objects of Neighbors(ε,P,Data)
are initially marked as “noise”, except the object P, then they
can later become a border point of a cluster and hence the
“noise” mark can be deleted.

According to the previous description, we can easily notice
that DBSCAN does not require the pre-determination of the
number of clusters and it requires only two parameters to
determine when a region is considered to be dense or sparse,
however it still suffers from several limitations including its
high complexity which can reach , its failure with
local density variation, its handicap related to data scalability
and its huge memory consumption. Many works have been
adopted to bring a significant optimization of the DBSCAN
algorithm and to overcome its major drawbacks. For instance,
E. Schubert et al. [19] discussed the relationship of the
indexability of the dataset and the quality of clusters. They
proposed some indicators of bad parameters to guide data
scientists in choosing appropriate parameters and MinPts.

For time reduction, B. Borah and D. K. Bhattacharyya used a
sampling-based method [20] and J. Gan and Y. Tao used
approximation techniques [21]. Derya Birant and Alp Kut
tried to cover no spatial and spatial–temporal data by
DBSCAN [22]. Moreover, other improvements were released
to cluster in high dimensional space [23], to use parallel
processing opportunities [24], [25] and to fix local density
variation issues [26]. Knowing that complexity is a powerful
criterion to decide about the efficiency of an algorithm, we
propose a survey in the rest of this paper, a review of some
well-cited DBSCAN extensions which significantly affect the
time requirement.

IV. DBSCAN COMPLEXITY ENHANCEMENTS

Complexity criterion is among the ultimate indicators
which qualify the efficiency of an algorithm. Thereby we
decided to cover in this section some well-cited DBSCAN
papers published between 2000 and 2019 and aiming to
enhance the time requirement of the original algorithm. In the
rest of this paper, “n” will represent the number of samples in
the dataset and “d” will refer to the number of features
studied. As mentioned in the first section, DBSCAN computes
the empirical density for each dataset element and it measures
mutual distances for the entire observations. Hence it requires
a large volume of memory and a huge period of time to
achieve large datasets clustering. Thus, it is qualified, by data
scientists, as a very expensive algorithm and it is widely
criticized due to its quadratic time requirement. Originally,
Ester et al. [8] claimed that the DBSCAN will terminate in O
(nlog(n)). However, the neighbourhood queries consume a big

part of the running time. It requires ∑ | |

 to measure distances between all objects regardless of
the initial parameters MinPts and . Fortunately, this time
requirement can be reduced significantly to reach
[27] if some suitable indexing structure is used such as R*-tree
[28] where m is the number of entries in a page of R*-tree.
However, the use of R*-tree is suitable only when the
dimensionality of the data is low. Thereby, researchers are still
trying to run DBSCAN in some subquadratic time (i) by
reducing the queries time and (ii) by minimizing the number
of queries needed. As results of their efforts, many new
methods appeared including hybrid methods [9] [29] which
used only some accurate objects as prototypes rather than
using all dataset objects. This approximation used by the
hybrid methods can, in some cases, lead to clusters with bad
quality. In the next paragraphs, we will weigh the pros and
cons of some well cited DBSCAN time reducing methods.

B Borah et al. proposed IDBSCAN in 2004 to incorporate
a sampling technique for searching the core object's
neighbourhood. They used only outer objects as seeds and
they ignored no representative objects. Therefore, they omit
unnecessary queries by adding an extra function to the original
algorithm based on Marked Boundary Objects (MBO)
technique [20]. This function adds a complexity of O(sd)
where s is the neighbourhood size. However, the overall
complexity of IDBSCAN is where m is the
number of entries. Chen et al. [30] proposed an exact and

approximate algorithm with time for

high dimensional space and for two

https://paperpile.com/c/TzDPrL/9JgBI
https://paperpile.com/c/TzDPrL/Rf2RW
https://paperpile.com/c/TzDPrL/9e40q
https://paperpile.com/c/TzDPrL/cm0y0
https://paperpile.com/c/TzDPrL/mAu22
https://paperpile.com/c/TzDPrL/JhuMR+zULX4
https://paperpile.com/c/TzDPrL/Bjp5Z
https://paperpile.com/c/TzDPrL/gYc5b
https://paperpile.com/c/TzDPrL/TOLQB
https://paperpile.com/c/TzDPrL/8HlBL
https://paperpile.com/c/TzDPrL/lezOx
https://paperpile.com/c/TzDPrL/KjLMA
https://paperpile.com/c/TzDPrL/Rf2RW
https://paperpile.com/c/TzDPrL/HOV78

