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Abstract—Mobile edge-cloud computing environments appear
as a novel computing paradigm to offer effective processing and
storage solutions for delay sensitive applications. Besides, the
container based virtualization technology becomes solicited due
to its natural lightweight and portability as well as its small
migration overhead that leads to seamless service migration
and load balancing. However, with the mobility property, the
users’ demands in terms of the backhaul bandwidth is a critical
parameter that influences the delay constraints of the running
applications. Accordingly, a Binary Integer Programming (BIP)
optimization problem is formulated. It minimizes the users’
perceived backhaul delays and enhances the load-balancing
degree in order to offer more chance to accept new requests
along the network. Also, by introducing bandwidth constraints,
the available user backhaul bandwidth after the placement are
enhanced. Then, the adopted methodology to design two heuristic
algorithms based on Ant Colony System (ACS) and Simulated
Annealing (SA) is presented. The proposed schemes are compared
using different metrics,and the benefits of the ACS-based solution
compared to the SA-based as well as a genetic algorithm (GA)
based solutions are demonstrated. Indeed, the normalized cost
and the total backhaul costs are given by more optimal values
using the ACS algorithm compared to the other solutions.

Keywords—Mobile edge-cloud computing; delay-sensitive ser-
vices; container migration; container deployment; backhaul band-
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I. INTRODUCTION

Mobile Edge Computing (MEC) is an emerging distributed
computing paradigm that can deliver timely services to mobile
users [1], [2]. They generally use resource-limited smart mo-
bile devices (SMD) that allow them to run indispensable smart
applications related to social networking, learning, businesses
and entertainment. To reinforce privacy, reduce latency, pre-
serve bandwidth and offer location-awareness, MEC enables
computation and storage at the edge of the network using a
set of edge nodes (EN). These nodes are resource-rich network
cells or edge servers (ES) that are deployed in close proximity
of the end-users and offer virtualized services to allow of-
floading of the mobile applications’ workloads [3]. The use of
these applications leads to appear new constraints related to
mobility, limited energy, limited computational capacity and
short latency.

The MEC model uses the virtualization techniques to
master the resource allocation operations for Virtual Services
(VSs) [4]. These VSs are often placed, migrated or replicated

over the ENs according to the users’ locations and resources
availability while considering constraints such as QoS, load
balancing and energy. Besides, the new container-based
lightweight virtualization solution is intended to decrease the
communication network overhead and enhance continuity
and quality of services. Though, especially with the user’s
mobility intrinsic property that is mostly frequent and
unpredictable and the limited coverage of nodes, a guaranteed
QoS for the deployed virtualized services is the most critical
issue [5]. Indeed, when the user moves far from the edge
server that deploys the corresponding virtualized service, the
service response time becomes significant and can hamper
the smooth running of the service. Therefore, a service
migration [6] process in this case becomes important to make
the service more interactive and guarantee its continuity.
But, due to the high cost of this process regarding its time
and the consumption of the available network bandwidth
and other resources, the migration decision is very critical.
Actually, with the non-negligible migration overhead, frequent
migration according to the user’s movement cannot be
tolerated in all network conditions, whereas limited migration
leads to the accumulation of communication delays which
may degrade the QoS.

Service migration has sprung up recently as a leading
problem in MEC networks. It involves complex procedures
to dynamically move running services from one edge node
to another. It becomes solicited in different edge management
procedures, such as service failures handling, load balancing,
mobile workloads offloading handling, etc. Also, to guarantee
service-level agreements (SLA) or seamless services, it has
to meet many constraints related to the available network
and computing resources, the latencies’ order of magnitude
as well as the users’ mobility [7]. The migration decisions
are taken while optimizing a general cost or profit function
that is evaluated in a long-term or short-term scenarios. Its
formulation uses many metrics such as the migration duration,
service downtime duration, network resources consumption,
etc. However, a precise evaluation of these metrics remains
a major problem for a good modelling of this problem. On
the one hand, because of the great diversity and the strong
dynamicity of the parameters as well as the mobility of the
users. On the other hand, because of the limitation of the
resources involved in the migration which accentuates the
constraints and limits the number of possible solutions.
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II. RELATED WORKS

With the high-mobility characteristic in the context of
Vehicular Edge Network, the authors of [8] considered a delay-
based cost function involving wireless transmission, backhaul
and computing delays. They examined the problem of joint
service migration and mobility optimization with minimum
migration cost and travel time. To solve the problem, a multi-
agent deep reinforcement learning algorithm was proposed.
In [9], the authors use migration frequency and migration
time as the migration cost and suggest a QoS aware solution
to enhance the handover operations by exchanging additional
information in order to perform service migration.

With the user mobility awareness assumption and QoS
concerns for efficient service migration in MEC networks,
many relevant works target service migration optimization.
The work in [10] uses the follow-me edge concept to derive
a service performance optimization problem constrained to a
long-term cost budget to decide the service migration. The
decision metrics include the Computing and Communication
delays plus the migration cost. The long-term optimization
problem is decomposed using Lyapunov optimization then
approximated based on Markov approximation to derive a near-
optimal solution with fast convergence rate. Moreover, based
on this last concept to guarantee high availability and prop
ultra-low latency, in [11] the authors studied four container-
based migration strategies. They considered both predefined
and unknown path scenarios. The work in [12] considered a
cost function with a combination of three metrics: the topol-
ogy cost that depends on the network structure and routing
mechanism, the user-perceived delay and the risk of location
privacy leakage. They modelled the migration procedure as
a Markov Decision Process (MDP) problem, and propose a
modified policy iteration algorithm to find the optimal decision.
Also, a distance-based MDP was proposed in [13] to optimize
the trade-off between the user-experienced delay and migration
cost while considering the distance separating the user and
the service locations. The work in [14] considered a dynamic
task migration problem with delays, tasks’ deadlines and user
mobility consideration. The objective function to maximize
was the number of tasks with guaranteed deadlines.

