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Abstract—Mining association rules is essential in the discovery
of knowledge hidden in datasets. There are many efficient
association rule mining algorithms. However, they may suffer
from generating large number of rules when applied to big
datasets. Large number of rules makes knowledge discovery a
daunting task because too many rules are difficult to understand,
interpret or visualize. To reduce the number of discovered
rules, researchers proposed approaches, such as rules pruning,
summarizing, or clustering. For the flourishing field of big
data and Internet-of-Things (IoT), more effective solutions are
crucial to cope with the rapid evolution of data. In this paper,
we are proposing a novel parallel association rule clustering
approach which is based on Hadoop MapReduce. We ran many
experiments to study the performance of the proposed approach,
and promising results have been demonstrated, e.g. the lowest
scaleup was 77%.
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I. INTRODUCTION

Big data, business intelligence and Internet of Things (IoT)
are among the fastest growing areas shaping the future, that at-
tracted increasing attention of researchers and developers in the
recent years. Many use cases have been envisioned to improve
life quality and productivity through bridging the gap between
physical and digital worlds, e.g. smart cities, smart homes,
smart grids, smart meters, smart healthcare devices, wearable
devices, smart poultry and animal farming, smart agriculture,
and connected cars. As more physical entities are connected,
an increasing volume of operational and management data is
generated, making data mining and business analytics more
crucial to turn this ocean of data into actionable insights
generating values [1–5].

A branch of data mining and analytics is extracting asso-
ciation rules to discover patterns and regularities of frequent
items in a dataset [6]. It was initially applied for transactional
data analysis in point-of-sale systems in supermarkets to find
items frequently purchased together (same basket) and predict
the purchase of some items based on the observed frequency
of others. A typical association rule takes the form α → β ,
where both α and β are itemsets and α ∩β = /0. α is known
as the rule antecedent and β is the rule consequent. Each rule
has a support which is the same as the support of α ∪β , i.e.
the number (or percentage) of transactions containing α ∪β .
Each rule has also a confidence level expressing how likely a
person purchasing α will simultaneously purchase β , i.e. the
conditional probability P(β |α). For example, an association
rule can be {coffee, sugar} → {tea} with 75% confidence.
Later its application has grown to many other domains.

For example in healthcare, a rule can take various forms,
such as {Medicine} → {Medicine}, {Disease} → {Disease},
{Medicine} → {Disease}, {Symptoms} → {Disease}, etc. [7].
Association rules and frequent-pattern mining have become
an attractive area of research to support decision making in a
wide spectrum of applications such as information security [8],
health informatics [9], airline information systems [10], social
networks [11], and several others [12, 13]. Several algorithms
have been proposed on different areas in the literature [14].
However, many approaches can suffer from the massive num-
ber of discovered rules or spurious relations even for a moder-
ately sized dataset. This limitation can lead to further problems
in decision making attempting to visualize or interpret these
rules; reducing their utility in decision support [15]. Some
efforts have been made in the literature to address this problem
in different directions such as rule grouping or clustering, rules
pruning, meta-rules and constraint based mining [14, 16–20].

Nowadays, we are in the era of Internet-of-Things (IoT)
where huge amount of data is generated by commercial,
industrial and consumer IoT devices. However, along with the
proliferation of IoT technology, cyberattacks that are exploiting
the vulnerabilities of these new systems are becoming very
challenging. Also labeling and discovering installed IoT de-
vices is becoming very difficult. Association rules discovered
from data generated from IoT devices are essential in securing,
labeling, and discovering IoT devices [1, 21–24]. The problem
is with the huge number of association rules that are discovered
from IoT data. Existing solutions of reducing association rules
are limited to traditional datasets.

In this paper, we are proposing a Hadoop MapReduce
based algorithm that clusters rules discovered from big
datasets. The proposed approach is composed of two phases.
In the first phase, it prunes rules based on their structure, and
in the second phase, it clusters the rules that were not pruned
in the previous phase. The remainder of the paper is structured
as follows. Related work is briefly reviewed in Section II. The
proposed approach is presented in Section III and experimental
evaluation is discussed in Section IV. The paper concludes in
Section V with highlights of the paper findings and some future
research work.

