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Abstract—In graph theory, the k-minimum spanning tree
problem is considered to be one of the well-known NP hard
problems to solve. This paper address this problem by proposing
several hybrid approximate approaches based on the combination
of simulated annealing, tabu search and ant colony optimization
algorithms. The performances of the proposed methods are
compared to other approaches from the literature using the same
well-known library of benchmark instances.
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I. INTRODUCTION

In this work we attempt to provide some approximate
methods to solve the well-known combinatorial optimization:
The k-minimum spanning tree (k-MST) problem. We want to
find a tree in an edge-weighted graph G = (V,E) that have
exactly k edges and which minimize the sum of the weights
of its edges. The mathematical formulation of this problem
has been introduced by [1], It was demonstrated that the k-
MST problem is known to be NP-hard [2], it is very difficult
to find optimal solutions to large-scale problems that can be
formulated as a k-MST within acceptable time.

In literature, several approaches using metaheuristics were
proposed to tackle the k-MST problem [3], [4], [6], [5], [7]. In
[8], three approaches to deal with the k-MST were presented:
an evolutionary computation, ant colony optimization (ACO)
and tabu search (TS), in order to show and compare the
performance of these methods, the authors built a library
named KCTLIB which contains some graph instances for
k-MST problems, after that they executed their programs,
numerical results showed that ACO algorithm is the best
choice to deal with k-MST with small cardinalities, while TS
is the best choice for k-MST with large cardinalities. these
conclusions had inspired the authors in [14] to hybridize TS
with ACO and the authors in [16] to hybridize TS with SA,
they have applied their approaches to some graph instances
from KCTLIB, and they have presented the results of their
methods.

The objective of this paper is to attempt new hybrid ap-
proaches by coupling simulated annealing (SA), TS and ACO
algorithms. We aim to find new best k-MST solutions, numer-
ical experiments were performed using two graph instances
from KCTLIB. Our experiments show that the suggested

approaches are able to find new best values for the two graphs
and for several cardinalities.

The paper is structured as follows. The problem formula-
tion is presented in section II . In the section III we give
the description of the main components of SA, TS, and ACO
algorithms. the results of the computational experiments and
the discussion are reported in section IV . Finally, in section
V we give some conclusions.

II. PROBLEM FORMULATION

Given an undirected edge-weighted graph G = (V,E) on
a set V of n vertices , and a positive cost function w(e) on the
set of edges E, |V | is the number of vertices of G, |E| is the
number of edges. A spanning tree (ST) of G is a connected
subgraph that contains all vertices and without any cycle. The
k-spanning tree (k ≤ |V | − 1) that we note Tk is a tree that
contains k edges, if k = |V | − 1 we get a spanning tree. we
note by Xk the set of possible k-spanning trees, The set of all
possible k-spanning trees is denoted by Xk. the k-minimum
spanning tree (k-MST) problem asks for a k-spanning tree
with the minimum sum of weights. The k-MST problem can
be formulated as follows: Minimize

∑
e∈E(Tk)

w(e)

Subject to Tk ∈ Xk,

E(Tk) denotes edges set of Tk .

An optimal solution can be easily found in case of small
problem size by enumerating all k-spanning trees in a given
graph. However, it has been demonstrated that the k-MST
problem is a NP-hard problem. Therefore, it is very important
to develop new approximate methods using metaheuristics in
order to provide solutions to real-world problems in reasonable
time.

III. PROPOSED APPROACHES

A. Simulated Annealing

SA is an approximate algorithm inspired from thermo-
dynamics, which was introduced in [9] and it is widely
used to address many discrete and continuous optimization
problems, such as the travelling salesman, and vehicle routing
problem, etc. Researchers are also applying it to multi-criteria
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Fig. 1. A 6-ST of 7 Vertices.
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Fig. 2. A Neighborhood Element of the 6-ST.

optimization problems [10], [11]. SA is a neighborhood search
method. The basic concept of this method is to move at
each iteration from a solution x to another one that belongs
to its neighborhood N(x). Before describing the main SA
components, we present the neighborhood structure used in
this method.