However, the mobility information is usually unavailable
in real world due to privacy and inaccuracy issues. With this
consideration, several recent works tackled the optimization of
service or container migration from various perspectives. The
work in [15] studied container migration in edge networks
using a joint load balancing and migration cost minimization
model. The migration cost encompasses two main metrics:
network transmission delay and container migration downtime.
They designed a migration solution based on a modified Ant
Colony System algorithm. In [16] a live migration framework
of container-based offloading services is presented. The basic
optimization idea consist in sharing common storage layers
across the edge hosts. Also in [17], the authors addressed the
high network consumption problem while migrating virtual
machines within cloud-edge fusion computing. They proposed
heuristic algorithms to balance migration and communication
costs.

The rest of this work is organized as follows. The system’s
model is describe in Section III . The obtained optimization
problem is presented in Section IV , and its resolution’s ap-

Fig. 1. Mobile Edge-Cloud System Architecture.

proaches are summarized in Section V . Evaluation and results
are presented in section V I . Finally, Section V II concludes
the paper.

III. USER’S BACKHAUL AND LOAD BALANCING AWARE
MIGRATION AND DEPLOYMENT OF CONTAINERS

(UBL-MDC)

In this section, the need to optimise a multiple criteria
decision-making problem in the proposed edge-cloud archi-
tecture is shown. Then, the involved cost functions as well as
the final overall objective function to optimize is formulated.

A. System Model

In this paper, the service deployment and migration prob-
lem from the perspective of an edge-cloud service provider
is studied. As shown in Fig. 1, an edge-cloud network that
uses a public/private cloud (PC) and a set of Edge Nodes
(ENs) within a 2-D geographical local area is considered.
Each EN is equipped with an Edge Server (ES) that can
be hosted in a Base Station (BS) that offers access to the
wireless communication network for all SMDs in its coverage,
or simply deployed to offer to the network more processing
and storage capabilities. In this last case, the server is called
independent edge server and denoted (IS). For ease of use,
an EN or its ES are indifferently used, while the edge-cloud
server i is denoted si. A given ES within a BS serves the
SMDs within the coverage area of the BS or other remote
ones, whereas an independent ES serves only remote SMDs.
The PC is supposed to have unlimited capacity, whereas all ESs
are supposed heterogeneous with limited resources. Also, each
ES can provide a set of independent virtualized services (VS)
using the container-based lightweight virtualization technology
where each running service uses a container instance and
serves one SMD only. The set of all available edge-cloud
servers is denoted S = {s1, s2, ..., sσs} where σs is the number
of servers. For ease of use, the set of all involved containers
is denoted C = {c1, c2, ..., cσc} where σc is the number of
containers.
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1) UBL-MDC Variables: To model the involved operations
in the studied system, the decision variables are presented:

The migration binary decision variable of container i from
its edge server sci to EN j is denoted αi,j where αi,j = 1
refers to the decision to migrate ci from sci to j, otherwise,
αi,j = 0.

αi,j ∈ {0; 1} ; i ∈ C; j ∈ S (1)

Additionally, when migrating container i from its edge
server sci to j the decision variable to select the migration path
among the possible paths set Psci ,j is the binary variable βki,j
where βki,j = 1 refers to the decision to use the k-th path in
Psci ,j to migrate i from edge server sci to j, otherwise βki,j = 0.

βki,j ∈ {0; 1} ; i ∈ C; j ∈ S; k ∈ Psci ,j (2)

2) Paths and delay: The SMDs get access to the ESs
via wireless channels, while the nearby ENs are connected
to each other in wired manner using high speed Ethernet
cables or optical fibers. The MEC network topology is given
by the set of nodes S and the set of links relying them.
The set of links is denoted L which can be defined as
L = {Lj,j′ |; j ∈ S; j′ ∈ S \ {j}} where Lj,j′ is one hop
link between ES sj and sj′ . Also, Psci ,j is used to denote
the set of feasible 1 paths connecting ESs sci and j that
can serve to migrate container ci located in ES sci to server
sj . Without loss of generality, we assume that the set Psci ,j
is precalculated and given while deciding the containers
migration. Then, P is used to denote the set of all sufficient
paths connecting all pairs of distinct nodes (j, j′) defined as:

P = {Pj,j′ / j ∈ S; j′ ∈ S \ {j}} (3)

Each path pk in Psci ,j is an ordered set of distinct links of
length |pk| such that pk =

(
L1,L2, ...,L|pk|

)
. Here, the source

node of link L1 is sci and the target node of the last link
L|pk

j,j′ |
is j. For the remaining links, the source node of link

L` is the target node of link L`−1 and the target node of
link L` is the source node of link L`+1. Fig. 2 shows a
network topology example given by a set of five ESs S =
{s1, s2, s3, s4, s5} where σs = 5 and six wire links denoted
: L = {Ls1,s2 ,Ls1,s3 ,Ls2,s3 ,Ls1,s4 ,Ls1,s5 ,Ls4,s5}. Also, the
dotted links show a migration path instance p1 with its ordered
links set given by p1 = (Ls2,s1 ,Ls1,s4). Then, the set of
possible paths connecting s2 and s4 is given by the following
set P2,4 = {p1, p2, p3, p4} where: p1 = (Ls2,s1 ,Ls1,s4),
p2 = (Ls2,s1 ,Ls1,s5 ,Ls5,s4), p3 = (Ls2,s3 ,Ls3,s1 ,Ls1,s4) and
p4 = (Ls2,s3 ,Ls3,s1 ,Ls1,s5 ,Ls5,s4).
In the proposed model each link ` ∈ L is characterized by
its total available bandwidth b(`). In addition, given the path
pk ∈ Psci ,j and the set L of all σl links, the binary array δki,j of
length σl indicating membership of all links to pk is defined.
Accordingly, the binary indicators δk,`i,j of each link ` ∈ L can
be computed using the paths in Psci ,j such that δk,`i,j takes 1 if
link ` in L is crossed in path pk ∈ Psci ,j , otherwise it takes 0.