II. RELATED WORK

Researchers proposed several algorithms in the literature
to extract frequent itemsets and association rules in various
domains, e.g. [9, 25, 26]. Among the major problems in big
data is scalability of existing approaches leading to large
number of association rules generated which hinders their
interpretations and consuming huge computational resources.
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Several studies proposed algorithms to reduce the number of
association rules. For instance, in [14] the authors presented
two methods to remove redundant rules based on domain
knowledge. The first one prunes rules by grouping them based
on user-defined semantics, and the second one groups rules
based on common items.

In [27], the researchers proposed pruning rules by using
the idea of domain ontology, which enables association rules
to generalize in the form of is-a hierarchy. They integrated that
with user knowledge pertaining to data, as a post-processing
step, to select more interesting rules. To identify and then re-
move redundant rules, Torvonin et al. [18] utilized a rule cover
method and then Brijs et al. [28] used integer programming
to maximize the redundancy reduction. However, the success
of these techniques depends on domain knowledge of users to
eliminate uninteresting rules. The algorithm proposed in [29]
goes through two phases. In Phase 1, it puts rules with the
same consequences in the same group, and in Phase 2 prunes
rules from each group that has minimum effect on the group
cover.

Another direction uses various subjective and objective
measures to identify interesting rules to keep. The study in [30]
used chi-square statistical test to evaluate the dependence of
rule antecedent and consequent. To make pruning of the rules,
a pre-specified threshold value is used. However, this method
may fail to prune many rules due to data sparsity. In [31], an
idea based on minimum improvement constraint is presented
to perform pruning by measuring the confidence difference
between a rule and its proper sub-rules. However, the selection
of threshold value is critical and lower values can lead to
missing many overlapping rules. Contrast sets containing the
conjunction of meaningfully different attributes and values was
employed in [32]. In 2005, a search algorithm, known as OPUS
(Optimized Pruning for Unordered Search-spaces) [33], was
used in [34] to anatomically discard insignificant rules.

In [35], another approach is proposed that goes through
two phases. In the first phase, clusters of association rules are
created using a version of k-means algorithm called Kmeans-
Rules; and in the second phase meta-rules are extracted
from each cluster using two algorithms, namely BSO-MR
and HBSO-TS-MR. BSO-MR uses bees swarm optimization
and HBSO-TS-MR uses tabu search. The meta rules select
representative rules and prune the rest. In [36], the authors
propose pruning rules using a method called dual scaling to
provide semantic contextualization. The method first groups
the rules using an algorithm called AKMS and then prunes
rules from the groups that have certain number of items to
reduce data dimensionality.

An adaptive local pruning graphical method is described
by Chawla et al. [37]. The authors defined an association rule
network as a weighted B-graph and presented an algorithm to
generate it. From a set of association rules with a singleton in
the consequent as a goal item. Moreover, they presented an al-
gorithm for rule pruning by removing hypercycles and reverse
hyperedges in the B-graph. Visualization based techniques
such as parallel coordinate plots [38], matrix-based visual-
izations [39] are introduced as post-processing techniques to
analyze the discovered association rules. These techniques help
visualize the interrelations between association rule categories

in a great detail. Unfortunately, most visualization techniques
cannot display large sets of rules.

Another methodology applies classification or clustering
approaches to reduce the number of discovered association
rules. For example, Liu et al. [40] proposed a framework
integrating classification with association rule mining to focus
on a subset of association rules. This approach is known as
Classification Based on Associations (CBA) and is composed
of two parts: a rule generator (CBA-RG) and a classifier
builder (CBA-CB). The first part, CBA-RG, is based on apriori
algorithm to discover association rules whereas the second
part, CBA-CB, is a heuristic to select the best rule subset.
Other approaches used post processing with agglomerative
hierarchical clustering to produce more compact set of associ-
ation rules [41, 42]. Recently, Bui-Thi et al. proposed another
approach based on the idea of mining unexpected patterns to
automatically detect beliefs and outliers [43].

