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Abstract—It is important to identify the risk factors of 
dementia and prevent them for the health of patients and 
caregivers. This study (1) explored sampling methods that could 
minimize overfitting due to data imbalance using a data-level 
approach, (2) developed nine ensemble learning models for 
predicting Parkinson's Disease–Mild Cognitive Impairment (PD-
MCI) ((undersampling, oversampling, and SMOTE) × (boosting, 
bagging, and random forest)=9), and (3) compared the accuracies, 
sensitivities, and specificities of these models to understand the 
prediction performance of the developed models. We examined 
368 subjects: 320 healthy elderly people (≥60 and ≤74 years old) 
without Parkinson's disease (168 men and 152 women) and 48 
subjects with PD-MCI (20 men and 28 women). This study used 
the Cognition Scale for Olde Adults (CSOA), which could 
measure cognitive functions comprehensively while considering 
age and education level, to determine the specific cognitive level 
of the subject. Our study developed nine prediction models 
((undersampling, oversampling, and SMOTE) × (boosting, 
bagging, and random forest)=9) for developing a model to predict 
PD-MCI based on basic intelligence quotient and executive 
intelligence quotient. The analysis results showed that a random 
forest classifier with SMOTE had the best prediction 
performance with a sensitivity of 69.2%, a specificity of 75.7%, 
and a mean overall accuracy of 74.0%. In this final model, digit 
span test-backward, stroop test-interference trial, verbal memory 
test-delayed recall, verbal fluency test, and confrontation naming 
test were identified as the key variables with high weight in 
predicting PD-MCI. The results of this study implied that a 
random forest classifier with SMOTE could produce models with 
higher accuracy than a bagging classifier with SMOTE or a 
boosting classifier with SMOTE when analyzing imbalanced data. 
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I. INTRODUCTION 
The prevalence of dementia is rapidly increasing in South 

Korea along with the increase of the elderly population [1]. 
The National Dementia Epidemiology Survey conducted by 
the Ministry of Health and Welfare in 2012 showed that the 
dementia prevalence of the elderly (≥65 years old) in 2012 
was 9.18% and the number of dementia patients was 540,755 
(155,955 men and 384,800 women) [2]. The survey predicted 
that the prevalence of dementia in old age will increase up to 
13.17% in 2050 [2]. Dementia is a stressful disease for both 
patients and their families because the overall cognitive 

function of adults who have achieved normal cognitive 
development declines, the patients have to struggle against 
dementia for a long time, and symptoms gradually worsen [3]. 
Therefore, it is important to identify the risk factors of 
dementia and prevent them for the health of patients and 
caregivers [4]. 

Especially, it is critical to screening dementia as soon as 
possible from the viewpoint of geriatric medicine. Dementia is 
known as an irreversible disease that is difficult to cure after it 
occurs [5]. However, thanks to the rapid development of 
molecular biology, many studies [6,7,8] have continuously 
reported that cholinergic enzyme inhibitors such as donepezil 
can delay the progress of dementia or inhibit the decline of 
cognitive function. As a result, the perception of dementia 
treatment has been shifted and early detection of high 
dementia risk groups has emerged as an important topic. 
Consequently, if we can detect high dementia risk groups 
sooner, it will be possible to provide professional counseling 
on the prognosis and help people establish a better health plan 
in old age. 

Before the onset of dementia, the preclinical phase can last 
from five to seven years [9]. If appropriate therapeutic 
interventions are provided during this period, it is possible to 
delay the development of dementia for about 5 years [10]. 
Therefore, recent studies have focused on detecting the 
preclinical phase, particularly mild cognitive impairment 
(MCI), which is known as a middle stage between normal 
aging and dementia, as soon as possible [11]. Nevertheless, 
compared to studies on the MCI of Alzheimer's dementia, 
much fewer studies have identified the risk factors of 
Parkinson's disease–mild cognitive impairment (PD–MCI) 
[12]. Moreover, it has rarely evaluated the relationship 
between neuropsychological tests and PD-MCI using machine 
learning [13]. 

Over the past decade, many studies have widely utilized 
ensemble learning, a supervised learning algorithm, for 
classifying and predicting the complex risk factors of diseases 
[14,15,16]. Although ensemble learning is known to be more 
accurate than conventional decision trees [17], when a 
prediction model is developed using binomial categorical 
imbalanced data, the recall and precision of it are highly likely 
to decrease because the classification can be biased into major 
classes. In particular, in the case of disease data, since the 
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number of patients is generally smaller than that of healthy 
people, data imbalanced problems are more likely to occur 
[18,19]. Therefore, a sampling technique for processing 
imbalanced data is additionally needed to overcome the 
prediction error due to class imbalance in disease data. 
Previous studies [20,21,22] suggested using oversampling, 
undersampling, and synthetic minority over-sampling 
technique (SMOTE) to improve the classification performance 
for imbalanced data. This study (1) explored sampling 
methods that could minimize overfitting due to data imbalance 
using a data-level approach, (2) developed nine ensemble 
learning models for predicting PD-MCI ((undersampling, 
oversampling, and SMOTE) × (boosting, bagging, and 
random forest)=9), and (3) compared the accuracies, 
sensitivities, and specificities of these models to understand 
the prediction performance of the developed models. 