1we assume that a restriction set of paths is sufficient to obtain the optimal
solution without the need to consider all possible paths

Fig. 2. Inter-Server Routing Paths Example.

Thus, each available path pk ∈ Pj,j′ with the hop count Hkj,j′
offers an allocatable bandwidth Bkj,j′ (see Ref [15]) for multi
hop data transmission. They are respectively expressed as:

Bkj,j′=

{
∞ ; j=j′
min
`∈pk
{b(`)} ; j 6=j′ ;j∈S;j′∈S;pk∈Pj,j′ (4)

Hkj,j′=
{

0 ; j=j′
|pk|−1 ; j 6=j′ ;j∈S;j′∈S;pk∈Pj,j′ (5)

Thus, when container ci is transferred to node j, the backhaul
bandwidth between its target node sti and node j is given by:

Bi,j =


∞ ; sti = j

max
k∈Pst

i
,j

{
Bksti,j

}
; sci 6= j ; i ∈ C; j ∈ S

(6)
which gives:

Bi =
∑
j∈S

αi,jBi,j ; i ∈ C (7)

3) Containers: Hereafter and for ease of notation, the fol-
lowing variables i, j, k, `,m are reserved to use for containers,
servers, paths, links and resources respectively. Also, from
now on, each container ci is characterized by the following
operating parameters : Ωi , 〈sci , sti,Rdemi , Bseri , xi〉 and the
set of all operating parameters is denoted Ω = {Ωi}i∈C . Here,
sci refers to the current server hosting container ci and sti refers
to the actual node hosting the communication access point
connecting the user of the service associated with container ci.
This node is considered as the best candidate target node for
deployment or migration so that the best transfer paths for ci
are in Psci ,sti . Actually, if a path is a feasible solution, container
ci will be migrated to the direct proximity of the user with no
communication overhead. Also, Rdemi = {rdi,1, rdi,2, ..., rdi,σr}
represents the resources demand set of ci and are given in
the number of standardized virtual resource units. Here, σr is
the number of resource types and rdi,m represents the required
quantity in terms of resource rm demanded by container i.
Furthermore, Bseri concerns the minimum allowable data rate
in terms of available bandwidth between ci and its associated
user after the migration or deployment procedures.The binary
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xi indicates whether ci is requested for a migration (xi = 1)
or for a new deployment procedure (xi = 0).

4) Edge servers resources: Each ES provides a set of
resources among multiple types including CPU, GPU, mem-
ory, storage, etc. Here, the set of possible σr resources is
denoted R = {r1, r2, ..., rσr}. Accordingly, every server j is
characterized by its capacity set in terms of resources which
is denoted Rcapj = {rcj,1, rcj,2, ..., rcj,σr}. Here, rcj,m represents
the maximum available quantity in terms of resource rm that
sj can furnish.
Within the server j which runs a set of containers using the
allocated resources, the deployment and migration will result
in hosting new containers and freeing others conforming to the
placement decisions. Thus, the utilization of resource rm on
ES j after the migration process is calculated as follows:

ruj,m (α) =
∑
i∈C

αi,jr
d
i,m ; j ∈ S;m ∈ R. (8)

5) Container deployment: Deploying a service in this work
refers to the transfer of unstarted components of the container
(program codes, libraries, databases, etc.) from the storing
node to a MEC server in order to make them available to
serve a user. The provider’s containers are stored in its PC or
in a specific known EN depending on the requested service.
Thus, all new incoming service requests from the users trigger
service deployment from the hosting nodes to the ENs. Here,
the same notation sci is adopted to refer the hosting node of
the requested container ci.

6) Container migration: Migrating a container tries to
achieve load balancing of ESs and increase the number of ser-
vices that meet the execution latency constraints if necessary.
this process involves the transfer of all runtime memory states
as well as the related storage data that should be synchronized
in the target ES. Furthermore, migration traffic routing in
MEC networks not only helps to significantly reduce services
downtime and interruption by selecting the best routing paths,
but it protect the network from route failure. Indeed, if some
links are in use or completely fail, alternate paths can be
selected to redirect and salvage the data flows. Accordingly,
a container migration decision has to found the expedited
path to route the migration flows while avoiding the network
congested links.

The important notations used are summarized in Table I.

TABLE I. MAIN NOTATIONS

Notation Definition

C The set of containers
S The set of edge-cloud servers
L The set of links
σc, σs, σr The the total number of containers, servers, resources
Pj,j′ The set set of sufficient paths connecting servers sj and sj′
Bk
j,j′ The bandwidth of path pk ∈ Pj,j′
Hk
j,j′ The hop count of path pk ∈ Pj,j′
Bi The backhaul bandwidth associated with container ci
Ωi The operating parameters of container ci
rdi,m The ci demand in terms of resource rm
ruj,m The sj resource usage in terms of resource rm

B. The Cost Models

As already alluded above, the containers’ deployment or
migration has to be decided while optimizing a cost model as
it is the most suitable way to favour one possible migration
solution over another. Thus, in the present section the costs
that are involved to formulate the objective function of the
optimization problem are presented. Table II shows some
important notations used to express these costs.