All the above mentioned solutions are limited to traditional
datasets and cannot handle data generated by billions of IoT
devices. Pruning or clustering association rules generated from
big data is essential for many IoT applications [1, 24]. For
example, IoT devices will pose substantial security challenges,
some of which are device vulnerabilities, misconfiguration and
mismanagement [21]. Also a wide variety of IoT devices are
getting connected to residential networks everyday. But most
residents lack the knowledge of how to protect their devices
from security threats [22, 23]. Another problem is labeling and
discovering of IoT devices which is now done manually. This
is impractical with the rate at which the IoT devices are getting
installed. Association rules can reduce the security issues of
IoT related services and they can be used to automate labeling
and discovering IoT devices [21–23].

III. PROPOSED METHODOLOGY

The layout for association rule mining is illustrated in
Fig. 1. In this study, we extended the work in[20]. After
data acquisition and preprocessing, association rule mining
is conducted. The proposed framework is composed of four
MapReduce algorithms. First, PPrune [20] is applied to reduce
the number of ARs based on their structure. Afterwards,
Create-ACM, Compute-lift, and Cluster-SAR cluster the as-
sociation rules that were not pruned.

A. PPrune: Rule Structure based Pruning Algorithm

PPrune reduces the number of association rules based on
the structure of the rules. The concept of structural rule cover
is presented in [18] and is utilized in PPrune to focus on most
general rules of the original set of rules. PPrune is implemented
for Hadoop MapReduce.

Algorithm 1 shows the PPrune Mapper which works as
follows. For a given set of rules R, the Map method of PPrune
reads each r ∈ R and identifies its antecedent, and consequent,
r.antecedent and r.consequent (lines 3 and 4). It then sorts
r.antecedent and computes its size, r.antecedent.size, which is
the number of items in r.antecedent (lines 5 and 6). Finally, it
emits a tuple (key, value) where key = r.consequent and value
= r and sends it to the reducer (Line 9).

Algorithm 2 shows the Reduce method of PPrune. This
method takes the output of the PPrune Mapper in the form of
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Fig. 1. Layout of Association Rule Mining.

Algorithm 1 PPrune Mapper

1: Class MAPPER
2: Method MAP(Key o f f set, Rule r)
3: r.antecedent ← get-antecedent(r)
4: r.consequent ← get-consequent(r)
5: r.antecedent.size ← get-size(r.antecedent)
6: r.antecedent ← sort(r.antecedent)
7: k← r.consequent
8: v← r
9: Emit(k,v)

10: End Method
11: End Class

(k, v) where the key k is rule consequent and the value v is
a set of strong association rules having the same consequent.
The Reduce method then generates a set of general rules G
as output. It passes through two phases. First, it groups each
r in v that has the same r.consequent and r.antecedent.size
and forms a sub-partition, S[r.antecedent.size] (lines 3 to 7
in the pseudo code). After it puts each rule in one of the
sub-partitions of S, it deletes the empty sub-partitions of S
by resizing and re-indexing S (Line 8). In the second phase,
reducer prunes covered rules. At Line 9, it initializes the set
of general rules G to null. In following lines 10 to 18, the
reducer loops through each sub-partition of S. For each rule in
a sub-partition. if a rule belongs to the first sub-partition, S[1],
or is not a superset of any of the rules in G, then it adds the
rule to G. Otherwise, the rule is pruned. Finally, the reducer
emits the key k and the value G (Line 19).

B. Lift-based Rules Clustering Approach

This approach consists of the remaining three MapReduce
algorithms introduced in the previous section, namely, Create-
ACM, Compute lift, and Cluster-SAR. The number of ARs is
further reduced by clustering ARs which were not pruned by
PPrune. The clustering is based on an interest measure of AR
known as lift [44], which is defined for rule A→C as,

li f t(A→C) =
support(A∪C)

support(A)support(C)
(1)

Algorithm 2 PPrune Reducer

1: Class REDUCER
2: Method REDUCE(Key k, Value v)
3: for each r ∈ v do
4: s = r.antecedent.size
5: ra = r.antecedent
6: S[s] ← ra
7: end for
8: S ← Re-index(S)
9: G ← �

10: for i = 1; i ≤ |S|; i++ do
11: for each r ∈ S[i] do
12: if i == 1 then
13: G ← G ∪ r
14: else if ! Cover(G, r) then
15: G ← G ∪ r
16: end if
17: end for
18: end for
19: Emit(k,G)
20: End Method
21: End Class

It measures the correlation between the rule antecedent
and consequent. A lift of value one indicates no correlation
between the antecedent and consequent (i.e. independent); and
a value much higher than one shows strong positive correlation.
The proposed clustering approach is based on the assumption
that rules with antecedents that are highly correlated with the
same set of consequents are similar and thus should be clus-
tered together [44]. Unlike the existing clustering approaches,
this approach clusters antecedents containing itemsets which
are rarely occurring together.

To perform the clustering efficiently, we created a 2-
dimensional array (a matrix), M. The size of M is |A| by |C|,
where |A| is the number of distinct antecedents and |C| is the
number of distinct consequents of all the strong association
rules that are going to be clustered. The element mi, j of M
contains the lift value of the rule Ai → C j, where Ai is the
antecedent which corresponds to the ith row of M and C j is
consequent which corresponds to the jth column of M. An
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element of M which does not belong to a strong association
rule is assigned to a lift value of 1.

The distance between antecedents Ai and A j is defined as:

dist(Ai,A j) =

√√√√ |C|

∑
k=1

∣∣mi,k−m j,k
∣∣ (2)

To cluster antecedents into a set of K groups, namely G =
G1, G2, . . . , GK , we use K-means algorithm and minimize

the within-cluster sum of squares, ∑
K
i=1 ∑A j∈Gi dist(A j,µi),

where µi is the centroid of Gi.

1) Create-ACM mapreduce algorithm: This algorithm
takes as input strong association rules and initializes two 1-
dimensional arrays called RHS and LHS, and a 2-dimensional
array called ACM. LHS is indexed by the distinct antecedents
of the strong association rules whereas RHS is indexed by
the distinct consequents of the strong association rules. Let
A = {A1,A2, . . .A|A|} be the set of all distinct antecedents and
C = {C1,C2, . . .C|C|} be the set of all distinct consequents in
the strong association rules, where |A| is the number of distinct
antecedents and |C| the number of distinct consequents. The
size of ACM is |A|×|C|. Its rows are indexed by the members
of A and its columns are indexed by the members of C. Let mi, j
be an element of ACM indexed by Ai and C j and corresponds
to the rule Ai→C j.

Algorithm 3 Create-ACM Mapper

1: Class MAPPER
2: Global: LHS, RHS
3: Method MAP(Key o f f set, Rule r)
4: k ← get-antecedent(r)
5: v ← get-consequent(r)
6: LHS ← AddLHS(k)
7: RHS ← AddRHS(v)
8: Emit(k, v)
9: End Method

10: End Class

The Create-ACM Mapper extracts the antecedent and the
consequent of each rule and emits them to the reducer function.
It also initializes two global arrays called LHS and RHS. The
size of LHS is |A| and the size of RHS is |C|. The elements of
LHS and RHS are initially set to 0. The map function of the
Create-ACM algorithm is depicted in Algorithm 3. At lines 4
and 5, the function extracts the antecedent and consequent of
a rule. It then adds the consequent of a rule to RHS and the
antecedent to LHS, lines 6 and 7. At Line 8, the function emits
the antecedent and consequent of a rule to the reducer.

The Create-ACM Reducer creates ACM array as depicted
in Algorithm 4. The reducer takes an antecedent and all its
consequents from the Mapper as input. It also uses global lists
LHS and RHS initialized by the reducer. At Line 4, the reducer
uses a function called ACM-Init to create a row of ACM which
contains |C| elements which are all initialized to -1. The row
corresponds to one of the antecedents and each of its elements
corresponds to one of the |C| consequents. Each element in
a row correspond to a rule. At lines 5 to 7, each element of
ACM which corresponds to a strong rule is set to 0. At last, the

Reducer emits the current antecedent with its corresponding
ACM row, Line 8.