B. The Neighborhood

To move around and allow the algorithm to discover the
search space, the possible transitions or movements from one
solution to another are subject to the chosen neighborhood
structure. The neighborhood of a tree Tk is the set of k-ST
built by deleting one edge from Tk and replacing it by an
edge of the graph G and which doesn’t belong to Tk. We
choose randomly an edge from the current Tk and replace it
by another one, which is also is selected randomly from G\Tk.
To clarify the neighborhood structure, we take the example of
a tree composed by six edges in Fig. 1. The 6-ST contains the
following edges: (2,3),(3,6),(6,5),(5,4),(6,9),(9,8).

Fig. 2 represents a neighborhood element of the 6-ST in
Fig. 1, where the edge (3,6) is replaced by the edge (2,5).

C. SA Algorithm

The SA settings are adjusted empirically, as follows, the
main lines of the proposed SA algorithm are as follows:

1) Set the initial values of the following parameters:

a) T0: The initial temperature
b) α: Factor of cooling
c) TMP LEV ELS: The maximum number

of temperature levels; the temperature is not
decreased at each iteration but it is decreased
by level

d) TMP RANGE: Number of iterations per
level

e) TIME TO DIV ERSIFY : the time limit
of the algorithm to launch the diversification
based on the ACO.

2) Initial solution: Use the Prim method to build a k-
subtree

3) SA procedure
- Until TMP LEV ELS repeat

a) Repeat for TMP RANGE iterations:
• Select randomly a k-ST in the neighbor-

hood of the current solution.
• Calculate the objective function of the

current solution f1
• Calculate the objective function of the

neighborhood solution f2
• Calculate F = f2 - f1

If F < 0 then set the neighborhood
element as the current solution
Otherwise, the neighborhood element
will be the current solution with a prob-
ability equal to exp(−F/T ), T is the
value of the temperature in the current
iteration

b) Use the geometric cooling schedule to de-
crease the current temperature

D. Tabu Search

TS was introduced by F. Glover and Laguna in [12], [17],
[13]. This metaheuristic method is used at large scale to find
approximate solutions for real-world optimization problems,
TS can be applied for example in logistics, resource planning,
telecommunications, scheduling, etc.

TS is based on simple ideas inspired from the human
memory, it is a local search method which is known to have
the tendency to be stuck in local extremums, TS address this
problem by prohibiting already visited solutions and avoiding
the problems of cycles, in this way, the whole solutions space
can have the chance to be visited. For more details about
the components description and the complete algorithm of TS
algorithm integrated in our proposed hybrid approaches please
refer to [14],

E. Ant Colony Optimization

ACO algorithm is a probabilistic technique for tackling
computational problems which can be reduced to seeking
optimal paths in graphs, it was first introduced by Dorigo,
Maniezzo and Colorni [15].

The principle of the first algorithm is inspired from the
capability of ants to seek the best path from their colony
to source food and vice versa. As they move, they deposit
an organic compound on the ground called pheromone, paths
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(solutions) with a higher pheromone level have a higher
probability of being selected by ants (better solutions).

In this paper, the ACO is used in order to diversify the
search process, and to explore new regions that may have not
been visited in previous iterations by SA algorithm. For more
details about the components description and the complete
ACO algorithm used in this paper refer to [14].

F. First Hybrid Approach: SA Combined with ACO

In [8], ACO algorithm showed a high diversification ability
which allowed it to explore new areas of solutions. To take
advantage of this feature, we propose a hybrid approach that
combines SA and ACO. The ACO algorithm is used in order
to diversify the search process when the SA algorithm can no
longer improve the current solution.

In summary: an initial solution will be generated using the
Prim method, then the SA will be launched until until that
we don’t observe any improvement is occurring on the current
solution; at that time we call the ACO algorithm to move the
search to other regions of solutions space. Next, the SA will
resume. Below the outline of this hybrid approach that we note
Hybrid SA-ACO :

Step 1. Initialization of SA parameters and generation of an
initial solution (see Section III-C).