TABLE II. IMPORTANT COST NOTATIONS

Notation Definition

Costbacki,j The container ci backhaul cost when transferred to sj
Costback The overall user backhaul cost
Costprocj The processing load cost related to server sj
Costproc The overall processing load cost
Costnetw The overall network load cost
Cost (α, β) The cost or objective function
φ0, φi,j The pheromone initial and current values
∆l
φ, ∆g

φ The local and global pheromone evaporation rates
ε1, ε2 The pheromone and heuristic information parameters
temp0 The initial temperature value

1) User backhaul cost: After placing container ci at node
j, the backhaul delay of its user depends on the characteristics
of the path connecting node j and its communication access
node sti. In fact, the ideal situation is achieved if j = sti.
Accordingly, to favour such migration, this cost is introduced
in order to bring the containers as close as possible to their
end users. Generally, the smaller is this cost the more efficient
the placement is. To assess this cost, the available bandwidth
between nodes j and sti as well as the hop count between them
are used. Accordingly, the following weighted sum is adopted:

Costbacki,j =


0 ;sti=j

min
k∈P

st
i
,j

∆r

min
k′∈P

st
i
,j

Bk
′
st
i
,j

Bk
st
i
,j

+∆h

Hk
st
i
,j

max
k′∈P

st
i
,j

Hk′
st
i
,j

 ;sti 6=j

(9)
Here i ∈ C; j ∈ S and Costbacki,j is ranging in [0,1], ∆r and ∆h

are the weights associated respectively with the available data
rate (bandwidth) and the hop count costs such that ∆r+∆h =
1. Also, the fractions’ max and min expressions are used for
normalization purpose. Therefore, with the decision vector α,
the overall user backhaul cost can be obtained as:

Costback (α) =
∑
i∈C

∑
j∈S

αi,jCost
back
i,j (10)

2) Load balancing cost: To ensure the service quality
while taking into account the service delay, the model favours
containers’ migration from over-loaded ENs to release re-
sources for future nearby users requests. Also, to avoid the
unbalanced network load, e.g. some links are highly loaded
while some others are less loaded, the links traffic load metric
is introduced. The main intuition behind balancing this load
is to select paths that best balance the traffic loads across
different links and keep critical links available for future traffic.
Accordingly, the load balancing cost involves the processing
or computation load cost of the running containers on all ENs
and the traffic load of all available links. The processing load
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ratios θj,m of resource rm in ES j and their mean value θ̄m
are defined as follows:

θj,m (α) =
ruj,m (α)

rcj,m
∈ [0, 1] ; j ∈ S;m ∈ R (11)

θm (α) =
∑
j∈S

θj,m
σs

;m ∈ R (12)

Then, the processing load related to ES j with regards to all
resource types is defined as:

Costprocj (α) =
∑
m∈R

|θj,m (α)− θm (α) |
σr

; j ∈ S (13)

which gives the following overall processing load:

Costproc (α) =
∑
j∈S

∑
m∈R

|θj,m (α)− θm (α) |
σsσr

∈ [0, 1] (14)

On the other hand, the network load balancing cost shows
the distribution ratio of the links’ load or indicates whether
containers receive a fair share of data transfer resources.
Hence, the lack of capacity ϑ` of link ` using the the allowable
bandwidth Bksci ,j is given by:

ϑ`(α,β)=max

0;
∑
i∈C

∑
j∈S

∑
k∈Psc

i
,j

(
αi,jβ

k
i,jδ

k,`
i,j B

k
sci ,j

)
−b(`)

;`∈L

(15)
Accordingly, this lack of capacity is chosen as the network
load unbalance cost related to link ` which gives the following
overall network traffic load unbalance cost:

Costnetw (α, β) =
∑
`∈L

ϑ` (α, β) (16)

Moreover, as ϑ` (α, β) 6 b(l) ∗ (σc − 1), herein the following
normalization sum is presented:

Lcap = (σc − 1)
∑
`∈L

b(`) (17)

Finally, the following weighted sum is adopted to asses the
overall load balancing cost where ∆p and ∆n are the weights
associated respectively with both processing and network loads
such that ∆p + ∆n = 1. Also, the denominators in this
expression are used for normalization purpose.

Costload(α,β)=∆pCostproc(α)+∆n
Costnetw(α,β)

Lcap
∈[0,1] (18)

IV. THE UBL-MDC PROBLEM FORMULATION

A. Multi-objective Cost Function

Now, to get the overall cost model, a multi-criteria mi-
gration and deployment decisions by considering all the three
cost metrics within the proposed edge computing system is
designed. The proposed multi-objective function is formulated
as a weighted sum of these four costs using the following
function:

Cost(α,β)=∆b
Costback(α)

σc
+ ∆lCost

load(α,β) (19)

Here ∆b, and ∆l are regulatory weights constants to balance
this cost function. Their values are ranging in [0,1] such that
∆b + ∆l = 1. By deciding these weights one can adjust the

priority to attribute to each metric. Here, the variables are given
by α (two dimensions binary array [σc × σs] ) and β (two
dimensions array [σc × σs] of vectors where βi,j is a vector
of binaries of length |Pi,j |).