Algorithm 4 Create-ACM Reducer

1: Class REDUCER
2: Global: LHS, RHS, ACM
3: Method REDUCE(Key k, Value v)
4: ACM-Init(k, RHS, ACM)
5: for each x ∈ v do
6: ACM[k,x] = 0
7: end for
8: Emit(k, ACM[k])
9: End Method

10: End Class

Algorithm 5 Compute-Lift Mapper

1: Class MAPPER
2: Global: TXN-count, LHS, RHS, ACM
3: Method MAP(Key k, Value v,)
4: TXN-count++
5: R ← generate-rules(v)
6: for each r ∈ R do
7: c ← r.consequent
8: a ← r.antecedent
9: update(LHS, a)

10: update(RHS, c)
11: if Exists(ACM, a, c) then
12: Emit(a, c)
13: end if
14: end for
15: End Method
16: End Class

2) Compute-Lift mapreduce algorithm: This algorithm
takes as input transactions and gives as output the lift values
of the strong association rules. It uses the three global arrays
(TXN-count, LHS, RHS) and ACM to compute the lift values.
The Compute-Lift Mapper is depicted in Algorithm 5. It counts
the number of input transactions at Line 4 then generates
all the possible rules from a transaction at Line 5. At lines
7 and 8, it extracts the antecedent and consequent of each
rule generated at Line 5. If the antecedent is in LHS, then
the corresponding element in LHS is incremented by 1, Line
9. Also if the consequent is in RHS, then the corresponding
element in RHS is incremented by 1, Line 10. At last, the map
function emits the current antecedent and consequent if they
have a corresponding element in ACM, Lines 11 to 13.

The Compute-Lift reducer is shown in Algorithm 6. It takes
an antecedent and all its consequents. It also uses the global
variables TXN-count, ACM, LHS and RHS. This function
receives from the mapper, an antecedent and all its consequents
and checks the corresponding ACM element if it belongs to
a strong association rule, Line 6. If it belongs to a strong
association rule, then the count of that element is incremented
by 1, Line 7. At last, the reducer computes the lift values
using the Compute-lifts function and emits the antecedent and
the corresponding lift values, Line 12.

3) AR Clustering algorithm: Cluster-SAR: This algorithm
takes as input the rows of the 2-dimensional array ACM and
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Algorithm 6 Compute-Lift Reducer

1: Class REDUCER
2: Global: TXN-count, LHS, RHS, ACM
3: Method REDUCE(Key k, Value v )
4: a ← k
5: for each c ∈ v do
6: if ACM[a,c] ≥ 0 then
7: ACM[a,c]++
8: end if
9: end for

10: k ← a
11: v ← Compute-lifts(ACM, count, LHS, RHS,a,c)
12: Emit(k, v);
13: End Method
14: End Class

returns as output the cluster of each strong association rule.
Let us refer to each row of ACM as a sample. As explained
above, each sample corresponds to a distinct antecedent and
each element of a sample corresponds to a distinct consequent.
Each element mi, j of ACM contains the lift value of the rule
Ai→C j.

Algorithm 7 Cluster-SAR Mapper

1: Class MAPPER
2: Global: centroid
3: Method MAP(Key k, Value v)
4: Init(index, minDistance)
5: for i = 0; i < k; i++ do
6: distance ← EuclideanDistance(v, centroid[i])
7: if dis ≤ MinDistance then
8: minDistance ← distance
9: index = i

10: end if
11: end for
12: k ← index
13: v ← to string(v)
14: Emit(k, v)
15: End Method
16: End Class

Cluster-SAR uses K (a pre-specified value) and global
variable called centroid, which is initialized to random values.
The algorithm is a slight modification of the one proposed
in [44]. The Mapper of this algorithm is depicted in Algorithm
7. At Line 4, the function initializes the local variable index
to -1 and the MinDistance to the highest real number. For
each sample it reads, the mapper computes the distance of the
sample from each of the K centroids. It associates each sample
with the index of the closest centroid, Lines 5 to 11. At last,
the mapper emits each centroid with its corresponding samples
at Line 14.

The Cluster-SAR reducer is shown in Algorithm 8. It
computes the new centroids. It takes as input each centroid
and associated samples, then counts and computes the sum
of the corresponding elements in its corresponding samples,
lines 5 and 6. It then computes the average of the samples to
generate the new centroids, Line 8.