Construction of this study is as follows: Section II explains 
subjects, measurements, a data-level approach for improving 
classification performance of imbalanced data, and analyzed 
variables. Section III compares the results of developed nine 
prediction model ((undersampling, oversampling, and 
SMOTE) × (boosting, bagging, and random forest)). Lastly, 
Section IV presents conclusion and direction for future studies. 

II. METHODS 

A. Subjects 
This study examined 368 subjects: 320 healthy elderly 

people (≥60 and ≤74 years old) without Parkinson's disease 
(168 men and 152 women) and 48 subjects with PD-MCI (20 
men and 28 women). In this study, patients with Parkinson's 
disease were defined as patients diagnosed with idiopathic 
Parkinson's disease according to the diagnostic criteria of the 
United Kingdom Parkinson's Disease Society Brain Bank. The 
criteria for selecting healthy elderly were (1) those who 
received at least 24 points from the Korean version of Mini-
Mental State Examination (K-MMSE)[23], a normal range, 
(2) those who did not have any impairment in vision and 
hearing for performing cognitive tests, and (3) those who did 
not have a history of stroke, Parkinson's disease, or dementia. 

G-Power version 3.1.9.6 (Universität Mannheim, 
Mannheim, Germany) was used to conduct a power test for 
the sample size of this study. When the number of predictors 
was 18, significance level (alpha) was 0.05, power (1-B) was 
0.95, and the effect size (f2) was 0.15, the minimum sample 
size was estimated as 213. Therefore, the sample size of this 
study (n=373) exceeded the recommended sample size for 
testing the statistical significance (Fig. 1 & 2). 

 
Fig. 1. Results of Power Test. 

 
Fig. 2. Results of Calculating the Appropriate Sample Size to Test Statistical 

Significance. 

B. Measurements 
This study used the Cognition Scale for Olde Adults 

(CSOA)[24], which could measure cognitive functions 
comprehensively while considering age and education level, to 
determine the specific cognitive level of the subject. The 
CSOA is a standardized cognitive test that can 
comprehensively measure the cognitive functions of the 
elderly who are suspected to suffer from cognitive impairment 
or dementia. The CSOA is composed of stroop simple trial, 
stroop interference trial, digit span test-forward, digit span 
test-backward, general information, verbal fluency test, 
confrontation naming test, Rey complex figure test-copy, 
recognition, immediately recall, and delayed recall. Among 
them, stroop simple trial, digit span test-forward, general 
information, confrontation naming test, and delayed 
recognition were defined as basic intelligence quotient. Stroop 
interference trial, digit span test-backward, verbal fluency test, 
Rey complex figure test-copy, immediately recall, and delayed 
recall were defined as executive intelligence quotient. The 
sum of basic intelligence quotient and executive intelligence 
quotient was defined as full-scale intelligence quotient. Kim 
(2011)[25] reported that the reliability of the CSOA 
(Cronbach alpha) was 0.932. This study converted the raw 
scores of 10 sub-tests into standard scores with an average of 
100 and a standard deviation of 15 and used them for machine 
learning. The composition of the CSOA’s sub-tests is 
presented in Fig. 3. 

 
Fig. 3. Composition of basic Intelligence Quotient and Executive 

Intelligence Quotient in the CSOA. 
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C. Definitions of Variables 
Digit Span Test: When the tester calls out a number, the 

test subject repeats it immediately after listening to it. There 
are two-digit span tests: digit span test-forward and digit span 
test-backward. Each test starts with an item with a short-length 
number and the length gradually increases as the test 
progresses. Each raw score is the sum of all items, and it 
ranges from 0 to 14 points. 

Stroop Test: Stroop test consists of a simple trial and an 
interference trial. The simple trial measures the reaction time 
takes to tell the colors of 24 circles. The interference trial 
measures the reaction time to tell the color of a word that 
describes a color (for example, if “yellow” is written in red, 
the correct response is “red”). A higher score indicates better 
reaction sense. 