B. Constraints

In the proposed model model, the case when container i is
not migrated is represented by setting αi,sci = 1 and αi,j = 0
for j ∈ S \ {sci} and if migrated, only one target server is
selected. Accordingly, the migration decision of container i
has to meet the following constraint:

∑
j∈S

αi,j = 1 ; i ∈ C; (20)

By selecting a path p =
(
Lsci ,s1 ,Ls1,s2 , ...,Ls|p|−1,j

)
in

Psci ,j to serve the transfer flow of container ci from node sci
to j, many constraints have to be satisfied. With the start node
sci of path p, its last node j must be the placement node of
container i which is expressed as:

∑
k∈Psc

i
,j

βki,j = αi,j ; i ∈ C; j ∈ S (21)

Also, the resource capacity in EN j must satisfy all the
containers resource requirements that are decided to be
deployed in or migrated to ES j for all resource types, which
is finally formulated as:∑

i∈C
αi,jr

d
i,m ≤ rcj,m ; j ∈ S;m ∈ R (22)

Lastly, the serving bandwidth constraint after the placement of
container ci using the maximal available bandwidth in (7) is
formulated as:

Bi > Bseri ; i ∈ C (23)

C. Formulation

In light of the above clarifications of the studied prob-
lem, the formulation of the proposed UBL-MDC framework
which aims to efficiently deploy and migrate the involved
containers while considering their priorities is presented. The
joint deployment, migration and route selection are made
while deciding the best placements to minimize the objective
consisting of the costs related to the resulting users back-
haul bandwidth and the load balancing degree. Finally, the
following optimization problem P1 generates the minimal
deployment and migration cost with resource allocation and
traffic routing while maximum number of priority containers
are satisfied.

P1 : minimize
{α,β}

Cost (α, β)

s.t. (1), (2), (20), (21), (22), (23)

Indeed, this formulation minimizes the aforementioned four
metrics influencing the performance of the studied mobile
edge-cloud system and the users’ satisfaction according to their
priorities.
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D. The UBL-MDC Problem Complexity

Since problem P1 is a binary integer programming
problem, it is considered to be NP-complete. This is high-
lighted when showing its search space dimension that is
2σcσs

(∑
i∈C
∑
j∈S

(
2|Pi,j |

))
. For example, when σc = 20,

σs = 5 and |Pi,j | = 10, the search space size is 2100× (100×
210) ' 1.298× 1035. As such, the search space’s exponential
growth with the problem’s dimension is obvious and one
can observe the excessive computational requirement to solve
such a problem. Therefore, the following section shows the
development procedure of a low-complexity heuristic scheme.

V. PROBLEM RESOLUTION

A. The BFS-PS Exact Solution

To get the optimal containers’ migration and deployment
decision given by problem P1, an exhaustive search is per-
formed over all possible solutions using a Brute Force Search
with Path Selection that is denoted (BFS-PS). It is presented in
Algorithm 1. Unfortunately, this search is an O(σc× σs×N)

time complexity solution where N =
σc∏
i=1

(
σr∑
j=1

(|Pi,j |)

)
and

is feasible for limited settings. Indeed, when σc = 20, σs = 5
and |Pi,j | = 10, the iterations’ count N ' 9.536×1033, which
is already not feasible.

Algorithm 1 : BFS based Containers’ Migration and Deploy-
ment
Require: C,S,P ,Ω
Ensure: optimal decisions α∗, β∗ with cost Γ∗

1: Γ∗ ←∞

2: N ←
σc∏
i=1

(
σr∑
j=1

(|Pi,j |)

)
;

3: for l = 0 to N − 1 do
4: build β from l;
5: for each container i in C do
6: for each node j in S do
7: if

∑|Pi,j |
k=1 βki,j == 0 then

8: αi,j ← 0;
9: else

10: αi,j ← 1;
11: end if
12: end for
13: end for
14: if constraints of P1 are satisfied then
15: X ← Cost(α, β) according to (19);
16: if X < Cost∗ then
17: (α∗, β∗,Γ∗)← (α, β,X)
18: end if
19: end if
20: end for
21: return (α∗, β∗,Γ∗)

As input, Algorithm 1 requires the parameters’ vector Ω as
well as the information regarding containers, servers and paths.
The main for loop of the algorithm iterates N times over the

instructions’ bloc that tries to enhance the best solution using
variables α and β that are built using the current iteration
value.

B. ACS-PS Approximate Algorithm

To get a feasible containers’ migration and deployment
decisions, hereafter an efficient discrete ACS-based algorithm
with Paths Selection (ACS-PS) is designed with two different
migration strategies. To compare its performance, two other
meta-heuristic algorithms based on simulated annealing (SA)
and genetic algorithms (GA) are used. The first is summarized
in Algorithm 4 whereas the second is based on the work in
[15].

1) Algorithm description: ACS schemes adopt pheromone
evaporation and sharing strategies to share the learned ex-
perience among different ants’ groups. They simulate the
feeding process of ants to simulate the decision of containers’
migration and deployment. The main pieces of this algorithm
are summarized as follows:

• Ants are randomly placed in the containers to be
transferred.

• every ant Aa selects a mapping tuple < ci; sj > with a
probability pi,j , referring the transfer of container ci to
node sj using path pk according to the pheromones
φi,j and the heuristic information ψi,j . Then, ci is
placed into tabu list Tabua of Aa.

• To get its migration plan, ant Aa returns to the next
container in the transfer containers set C, and repeats
the previous process to complete the next migration
allocation.

• That all the ants complete the allocation of all the
transfer containers in C once, can be regarded as one
iteration.

• The algorithm terminates when the maximum itera-
tions’ number is reached.