Step 2. SA and ACO
a) Launch the SA algorithm as

described in Section III-C until
TIME TO DIV ERSIFY is reached.

b) Run the ACO algorithm as described in [8]
c) Repeat steps 2.a and 2.b until

TMP LEV EL is reached.

TIME TO DIV ERSIFY : ACO diversification procedure
is launched when this time is reached.

G. Second Hybrid Approach: SA Combined with ACO and TS

In the literature, TS has shown a high intensification
potential in finding good solutions in narrow search space for
the k-MST problem, the experimentations carried out by [8],
have proven this ability, the numerical results showed also that
TS is very efficient in case of k-MST with large cardinalities.
In [14] TS had had showed another ability which is that it
can be a good partner in a hybrid algorithm, the combination
with the ACO algorithm had allowed to find new best values
for the objective function. In [16] another hybrid approach
was proposed by combining TS and SA. These results were
obtained even that the neighborhood structures chosen by each
approach were different

In this hybrid approach, we combine the three meta-
heuristics seen before, namely, SA, TS and ACO, we will
exploit the advantages of each of them to find better solu-
tions. This approach starts with an initial solution generated
using the Prim method, then the SA will take the hand
to improve this solution under the control of the parameter
TIME TO DIV ERSIFY ; the ACO will be launched to
take the search to another region of solutions not yet explored.
When the stopping criterion (TMP LEV EL) is reached, the

TS is launched on the best solution found to intensify the
search in its neighborhood and get the best one.

The outline of this algorithm, that we note Hybrid SA-
ACO-TS, is as follows:

Step 1. Initialization of SA parameters and generation of an
initial solution (see Section III-C).

Step 2. SA and ACO
a) Run the SA algorithm until

TIME TO DIV ERSIFY
b) Launch the ACO algorithm
c) Repeat the two previous actions until

TMP LEV EL

Step 3. Tabu Search
a) Run the TS algorithm as described in [14],

the best solution found in Step 2 is the
starting solution of this step.

IV. EXPERIMENTAL RESULTS

We have performed numerical experiments using two large
regular graphs taking from the benchmark instance KCTLIB.
The Table I shows the configuration of these graphs.

TABLE I. CHARACTERISTICS OF THE TWO REGULAR GRAPHS.

Graph name |V | |E| Average degree of vertices

Graph 1 : 1000 4 01.gg 1000 2000 4
Graph 2 : g400 4 05.g 1000 2000 4

The results obtained by the proposed approaches are compared
to those obtained with the following methods:

• Two solution algorithms proposed in [8], namely TS
algorithm and ACO algorithm, denoted by TSB and
ACOB, respectively.

• The hybrid solution algorithm proposed in [14], de-
noted by HybridK.

• The simulated annealing algorithm with restart strat-
egy by [7], denoted by SA.

• The hybrid approach that combine simulated anneal-
ing and tabu search by [16].

Our algorithms are coded in C programming language and
runned on a computer with a CPU Intel(R) Core(TM) i5,
2.5x2.5 GHz, 4GB RAM. It should be stressed that for TS and
ACO algorithms, we have used the same parameter settings as
in [14],

Our algorithms have been executed ten times on each
graph instance, after that, we record the best, worst, mean
and objective function values, also we record the mean time.

Table II presents the SA parameter settings adopted to
tackle the graphs 1 and 2. In Tables III- IV results of
the proposed approaches are shown. The objective function
written in bold style face means that they are best among all
obtained values. BNV column gives the best new value of our
approaches.
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TABLE II. SA PARAMETER SETTINGS ADOPTED TO GRAPHS IN TABLE I.

k T0 Tf TMP RANGE TIME TO DIVERSIFY TMP LEVELS

200 15

0.01

10000

20 s

40
400 15 2000 30
600 15 5000 30
800 10 2000 30
900 10 4000 30

Fig. 3. Performance of Different Approaches for the First Regular Graph.

To easily read and well interpret the Tables III- IV, we
transform them into charts, Fig. 3 and 4 represent the order of
the performance of each method and for different cardinalities,
a higher order value corresponds to better performance.