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

668 | P a g e

www.ijacsa.thesai.org

dimensional spaces. P. Viswanath and Rajwala Pinkesh [9]
proposed another fast hybrid density method called L-
DBSCAN based on leaders clustering technique [31]. They
derived some representative objects at the coarser level and
others at the finer level of the clustering process. Authors used
a first category of leaders to reduce the time requirement and
second category to optimize the deviation of the results. This
hybrid scheme uses only a set of pairs denoted by
 | where ℓ is a leader and ℒ a set of
leaders. According to experiments showed by the authors, L-
DBSCAN can run in where k represents the
number of derived leaders which is much smaller than n.
However, this technique can give raise to big margin error,
when a leader is not originally dense but it is estimated dense
according to ℒ*. This method reduces the computation time,
but it requires two additional thresholds: τc and τf.

P. Viswanath and V. Suresh Babu [29] enhanced the
density approximation of leaders in their technique called
rough-DBSCAN by combining the leaders clustering method
[31] and the rough set approach [32]. They added a mapping
between every leader and its belonging objects (followers).
This mapping is represented by ℒ* = {(followers (l), count
(l)} where l is a leader form ℒ. Then, they used a lower and
upper approximation, as shown in equation 1, 2 and 3, to find
the exact neighbours of a leader .

 (1)

 ∪

 (2)

 ∪

 (3)

 | || ||

 | || ||

Rough-DBSCAN needs only where k is the
number of leaders, but it improves the clustering quality by
minimizing the approximation error.

FDBSCAN [33] is another non-linear searching algorithm
proposed by B. Liu, in 2007, to reduce redundant searching by
using a fast merging algorithm. It sorts objects using
dimensional coordinates and then selects only unlabelled
objects outside a core object's neighbourhood in order to
decrease region queries. Another interesting paper is
proposed, in the same year, by Yi-Pu Wu et al. [34] to
optimize the process of Nearest Neighbour Search by using
Locality-Sensitive Hashing (LSH) technique. Authors used the
hash collisions to detect and represent similarities between
two objects A and B form a dataset D. On the other hand, to
capture object similarity they compute the probability
distributions over a set of hash functions ℋ as
 where and S is a similarity function
defined as . This LSH algorithm makes a
significant decrease in DBSCAN running time which becomes
O (N) and maintains the quality of detected clusters [35].

Cheng-fa Tsa and Chien-Tsung Wu, inspired by the fast
merging method of FDBSCAN [33], proposed the GF-
DBSCAN algorithm to segment data into several grid-cells
and to limit the neighbourhood searches only to the cell scope

instead of exploring the entire grid. They merge clusters if
they are intersected and the overlapping objects include some
core object. By introducing this grid approach and this
merging process, GF-DBSCAN minimizes significantly the
number of searches and increases the clustering accuracy [36].
Gunawan [27] demonstrated that DBSCAN‟s performance can
be improved to by applying the following process
in order (i) partitioning data using a grid-cell (ii) determining
all core points (iii) merging density-connected core points into
clusters and finally (iiii) determining border points and noise.
He used the hash table to discard cells without any point.
However this faster algorithm is experimented only in two
dimensional space. Therefore, J.Gan and Y.Tao extend

Gunawan‟s thesis to and they get a running time of

 nd
(

[

]

)

where the parameter δ specifies the accuracy of the
approximation. J.Gan and Y.Tao also proposed a new
algorithm called ρ-approximate suitable for large datasets

which can be computed in an expected time of (

) . They

are inspired by Chen et al.‟s paper [30] which already
discussed how to compute DBSCAN in
 .

GPUs opportunities and parallelization strategies are also
used by some algorithms including G-DBSCAN algorithm
[37] to speed up the original algorithm. G-DBSCAN
constructs firstly a data graph G(O, E) where O are objects
(nodes) connected by edges E if they are within a minimum
proximity R (threshold parameter) of each other. Then it
identifies clusters by using breadth-first search (BFS)
technique [38]. Thereby, a complexity of O (n + ne) is added
by the BFS search where „ne‟ is the number of edges. G-
DBSCAN uses graphics processing units (GPU‟s) capabilities
to achieve acceleration greater than 100×, but unfortunately it
doesn't reduce the original complexity.