2) Algorithm skeleton: In practice, ants use a kind of
chemical substance named pheromone to share information
with each other [18]. Its initial value is defined as follows:

φ0 =
1

σc
(24)

Pheromone variation rules: When transferring the con-
tainers, the ACS algorithm dumps the ants’ search experience
using the matrix [φ] of size σc × σs. Each element φi,j saves
the pheromone amount that informs ants about the tendency
to choose pair (ci; sj).
The next equations are the rules serving to update the
pheromone locally and globally, respectively:

φnewi,j = φoldi,j × (1−∆l
φ) (25)

φnewi,j = φoldi,j + ∆g
φ ×∆a

i,j (26)

here ∆l
φ and ∆g

φ are the local and global pheromone evap-
oration rates respectively. ∆a

i,j is its increment of additional
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pheromone defined by:

∆a
i,j =


1

Cost(X+
a )

; if αi,j = 1 in X+
a

0 ; otherwise
(27)

where Cost(X+
a ) is the cost value of an iteration’s best

solution found by ant Aa. Actually, when the mapping relation
tuple < ci; sj > is chosen, the ant updates locally the
pheromone value of this path using Eq. (25). On the other
hand, when the mapping relation tuples of all current solutions
is completed, the best one w.r.t. Cost is chosen to perform
pheromone update globally using Eq. (26) in order to maintain
the experience of the global best solution.

Heuristic information: The proposed model uses heuristic
information ψi,j that is obtained based on the maximum
allowable bandwidth to transfer container ci to node nj that
is expressed as:

ψi,j = max
k′∈Pst

i
,j

Bk
′

sti,j
(28)

Usually ants tend to choose the path with more pheromones
and higher expectations of the ongoing path. Nevertheless,
this deterministic choice has the disadvantage to fall into
local optimum. Accordingly, ACS algorithm reacts by using a
pseudorandom rule where ants probabilistically select the next
mapping transfer tuple < ci, sj , pk > using a probabilistic rule.
First, Eq. (29) defines the set ωa(i) of possible target nodes
j′ related to ant Aa and their leading routes k′ that verify
all constraints in (31). Each element in this set represents
a possible candidate placement node j with its associated
possible leading routes that are given by the set ωa,j(i). The set
of candidate placement nodes only in ωa(i) is denoted ωa(i).

ωa(i) = {(j′, k′) | if (31) are satisfied } (29)

ωa(i) = { j | (j, k) ∈ ωa(i)} (30){ ∑
i′∈Cαi′,jr

d
i′,m+rdi,m≤rcj′,m m∈R

Bk′sti,j′>Bi
(31)

The nodes selection: The next pair container-node is
chosen based on the following equation:

j=

{
argmax
j′∈ωa(i)

{(φi,j)ε1×(ψi,j)
ε2} ifq6q0

Roulette Wheel{ωa(i);χi,j} otherwise
(32)

where q is a uniformly distributed random number ranging in
[0, 1] and q0 ∈ [0, 1] is a threshold parameter. ε1 and ε2 are
pheromone and heuristic information parameters, respectively.
When q 6 q0, Aa choose pair (i, j) with the maximum value
to transfer ci to node j. Otherwise, the pair (i, j) is chosen
with the Roulette Wheel procedure (see Alg.(2)) within the
set ωa(i) using probabilities χi,j defined in Eq. (33).

χi,j=
(φi,j)

ε1×(ψi,j)
ε2∑

j′∈ωa(i)

(φi,j′)ε1×(ψi,j′)ε2
(33)

The node-path pair selection: if container ci is selected
for transfer, the model proposes to select the pair sj − pk

Algorithm 2 : Roulette Wheel Rule Algorithm for Container
ci using ωa(i).

Require: S,P ,ωa(i),Ωi, ε1 and ε2

Ensure: the candidate node j0;
1: for each node j in S do
2: if j in ωa(i) then
3: calculate χi,j using Eq. (33)
4: else
5: χi,j ← 0;
6: end if
7: end for
8: q1← random(0, 1) ∗ χtotal;
9: p← 0;

10: for each node j in ωa(i) do
11: p← p+ χi,j ;
12: if q1 > p then
13: j0 ← j;
14: break;
15: end if
16: end for
17: return j0

denoted (j, k) as the target node and the path of its transfer.
The adopted path selection strategy uses two versions: the first
strategy denoted (ACS-PS-1) select the path with the maximum
allowable bandwidth, while the second one denoted (ACS-PS-
2) adopts a random selection strategy. With the first strategy
ACS-PS-1, the following equation that gives the maximum
transfer bandwidth while choosing path pk is adopted:

k← argmax
k′∈ωa,j(i)

{
Bk
′

sci ,j

}
(34)

3) Algorithm pseudo-code: The pseudo-code of the pro-
posed algorithm is summarized in Algorithm 3 where a solu-
tion Xa is given by the variables’ arrays (α, β) and X is the
solutions’ set of all ants.

As input, Algorithm 3 requires the sets C,S and P; the
parameters’ vector Ω, the maximum iterations count parameter
nmax, the ants’ count σa, the pheromone initial value q0, the
local and global pheromone evaporation rates ∆l

φ and ∆g
φ; ε1,

ε2 the pheromone and heuristic information parameters and the
path selection strategy s. In lines 1 to 3, the initial solution’s
vectors are built and the optimal cost F ∗ associated with the
optimal solution (α∗, β∗) is initialized. In line 4, the general
for loop repeat the process using nmax iterations where in each
iteration all ants are involved using the loop in line 6. At each
ant step, probability matrix is updated (lines 7-11), the contain-
ers’ placement decisions with paths’ selection are performed
using Eq. (32) and strategy s which results in the vectors α
and β (lines 12-35); and the local update of pheromone is
executed. Then the iteration solutions corresponding to all ants
are examined with a global pheromone update(lines 38-40)
using the best solution and Eq.(26).