Algorithm 8 Cluster-SAR Reducer

1: Class REDUCER
2: Method REDUCE(Key k, Value v)
3: Init(SumV 2, count)
4: for each x ∈ v do
5: count ++
6: ComputeSum(SumV 2, x)
7: end for
8: centroids ← ComputeCentroids(SumV 2, count);
9: v ← to string(centroids);

10: Emit(k, v);
11: End Method
12: End Class

IV. EVALUATION

We conducted a number of experiments to evaluate the
performance of the proposed algorithms. In this section, we
begin with a description of the experimental settings, datasets
and evaluation metrics. We then describe the work conducted
and discuss the obtained results and their analysis.

A. Workspace Settings and Datasets

Hadoop 2.81 was used for the experiments. We used
a hadoop cluster of three nodes; one was configured as a
master node and the other two as slaves. We created four
data nodes, each two in a machine. Python and Java were
used to implement the proposed algorithms. The datasets used
in the experiments were Chess, Mushroom, T10I4D100K,
AllElectronics and Webdocs. We chose these datasets because
they are publicly available benchmark datasets with different
characteristics and frequently used in related work. A summary
description of these datasets is shown in Table I including
dataset name, notation, number of items, number of transac-
tions, average number of items per transaction, and number
of association rules for each dataset. In order to have larger
datasets, we replicated each dataset to have four sizes: 1GB,
2GB, 3GB and 4GB; we will refer to each one of them as
Di- j, where i ∈ 1,2,3,4,5 denotes the dataset and j ∈ 1,2,3,4
denotes the sizes in GB.

B. Evaluation Metrics

The proposed algorithms were evaluated using four perfor-
mance measures, namely elapsed time, speedup, scaleup, and
sizeup. Elapsed time is the difference between the completion
time of job and its submission time. In short, it measures the
duration of time a job took to be processed. Speedup compares
the elapsed time of a single node to that of n nodes to complete
the same job. It is defined as T1/Tn, where T1 and Tn are the
elapsed times of one and n nodes to complete the same job,
respectively. Scaleup compares the elapsed time of a single
node to complete a workload to that of n nodes to complete n
times the original workload. It is defined as T1/Tn,n where T1 is
the elapsed time of one node and Tn,n is that of n nodes. Sizeup
is defined as Tn/T1 and measures the scalability of a system.
It compares the elapsed time to complete a single workload
(T1) to the elapsed time of completing n times the original
workload (Tn).
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Fig. 2. Elapsed Time for each Algorithm (PPrune, Create-ACM, and Compute-Lift) for various Datasets and Number of Nodes.

Fig. 3. Speedup for each Algorithm (PPrune, Create-ACM, Lift) for various Datasets and Number of Nodes.
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TABLE I. EXPERIMENTAL DATASETS (EACH IS REPLICATED TO GENERATE LARGER DATASETS OF SIZE 1GB, 2GB, 3GB AND 4GB)

Dataset Notation Size (KB) Items Trans Avg. Items/Trans Rules

AllElectronics D1 1 5 9 2.6 52
Chess D2 335 75 3196 37 108061
Mushroom D3 558 119 8124 23 111790
T10I4D100K D4 3928 870 100000 10 5608
Webdocs D5 1480 5,267,656 1,692,082 61 1,231,984

Fig. 4. Sizeup for each Algorithm (PPrune, Create-ACM, Lift) for various Datasets and Number of Nodes.

Fig. 5. Scaleup for each Algorithm (PPrune, Create-ACM, Lift) for various Datasets and Number of Nodes.

C. Results

The performance of a MapReduce algorithm is significantly
affected by the percentage of communication cost to that of I/O
and CPU costs. The higher is the percentage of communication

cost in comparison to the I/O and CPU costs the less efficient
is the MapReduce algorithm. To study the performance of the
proposed MapReduce algorithms, we experimented using the
datasets D1-1, D2-1, D3-1, and D4-1 with different number
of data nodes (from one to four). Fig. 2 shows the results
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Fig. 6. Speedup of the Proposed Algorithms. Dataset used: Webdoc.

for the elapsed time for each algorithm (PPrune, Create-ACM,
and Compute-Lift). As the number of nodes decreases, the
elapsed time increases because more items in a node requires
more elapsed time. As the number of nodes increases, less
number of items is assigned per node, hence the elapsed
time decreases. Moreover, the elapsed time increases with the
number of items in a dataset; that is why D4-1 and D3-1
required more processing time than D1-1 and D2-1.