The DBSCAN neighbour search operation can be
optimized by using a graph-based index structure method, as
demonstrated by K. Mahesh Kumar, and A. Rama Mohan
Reddy [39]. Their idea is to prune out outliers objects early to
vanish unnecessary distance computations which may be
introduced by noises. RNN-DBSCAN [40] uses reverse
nearest neighbour counts and k nearest neighbour graph
traversals to estimate observation density. It reduces
complexity of DBSCAN by using a single parameter (choice
of k nearest neighbours) and also improves the ability of
handling large variations in cluster density (heterogeneous
density). Mark de Berg et al. [41] presented another O (n log
n) approximate algorithm for DBSCAN in two dimensional
space. They represented data objects using a smaller box
graph where nodes are disjoint rectangular boxes with
a diameter of at most ε and edges connect pairs of boxes
within distance ε from each other. Then they detected another
graph including only core points where the connected
components of are considered as clusters. Mark de
Berg et al. improved the quality of clusters by assigning
borders to their nearest core point rather than the first cluster
that finds them. Table II summarizes all aforementioned
DBSCAN complexity enhancements.

https://paperpile.com/c/TzDPrL/lezOx
https://paperpile.com/c/TzDPrL/yUJoe
https://paperpile.com/c/TzDPrL/KjLMA
https://paperpile.com/c/TzDPrL/yUJoe
https://paperpile.com/c/TzDPrL/Y8fVk
https://paperpile.com/c/TzDPrL/ppeT8
https://paperpile.com/c/TzDPrL/nohVM
https://paperpile.com/c/TzDPrL/CO91g
https://paperpile.com/c/TzDPrL/ppeT8
https://paperpile.com/c/TzDPrL/KEit6
https://paperpile.com/c/TzDPrL/TOLQB
https://paperpile.com/c/TzDPrL/HOV78
https://paperpile.com/c/TzDPrL/wbwLW
https://paperpile.com/c/TzDPrL/JFEXs
https://paperpile.com/c/TzDPrL/ziM3E
https://paperpile.com/c/TzDPrL/BF0Fx
https://paperpile.com/c/TzDPrL/s00I0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

669 | P a g e

www.ijacsa.thesai.org

TABLE II. TIME COMPLEXITIES OF THE WELL CITED DBSCAN VERSIONS

Year Name Time Method used Ref.

1996 DBSCAN

Density based

technique
[8]

 R*-tree

2000
FDBSCAN: A fast

DBSCAN algorithm

Representative
points

technique

[10]

2004 IDBSCAN

Marked

Boundary
Objects

(MBO)

[20]

2005

GEOMETRIC

ALGORITHMS

FOR DENSITY-
BASED DATA

CLUSTERING

 (

) if

d>=3

for d=2

Computational
geometry

techniques.

 -fuzzy
distance

[30]

2006 L-DBSCAN

K is the number of

leaders

Leaders

Clustering
Method [31]

[9]

2006 FDBSCAN

Representative

points

technique
kernel function

[33]

2007

A Linear DBSCAN

Algorithm Based
On LSH

)

LSH : Locality

sensitive
hashing

 [35]

2009 Rough DBSCAN

K is the number of
leaders

Set theory
[32]

leaders
clustering

method[31]

[29]

2009 GF-DBSCAN

1/100 of the time

cost of
FDBSCAN

Fast merging

and
Grid cells.

[36]

2010 TI-DBSCAN

Up to three orders

of magnitude

faster than
DBSCAN.