Fig. 3 show that: for k = 200, ACOB is the best; however
for other cardinalities we notice that our proposed hybrid
approach SA ACO TS is very competitive, because we have
improved the best known solutions for k = 400 and k = 800.
Fig. 4 show that for k = 400, Hybrid SA ACO TS is the best;
however for other cardinalities we notice that Hybrid SA TS
approach is very efficient in terms of best and mean values.
It should be stressed that we have improved the best known
solutions for k = 400 and k = 800. In summary, results reveal
that:

• SA is not efficient in case of large graphs.

• SA is very efficient when coupled with TS in finding
optimal k-MST solutions.

• TS is known for its great ability to intensify the search,
the obtained results had confirmed that; it can be
coupled with SA and/or ACO algorithm to obtain good
performances.

• ACO is very efficient when its coupled with TS.

• We have achieved good results by hybrid approaches

Fig. 4. Performance of Different Approaches for the First Regular Graph.

only when TS is part of the hybrid approach, this is
due to its high intensification ability.

• Our proposed approaches have consumed more time
to provide optimal solutions.

V. CONCLUSION

This article suggests new approaches to address the k-
MST problem. Hybrid approaches combining SA, TS and
ACO were presented. In order to show the performance of
the these methods, we compared them with other works from
the literature using the same benchmark data KCTLIB. The
numerical experiments showed that TS is effective to tackle
the k-MST problems when it is combined with SA or ACO or
both. In our future works, we will focus on how to improve
the computational time of our approaches and then address the
same problem in case of multi-objective optimization.
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TABLE III. RESULTS OBTAINED BY EACH APPROACH FOR THE FIRST REGULAR GRAPH.

k BNV Hybrid SA ACO TS Hybrid SA ACO Hybrid SA TS SA HybridK TSB ACOB

200

Best 3336 3374 3375 3372 3393 3438 3312
Mean 3354.5 3420.2 3419.9 3450 3453.1 3461.4 3344.1
Worst 3373 3463 3514 3514 3517 3517 3379

Mean time (s) 742 300 600 300 300 300 300
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7621 Best 7621 7717 7646 7713 7659 7712 7661
Mean 7669.6 7822.4 7689.8 7772.8 7764 7780.2 7703
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Mean time (s) 6328 300 3468 974 300 300 300
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Mean time (s) 21815 1644 11904 1948 300 300 300
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19065 Best 19065 19144 19073 19114 19099 19093 19581
Mean 19110 19162.3 19081.6 19213.7 19101.1 19112.6 19718.7
Worst 19155 19177 19095 19275 19128 19135 19846

Mean time (s) 7200 2509 3180 1948 300 300 300

900

Best 22845 22942 22827 22865 22827 22843 23487
Mean 22851 22962.7 22834.5 23052 22827 22859.2 23643
Worst 22866 22995 22851 23165 22827 22886 23739

Mean time (s) 6827 1440 9263 1029 300 300 300
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k BNV Hybrid SA ACO TS Hybrid SA ACO Hybrid SA TS SA HybridK TSB ACOB
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Best 3636 3661 3630 3639 3667 3692 3632
Mean 3671 3686.8 3653 3699.9 3697.5 3722.0 3670.1
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Mean time (s) 995 1028 2777 2735 300 300 300
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Mean 8293.7 8393.2 8343.1 8430 8357.1 8385.6 8408.3
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Mean time (s) 4272 1369.1 4200 1301 300 300 300

600
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Worst 13744 13876 13690 13841 13900 13820 14235

Mean time (s) 28727 2032 16042 2082 300 300 300
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Mean 20170 20251 20143.6 20169 20129.9 20142.9 20811.3
Worst 20189 20279 20167 20218 20143 20155 20940

Mean time (s) 21355 2739 7980.6 3802 300 300 300

900

Best 24039 24103 24030 24032 24035 24044 24782
Mean 24070 24136 24034.6 24045.3 24035 24052.6 24916
Worst 24090 24172 24040 24052 24035 24064 25037

Mean time 8756 1646 15671.6 4339 300 300 300
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