To study the remaining three measures, namely, scaleup,
sizeup, and speedup, we performed three other sets of ex-
periments. The result are shown in Fig. 3 for the speedup
of PPrune, Create-ACM, and Compute-Lift. For p number of
nodes, the ideal speed up is p. In our experiments, the worst
speedup 1.6 for 2 nodes, 2.2 for three nodes and 2.7 for four
nodes. The lowest speedup gained was when experimented
with D1 and the best speedup was gained when experimented
with D4. This is because D1 has few items compared to D4.
Fewer elements results in shorter and fewer association rules,
hence less CPU time. That is why the communication cost
compared to the CPU cost was more when processing D1 than
D4.

The second set of experiments was done to study the sizeup
of PPrune, Create-ACM, and Compute-Lift. The results are
shown in Fig. 4. The ideal sizeup is n when the size of the
workload increases n times. The worst speedup was 3.1 for 4
nodes and the best was 3.4. The lowest speedup was attained
with D1 and the best speedup was attained with D4. This is
because D1 has few items compared to D4. Fewer elements
result in shorter and fewer association rules, hence less CPU
time. That is why the communication cost, compared to the
CPU cost, was more when processing D1 than D4.

The third set of experiments was done to study the scaleup
of PPrune, Create-ACM, and Compute-Lift. The results are
shown in Fig. 5. The ideal scaleup is 1 when the size of the
workload increases n times. In our experiments, the scaleups
ranged between 0.78 and 0.84 when the number of nodes
was 4. Again, the lowest scaleup was with D1 and the best

scaleup was with D4. This is because of the same reason
that we discussed before, which is the number of items in
D1 and D4.

Though we have replicated each dataset many times, the
resulting number of rules was the same as the original dataset.
Therefore, the number of rules was small. To experiment with
a huge number of rules, we used the Webdoc dataset. We
minimized the minimum support so that we can generate a
huge number of rules from the dataset. Some attributes of
the dataset are shown in Table I. We added another physical
machine (with Intel i7-8750H Processor) and created up to
16 data nodes and then tested the proposed MapReduce
algorithms. The performance of each algorithm is shown in
Fig. 6. As expected, as the number of data nodes increased,
the efficiency decreased since it is the ratio Speedup/p, where
p is the number of processors. Also, when the number of
data nodes used exceeded 8, the speedup decreased. This is
because the percentage of the communication cost was too
high compared to the CPU and I/O costs. The main reason for
the high communication cost is the size of the Webdoc dataset,
1.48 GB, which is very small for a Hadoop machine with more
than four data nodes. In general, the speedup of a Hadoop
cluster with many nodes improves with bigger datasets.

V. CONCLUSIONS

With the increasing size of datasets, the number of as-
sociation rules mined by traditional approaches is growing
exponential making them difficult to visualize or interpret.
As a solution for this problem, researchers proposed pruning,
grouping and clustering algorithms. The advent of big data
technology motivates more research to be conducted in this
field. This paper presented a novel approach for clustering
huge number of association rules. The proposed MapReduce-
based algorithms reduce the number of association rules by
first pruning them based on rule structure and then clustering
them based on lift value. To study the performance of the
proposed algorithms, we used four measures, namely, elapsed
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time, speedup, sizeup, and scaleup. We experimented using
five benchmark datasets of which two are synthetic. We did
all the experiments in a hadoop cluster and the results showed
that the proposed algorithms are efficient. For example, the
lowest scaleup achieved was 77%.

For future work, further experiments with more nodes and
bigger datasets need to be conducted. The proposed algorithms
can also be extended to relax the number of items in the
consequent of a rule. Also different clustering algorithms and
visualization tools can be employed to improve the efficiency
of the proposed algorithms.
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