Triangle
Inequality

property

[42]

2013
A faster algorithm

for DBSCAN
 for d=2

Grid partition

Hash Table
[27]

2013 G-DBSCAN

Over than 100x

faster than its

sequential version
using CPU

Data-graph
(node and

edges)

breadth-first
search BFS

[38]

[37]

2015
ρ-approximate
DBSCAN

 for

d=3

[

]

 for
d>3

 is a small
positive constant

Approximation
technique

[21]

2016

A fast DBSCAN

clustering algorithm
by accelerating

neighbour searching

using Groups
method

improves the

speed of

DBSCAN by a
factor of about

1.5–2.2

Graph-based

method
[39]

2017

Faster DBSCAN

and HDBCAN in

Low-Dimensional
Euclidean Spaces

Box graph

method
[41]

V. CONCLUSION

DBSCAN is a powerful technique for data clustering;
however it still suffers from its huge time requirement which
can reach in the worst case. This paper weighs the pros
and cons of the well-known and well-cited DBSCAN
variations with respect to the time requirement. We present the
current state of art related to DBSCAN complexity and also
we mentioned some techniques used to enhance the original
version of the algorithm. According to the papers studied,
researchers can use the leaders clustering method, Graph-
based method, breadth-first search BFS, Triangle Inequality
Property or Locality sensitive hashing to bring new
enhancements in this field. We noticed that DBSCAN
complexity vary between and . Another analysis
of all these DBSCAN variations based on real data
experiments will be presented in our further works.

ACKNOWLEDGMENT

Authors would like to express their special thanks of
gratitude to Mr Labriji and Mr Rachik for their able guidance
and support in completing this manuscript. We would also like
to extend our gratitude to the anonymous reviewers whose
thoughtful comments and suggestions will lead to improving
this manuscript.

REFERENCES

[1] H. S. Emadi and S. M. Mazinani, “A Novel Anomaly Detection
Algorithm Using DBSCAN and SVM in Wireless Sensor Networks,”
Wireless Personal Communications, vol. 98, no. 2. pp. 2025–2035,
2018, doi: 10.1007/s11277-017-4961-1.

[2] M. K. Najafabadi, M. N. Mahrin, S. Chuprat, and H. M. Sarkan,
“Improving the accuracy of collaborative filtering recommendations
using clustering and association rules mining on implicit data,”
Computers in Human Behavior, vol. 67. pp. 113–128, 2017, doi:
10.1016/j.chb.2016.11.010.

[3] S. Khanmohammadi, N. Adibeig, and S. Shane Bandy, “An improved
overlapping k-means clustering method for medical applications,”
Expert Systems with Applications, vol. 67. pp. 12–18, 2017, doi:
10.1016/j.eswa.2016.09.025.

[4] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2015, doi:
10.1109/cvpr.2015.7298682.

[5] F. Yin and C.-L. Liu, “Handwritten Chinese text line segmentation by
clustering with distance metric learning,” Pattern Recognition, vol. 42,
no. 12. pp. 3146–3157, 2009, doi: 10.1016/j.patcog.2008.12.013.

[6] J. B. MacQueen, “ON THE ASYMPTOTIC BEHAVIOR OF K-
MEANS.” 1965, doi: 10.21236/ad0629518.

[7] R. Sibson, “SLINK: An optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, vol. 16, no. 1. pp. 30–34, 1973,
doi: 10.1093/comjnl/16.1.30.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
1996, Accessed: Dec. 08, 2020. [Online]. Available:
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9220.

[9] P. Viswanath and R. Pinkesh, “l-DBSCAN : A Fast Hybrid Density
Based Clustering Method,” 18th International Conference on Pattern
Recognition (ICPR 06). 2006, doi: 10.1109/icpr.2006.741.

[10] Z. Shui, “FDBSCAN: A Fast DBSCAN Algorithm,” 2000, Accessed:
Dec. 15, 2020. [Online]. Available: https://www.semanticscholar.org/
paper/FDBSCAN%3A-A-Fast-DBSCAN-Algorithm-
Shui/d6d1e7e468035b63138d6a4de4ca5685fb700808.

[11] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, “MR-DBSCAN: a scalable
MapReduce-based DBSCAN algorithm for heavily skewed data,”

https://paperpile.com/c/TzDPrL/gYc5b
https://paperpile.com/c/TzDPrL/4t5aw
https://paperpile.com/c/TzDPrL/Rf2RW
https://paperpile.com/c/TzDPrL/HOV78
https://paperpile.com/c/TzDPrL/yUJoe
https://paperpile.com/c/TzDPrL/lezOx
https://paperpile.com/c/TzDPrL/ppeT8
https://paperpile.com/c/TzDPrL/CO91g
https://paperpile.com/c/TzDPrL/Y8fVk
https://paperpile.com/c/TzDPrL/yUJoe
https://paperpile.com/c/TzDPrL/KjLMA
https://paperpile.com/c/TzDPrL/KEit6
https://paperpile.com/c/TzDPrL/H7fLS
https://paperpile.com/c/TzDPrL/TOLQB
https://paperpile.com/c/TzDPrL/JFEXs
https://paperpile.com/c/TzDPrL/wbwLW
https://paperpile.com/c/TzDPrL/9e40q
https://paperpile.com/c/TzDPrL/ziM3E
https://paperpile.com/c/TzDPrL/s00I0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