C. The SA-PS Approximate Algorithm

In this section, the proposed Simulated Annealing based
heuristic solution with Paths Selection (SA-PS) is described.
This heuristic optimization technique is characterized by its
simplicity and general applicability features. In terms of speed,
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Algorithm 3 : ACS-Based Container Transfer Algorithm with
Path Selection (ACS-PS)

Require: C,S,P ,Ω, nmax, σa, q0, ∆l
φ, ∆g

φ, ε1, ε1 and strategy
s

Ensure: the Global solution (α∗, β∗);

1: Generate an initial solution (α, β)
2: Calculate F = Cost(α, β) according to (19);
3: (α∗, β∗, F ∗)← (α, β, F )
4: for n = 1 to nmax do
5: X ← {}
6: for a = 1 to σa do
7: for each container i in C do
8: for each node j in S do
9: calculate χi,j using Eq. (33)

10: end for
11: end for
12: for each container i in C do
13: choose pair < sj0 ; pk0 > from ωa(i) using
14: Eq. (32) and strategy s;
15: for each node j in S do
16: if j = j0 then
17: αji ← 1;
18: for each path k in Psci ,j0 do
19: if k = k0 then
20: βki,j0 ← 1;
21: else
22: βki,j0 ← 0;
23: end if
24: end for
25: else
26: αji ← 0;
27: for each path k in Psci ,j do
28: βki,j ← 0;
29: end for
30: end if
31: end for
32: update the local pheromone according to
33: Eq. (25);
34: put ci into Tabua;
35: end for
36: put solution Xa = (α, β) into X;
37: end for
38: X+ ← argmin

Xa∈X
{Cost(Xa)};

39: F ← Cost(X+)
40: update the global pheromone according to Eq. (26);
41: if F < F ∗ then
42: (α∗, β∗, F ∗)← (α, β, F )
43: end if
44: end for

it is considered among the main efficient heuristics compared
to other techniques. Probabilistically, this algorithm accepts not
only cost gain, but also cost degradation in order to leave the
local minima. Inspired by the Very Fast Simulated Annealing
[19] variant, this algorithm use the cost function Cost as the
thermodynamic system’s energy. During the solutions’ space
probabilistic iteration, the acceptance of the current state is
done such that new states with less energy compared to the

previous energy are accepted; otherwise, the new state is
accepted when the probability exp

(
|F−Fnew|
temp

)
is greater than

a random generated float using a uniform distribution U [0, 1].
Also, with decreasing temperature process, the chance for the
system to accept such penalizing transitions decreases. The
temperature schedule in this algorithms is given by:

tempk = temp0e

(
−0.5k

1
2σc

)
(35)

where k is the current iteration number and temp0 is the initial
temperature parameter. The detail of the solution is presented
in Algorithm (4).

Algorithm 4 : SA-Based Container Transfer Algorithm with
Path Selection (SA-PS)

Require: C,S,P ,Ω, kmaxand temp0.
Ensure: the Global solution (α∗,β∗);

1: Generate an initial solution (α,β)
2: Calculate F=Cost(α,β) according to (19);
3: (α∗,β∗,F ∗)←(α,β,F )
4: for n=1 to kmax do
5: temp←temp0e

−0.5n
1

2σc ;
6: αnew←rand neighbour(α);
7: Build best βnew using αnew
8: Calculate Fnew=Cost(αnew,βnew) using (19);
9: ∆F←Fnew−F

10: if ∆F<0 or e
−|∆F |
temp >random(0,1) then

11: (α,β,F )←(αnew,βnew,Fnew)
12: if F<F ∗ then
13: (α∗,β∗,F ∗)←(α,β,F )
14: end if
15: end if
16: end for
17: return (α∗,β∗)

As input, Algorithm 4 requires the sets C,S and P; the
parameters’ vector Ω, the maximum iterations count parameter
kmax, the initial temperature value temp0. In lines 1 to 3,
the initial solution’s vectors are built and the optimal cost
F ∗ associated with the optimal solution (α∗, β∗) is initialized.
Then a for loop (line 4) is used in order to repeat the annealing
process using kmax iterations. At each step, the temperature
value temp is updated (line 5); then, a neighboring state
αnew of the current state α in line 6 is generated and its
corresponding paths selection vector is built in line 7. Then,
the new cost Fnew is evaluated in line 8. Then, the new state
is accepted if generating more profit; otherwise it is accepted
using a probabilistic test(lines 10 to 15). Here, random(0, 1)
is a function’s call that uniformly generates a random number
in [0, 1].

VI. EVALUATION AND RESULTS

In this section, the proposed experiments used in order to
compare the proposed solutions are presented based on the
execution time and the cost function metrics.

A. Simulation Setup

All developed simulation programs were ran using a
2.4GHz Intel Core i5 processor in a PC with a maximum 8GB
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of RAM. Moreover, the basic parameters of the simulation
experiments are listed in Table III .