Verbal Memory Test: The verbal memory test is a test that 
comprehensively calculates the Memory Function Index using 
10 picture cards. It is conducted in the order of immediate 
recall, delayed recall, and recognition. The delayed recall shall 
be conducted 15-20 after performing the immediate recall. 
The recognition shall be carried out immediately after 
completing the delayed recall. The raw score shall be 
calculated by summing the immediate recall, delayed recall, 
and recognition, and the score ranges from 0 to 50 points. 

General Information: It is a series of questions and 
answers, and these questions ask common sense. It consists of 
20 questions, and each question is one point. Therefore, the 
total score ranges from 0 to 20 points. A higher score indicates 
better common sense. 

Verbal Fluency Test: It is composed of two trials. The 
subject shall state nouns in the animal category as many as 
possible in the first trial and nouns in the crop category as 
many as possible in the second trial. The time limit for each 
trial is 1 minute. The raw score is calculated by summing the 
number of correct responses in the first and second trials. A 
higher score refers to a better visuospatial function and verbal 
fluency. 

RCFT: Rey Complex Figure (RCF) is to test a subject by 
copying a figure. Copying is defined as a visuospatial ability, 
and recalled drawing is defined as visuospatial memory. RCF 
is evaluated by scoring 18 elements. Each element shall be 
evaluated by considering the shape and position of each 
figure, and the original score ranges from 0 to 36 points. A 
higher score indicates a better visuospatial ability and 
visuospatial memory. 

Confrontation Naming Test: This test asks a subject to 
read a drawing of an object and say the name (noun) of it. It 
consists of 24 items, and the range of the raw score is 0 to 24 
points. A higher score indicates better confrontation naming 
ability. 

Explanatory variable: Explanatory variables were 
education level (“middle graduation or below” or “high school 
graduation or above”), gender (male or female), age, living 
with a spouse (living together, bereavement/separated, or 
single), economic activity (yes or no), subjective stress (yes or 
no), mean monthly household income (<₩1.5 million, ₩1.5-

3.0 million, or ≥₩3.0 million), smoking (non-smoking or 
smoking), drinking (non-drinking or drinking), MMSE-K, 
verbal memory test, stroop test, general information, digit 
span test, RCFT, confrontation naming test, verbal fluency 
test, total score of activities of daily living (ADL), and total 
score of instrumental activities of daily living (IADL). 

D. A Data-level Approach for Improving Classification 
Performance of Imbalanced Data 
The results of this study showed that 86.9% (n=320) of the 

subjects were healthy without suffering from PD-MCI and 
those suffering from PD-MCI were 13.1% (n=48), indicating 
that the data was imbalanced. A classifier that learns from 
binomial categorical imbalanced data, which have a large 
difference between the size of a major group and that of a 
minor group, tends to have a classification biased toward the 
majority group. Therefore, it classifies the majority of the data 
into the major group to severely reduce the classification 
accuracy of the minor. In other words, a prediction model 
developed from unbalanced data can have a higher overall 
accuracy, but it is highly likely to show a low precision and 
recall for a minor group. This study used undersampling [26], 
oversampling [27], and SMOTE methods [28] as data-level 
approaches to improve the classification performance of 
binomial categorical imbalanced data. 

Undersampling is a method of overcoming the data 
imbalance issue by randomly removing samples falling in a 
major class. The undersampling can save time for constructing 
a model by reducing the amount of data, but it has a 
disadvantage of losing information [20,29]. Oversampling is a 
method of overcoming the data imbalance issue by randomly 
replicating samples falling in a minor class [30]. 

The oversampling technique takes more time to build a 
model because the sample size increases, and it may cause an 
overfitting issue because it copies samples in a minor class 
[22,31]. The SMOTE finds n nearest neighbors in a minor 
class of a certain datum in the minor class. Afterward, it draws 
a line between the datum and the nearest neighbor and 
randomly generates data along the line until these randomly 
generated data become synthetic [32]. 

E. Development of Prediction Models and Evaluation of 
Prediction Performance 
This study developed nine prediction models 

((undersampling, oversampling, and SMOTE) × (boosting, 
bagging, and random forest)=9) for developing a model to 
predict PD-MCI based on basic intelligence quotient and 
executive intelligence quotient. The prediction performance of 
the developed models was tested by using 5-fold cross-
validation. Since the ensemble algorithm has randomness, 
when the ensemble model was reiterated, seed #12468 was 
always used. In all ensemble models, the number of decision 
trees (ntree) was set to 100. 