670 | P a g e

www.ijacsa.thesai.org

Frontiers of Computer Science, vol. 8, no. 1. pp. 83–99, 2014, doi:
10.1007/s11704-013-3158-3.

[12] R. J. G. B. Campello, Ricardo J G, D. Moulavi, and J. Sander, “Density-
Based Clustering Based on Hierarchical Density Estimates,” Advances
in Knowledge Discovery and Data Mining. pp. 160–172, 2013, doi:
10.1007/978-3-642-37456-2_14.

[13] “Kaufman, L. and Rousseeuw, P.J. (1990) Partitioning around Medoids
(Program PAM). In Kaufman, L. and Rousseeuw, P.J., Eds., Finding
Groups in Data An Introduction to Cluster Analysis, John Wiley &
Sons, Inc., Hoboken, 68-125. - References - Scientific Research
Publishing.”
https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/Refer
encesPapers.aspx?ReferenceID=1771062 (accessed Dec. 04, 2020).

[14] L. Kaufman and P. Rousseeuw, “Clustering Large Applications
(Program CLARA),” 2008, doi: 10.1002/9780470316801.CH3.

[15] S. Chawla and A. Gionis, “k-means-: A Unified Approach to Clustering
and Outlier Detection,” 2013, Accessed: Jan. 06, 2021. [Online].
Available: https://pdfs.semanticscholar.org/70f4/5be50599f12a1b682a
192c3c48ebda0bb1c4.pdf.

[16] J. H. Ward, “Hierarchical Grouping to Optimize an Objective Function,”
Journal of the American Statistical Association, vol. 58, no. 301. pp.
236–244, 1963, doi: 10.1080/01621459.1963.10500845.

[17] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering
algorithm for large databases,” Information Systems, vol. 26, no. 1. pp.
35–58, 2001, doi: 10.1016/s0306-4379(01)00008-4.

[18] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” 1996, Accessed: Jan. 03,
2021. [Online]. Available: http://dl.acm.org/citation.cfm?id=233324.

[19] E. Schubert, J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “DBSCAN
Revisited, Revisited: Why and How You Should (Still) Use DBSCAN,”
ACM transactions on database systems, vol. 42, no. 3, p. 6, 2017,
Accessed: Dec. 15, 2020. [Online].

[20] B. Borah and D. K. Bhattacharyya, “An improved sampling-based
DBSCAN for large spatial databases,” International Conference on
Intelligent Sensing and Information Processing, 2004. Proceedings of.
doi: 10.1109/icisip.2004.1287631.

[21] J. Gan and Y. Tao, “DBSCAN Revisited: Mis-Claim, Un-Fixability, and
Approximation,” 2015, Accessed: Dec. 17, 2020. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2737792.

[22] “ST-DBSCAN: An algorithm for clustering spatial–temporal data,” Data
Knowl. Eng., vol. 60, no. 1, pp. 208–221, Jan. 2007, Accessed: Dec. 08,
2020. [Online].

[23] L. Ertöz, M. Steinbach, and V. Kumar, “Finding Clusters of Different
Sizes, Shapes, and Densities in Noisy, High Dimensional Data,”
Proceedings of the 2003 SIAM International Conference on Data
Mining. 2003, doi: 10.1137/1.9781611972733.5.

[24] G. Liu, B. Qiu, and L. Wenyin, “Automatic Detection of Phishing
Target from Phishing Webpage,” 2010 20th International Conference on
Pattern Recognition. 2010, doi: 10.1109/icpr.2010.1010.

[25] Y. He et al., “MR-DBSCAN: An Efficient Parallel Density-Based
Clustering Algorithm Using MapReduce,” 2011 IEEE 17th International
Conference on Parallel and Distributed Systems. 2011, doi:
10.1109/icpads.2011.83.