TABLE III. SIMULATIONS’ PARAMETERS

Parameter values

σs; σr 5; 3
|Pi,j | [[3; 5]]
nmax; kmax 100; 200
q0 0.3
∆l
φ; ∆g

φ 0.1; 0.7
∆r ;∆h 0.5; 0.5
∆p;∆n 0.5; 0.5
∆l;∆b 0.5; 0.5
ε1 1
ε2 2
temp0 200

B. Exact vs. Heuristic Performance

To investigate the feasibility and limitation of Algorithm
1, the first experiment is carried where the achieved costs
are measured and the execution time of all five solutions
is recorded. In fact, the performance of the optimal BFS
based solution is studied compared to the proposed heuristic
solutions where the ACS-PS algorithm is studied relatively to
both proposed strategies denoted ACS-PS-1 and ACS-PS-2.
Accordingly, the containers’ count (σc) is varied between 2
and a maximum feasible experimentation value σc = 9 while
the nodes’ count σs = 5, and |Pi,j | ∈ [[3; 5]]. The obtained
results are depicted in Fig. 3.
The obtained normalized cost for the proposed solutions is

Fig. 3. Normalized Cost and Execution Time with σc; σs = 5.

shown in the left part of this figure. The variations of the same
curve in this figure is only the result of using different data
from one point to another and does not carry any information.
Thus, the figure shows similar results for all solutions when
σc ∈ [2, 7]; elsewhere the results of the GA-PS solution only
deviate little from the optimal BFS-PS solution. The right side
of this figure shows the variation of the execution time of
the studied solutions. For clarity reason in this part of the
figure, the results are zoomed to show the achievements of the
heuristic solutions. Accordingly, the exponential growth of the
BFS-PS solution execution times is demonstrated. Indeed, it
achieves better performance for σc ∈ [2, 4] compared to all
other solution; elsewhere, it enormously goes beyond feasible
times. For instance, it reaches 34123.15s with σc = 9. The
SA-PS solution achieves the minimum execution times by
little exceeding the achievements of the ACS-PS and GA-PS

solutions. In fact, with σc = 9 it reaches only 0.192s; whereas
ACS-PS-1, ACS-PS-2 and GA-PS solutions respectively attain
2.242, 1.883 ans 2.784 seconds. This experiment shows a
slightly stable execution time for the heuristic solutions and the
infeasibility of the BFS-PS solution beyond the value σc = 5.

C. Heuristic Solutions Comparison

The second experiment studies the heuristic solutions’ per-
formance only. In this experiment, the containers’ number (σc)
is taken such that σc ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
With regard to the total number of containers, Fig. 4 shows
the achieved Normalized Cost obtained as the value of the
objective function defined in Eq. (19). The results demonstrate
the superiority in performance of the ACS-PS solution for both
strategies. In particular, the ACS-PS-2 solution gives the best
results compared to all other solutions for all values of σc.
Also, the results of the solutions based on GA-PS and SA-PS
are slightly bigger in that order compared to those of ACS-PS.
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Fig. 4. Normalized Cost with σc; σs = 5.

D. The Total Backhaul Cost

Now, the next evaluation is introduced where the perfor-
mance related to the total backhaul cost achievements for all
heuristic solutions is studied. The reported values are obtained
using Eq. (10). First, the experience is performed such that
σc ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} with σs = 5
and record the overall backhaul costs using ACS-PS, SA-
PS and GA-PS heuristic methods. In each value of σc the
overall achieved backhaul cost is sown without normalization
using different settings. Thus, the variation shape of the same
curve does not provide any information. Hence, Fig. 5 depicts
the obtained results of this first experiment. Once again, the
ACS-PS-2 solution gives the best results compared to all
other solutions for all values of σc. Mainly, the performance
results of the solutions based on ACS-PS widely exceed the
performance of GA-PS and SA-PS although there is no clear
and fixed preference between GA-PS and SA-PS in terms
of results. Indeed, ACS-PS-1, ACS-PS-2, SA-PS and GA-PS
attain respectively 0.221, 0.101, 1.244 and 1.203 for σc = 100,
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whereas they attain 0.302, 0.169, 1.071 and 1.169 for σc = 90.
Now, the following second part of the experiment studies the
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Fig. 5. Total Backhaul Costs with σc; σs = 5.

impact of the regulatory factor ∆b on the result in terms of the
total backhaul cost. ∆b is taken in the interval [0.05, 0.5] with
the setting σc = 30; σs = 5; ∆l = 1.0 − ∆b. The obtained
results are reported in Figure 6.
The balance effect is well observed from this figure. Indeed,
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Fig. 6. Total Backhaul with ∆b; σc = 30; σs = 5; ∆l = 1.0−∆b;.

when the value of ∆b increases, the total backhaul cost gen-
erally decreases except for a few values where small tolerable
increases are observed. these increases can be explained by the
probabilistic aspect of these heuristic solutions which remain
acceptable. The same figure further demonstrates superior per-
formance of the ACS-PS-2 solution. Indeed, for this solution
only, the variation of the total backhaul cost remains decreasing
for all values of the experience. Consequently, this experiments
shows that the factor ∆b, used as regulator coefficient to
balance the importance of the backhaul bandwidth cost among
the other metrics, really fulfills its role.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, a containers’ deployment and migration
problem with resource consideration within a multi-server
mobile edge-cloud system is studied. The model considers a
set of containers to deploy and migrate to a set of edge-cloud
nodes where the transfer is compellable to users’ backhaul

bandwidth constraints. The formulated optimization problem
minimizes a derived multi-objective function that jointly min-
imizes end-users perceived bandwidths and the system’s load
balance degree. Accordingly, the optimal transfer decisions
are established by solving the obtained optimization problem.
To handle its high complexity, two moderate complexity
algorithms based respectively on Ant Colony System and
Simulated Annealing are proposed. Then, a set of simulation
experiments are performed to study their performance. The
results reveal that the proposed BFS-based exact method is
inefficient with big settings and it is highly time consuming.
Furthermore, the ACS-PS is considerably efficient and gives
good result with more acceptable execution time, whereas
the SA-based solution is very efficient in terms of execution
time. Moreover, the balance effect of the ∆b factor serving to
balance the importance degree of the backhaul cost is well
established. Finally, we plan as perspectives to involve the
transfer delays regarding the migrations types in the studied
edge-cloud system.
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