The prediction performance of the developed models was 
compared by using the accuracy, sensitivity, and specificity of 
each model. Accuracy indicates the rate of predicting the 
outcome correctly. Sensitivity refers to the rate of predicting 
PD-MCI as PD-MCI. Specificity means the rate of predicting 
a healthy elderly person without PD-MCI and a healthy 
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elderly person without PD-MCI. This study compared the 
prediction performance of models and defined that the best 
prediction model was a model with the highest accuracy while 
sensitivity and specificity were at least 0.6. The best model 
was selected as the final model for predicting PD-MCI. All 
analyzes were performed using R version 4.0.2 (Foundation 
for Statistical Computing, Vienna, Austria). 

III. RESULTS 

A. Comparing the Accuracy of the Developed Prediction 
Models 
The accuracy, sensitivity, and specificity of the nine 

prediction models are presented in Fig. 4, 5, and 6, 
respectively. The analysis results showed that a random forest 
classifier with SMOTE had the best prediction performance 
with a sensitivity of 69.2%, a specificity of 75.7%, and a mean 
overall accuracy of 74.0%. On the other hand, a boosting 
classifier with undersampling had the worst performance 
among the nine prediction models with a sensitivity of 51.8%. 

 
Fig. 4. Accuracy of the Nine Classifier Ensembles. 

RF-SMOTE=random forest classifier with SMOTE; RF-
OVER=random forest classifier with oversampling; RF-
UNDER=random forest classifier with undersampling; BAG-
SMOTE=bagging classifier with SMOTE; BAG-
OVER=bagging classifier with oversampling; BAG-
UNDER=bagging classifier with undersampling; BOOST-
SMOTE=boosting classifier with SMOTE; BOOST-
OVER=boosting classifier with oversampling; BOOST-
UNDER=boosting classifier with undersampling. 

 
Fig. 5. Sensitivity of the Nine Classifier Ensembles. 

RF-SMOTE=random forest classifier with SMOTE; RF-
OVER=random forest classifier with oversampling; RF-
UNDER=random forest classifier with undersampling; BAG-
SMOTE=bagging classifier with SMOTE; BAG-
OVER=bagging classifier with oversampling; BAG-
UNDER=bagging classifier with undersampling; BOOST-
SMOTE=boosting classifier with SMOTE; BOOST-
OVER=boosting classifier with oversampling; BOOST-
UNDER=boosting classifier with undersampling. 

 
Fig. 6. Specificity of the Nine Classifier Ensembles. 

RF-SMOTE=random forest classifier with SMOTE; RF-
OVER=random forest classifier with oversampling; RF-
UNDER=random forest classifier with undersampling; BAG-
SMOTE=bagging classifier with SMOTE; BAG-
OVER=bagging classifier with oversampling; BAG-
UNDER=bagging classifier with undersampling; BOOST-
SMOTE=boosting classifier with SMOTE; BOOST-
OVER=boosting classifier with oversampling; BOOST-
UNDER=boosting classifier with undersampling. 

B. Importance of Variables for PD-MCI Classification in the 
Final Model 
The normalized importance of the variables of the final 

model (random forest classifier with SMOTE) is presented in 
Fig. 7. In this model, digit span test-backward, stroop test-
interference trial, verbal memory test-delayed recall, verbal 
fluency test, and confrontation naming test were identified as 
the key variables with high weight in predicting PD-MCI. 
Among them, digit span test-backward was the most important 
variable in a random forest classifier with SMOTE. 

 
Fig. 7. The Importance of Variables in the Random Forest Classifier with 
SMOTE-based PD-MCI Prediction Model (Only the Top 5 are Presented). 
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IV. DISCUSSION 
This study compared the prediction performance of nine 

ensemble learning models ((undersampling, oversampling, 
and SMOTE) × (undersampling-boosting, bagging, and 
random forest)=9) for predicting PD-MCI. The results of this 
study showed that the random forest classifier with SMOTE 
was the best model (sensitive=69.2%, specificity=75.7%, and 
mean overall accuracy=74.0%). The result of this study agreed 
with the results of previous studies [16, 33] showing that 
random forest based models were superior to other machine 
learning algorithms for predicting diseases. Particularly, this 
study developed models by applying oversampling, 
undersampling, and SMOTE as data-level approaches for 
improving the classification performance of imbalanced data. 
It is noteworthy that the accuracy of a random forest classifier 
with SMOTE was better than that of other learning machine 
algorithms and ensemble models with SMOTE, oversampling-
random forest, or undersampling-random forest. 

V. CONCLUSION 
The results of this study implied that a random forest 

classifier with SMOTE could produce models with higher 
accuracy than a bagging classifier with SMOTE or a boosting 
classifier with SMOTE when analyzing imbalanced data. 
Additional studies are needed to compare the accuracy by 
using various datasets from diverse fields to prove the 
prediction performance of a random forest classifier with 
SMOTE. 
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