[26] P. Liu, D. Zhou, and N. Wu, “VDBSCAN: Varied Density Based Spatial
Clustering of Applications with Noise,” 2007 International Conference
on Service Systems and Service Management. 2007, doi:
10.1109/icsssm.2007.4280175.

[27] A. Gunawan, “A faster algorithm for DBSCAN,” 2013, Accessed: Dec.
28, 2020. [Online]. Available: https://www.semanticscholar.org/paper/
A-faster-algorithm-for-DBSCAN-Gunawan/138f3e2aac21ca81fb7bf09
3ebae07859111e6dd.

[28] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
an efficient and robust access method for points and rectangles,”
Proceedings of the 1990 ACM SIGMOD international conference on
Management of data - SIGMOD ‟90. 1990, doi: 10.1145/93597.98741.

[29] P. Viswanath and V. Suresh Babu, “Rough-DBSCAN: A fast hybrid
density based clustering method for large data sets,” Pattern Recognition
Letters, vol. 30, no. 16. pp. 1477–1488, 2009, doi:
10.1016/j.patrec.2009.08.008.

[30] D. Z. Chen, M. Smid, and B. Xu, “GEOMETRIC ALGORITHMS FOR
DENSITY-BASED DATA CLUSTERING,” International Journal of
Computational Geometry & Applications, vol. 15, no. 03. pp. 239–260,
2005, doi: 10.1142/s0218195905001683.

[31] H. Spaeth, “Cluster analysis algorithms for data reduction and
classification of objects,” 1980, Accessed: Jan. 08, 2021. [Online].
Available: https://cds.cern.ch/record/102044.

[32] Z. Pawlak, “Rough sets,” International Journal of Computer &
Information Sciences, vol. 11, no. 5, pp. 341–356, Oct. 1982, Accessed:
Dec. 29, 2020. [Online].

[33] B. Liu, “A Fast Density-Based Clustering Algorithm for Large
Databases,” 2006 International Conference on Machine Learning and
Cybernetics. 2006, doi: 10.1109/icmlc.2006.258531.

[34] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” 2004, Accessed: Jan.
12, 2021. [Online]. Available: http://dl.acm.org/citation.cfm?id=997857.

[35] Y.-P. Wu, J.-J. Guo, and X.-J. Zhang, “A Linear DBSCAN Algorithm
Based on LSH,” 2007 International Conference on Machine Learning
and Cybernetics. 2007, doi: 10.1109/icmlc.2007.4370588.

[36] C.-F. Tsai and C.-T. Wu, “GF-DBSCAN: a new efficient and effective
data clustering technique for large databases,” 2009, Accessed: Dec. 15,
2020. [Online]. Available: https://www.semanticscholar.org/paper/GF-
DBSCAN%3A-a-new-efficient-and-effective-data-for-Tsai-
Wu/909e93cbf1867e2b5af089810bdbb8352e75ff53.

[37] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and L.
Rocha, “G-DBSCAN: A GPU Accelerated Algorithm for Density-based
Clustering,” Procedia Computer Science, vol. 18. pp. 369–378, 2013,
doi: 10.1016/j.procs.2013.05.200.

[38] E. F. Moore, The Shortest Path Through a Maze. 1959.

[39] K. M. Kumar, K. Mahesh Kumar, and A. Rama Mohan Reddy, “A fast
DBSCAN clustering algorithm by accelerating neighbor searching using
Groups method,” Pattern Recognition, vol. 58. pp. 39–48, 2016, doi:
10.1016/j.patcog.2016.03.008.

[40] A. Bryant and K. Cios, “RNN-DBSCAN: A Density-Based Clustering
Algorithm Using Reverse Nearest Neighbor Density Estimates,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 6. pp.
1109–1121, 2018, doi: 10.1109/tkde.2017.2787640.

[41] M. de Berg, A. Gunawan, and M. Roeloffzen, “Faster DB-scan and
HDB-scan in Low-Dimensional Euclidean Spaces,” Feb. 28, 2017.

[42] M. Kryszkiewicz and P. Lasek, “TI-DBSCAN: Clustering with
DBSCAN by Means of the Triangle Inequality,” in Rough Sets and
Current Trends in Computing, Jun. 2010, pp. 60–69, Accessed: Jan. 01,
2021. [Online].

