
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Autonomous Reusing Policy Selection using
Spreading Activation Model in Deep Reinforcement

Learning

Yusaku Takakuwa1
Department of Information and Communication Engineering

Tokyo Denki University
Tokyo, Japan

Hitoshi Kono2
Department of Engineering

Tokyo Polytechnic University
Kanagawa, Japan

Hiromitsu Fujii3
Department of Advanced Robotics

Chiba Institute of Technology
Chiba, Japan

Wen Wen4
Department of Precision Engineering

The University of Tokyo
Tokyo, Japan

Tsuyoshi Suzuki5
Department of Information and Communication Engineering

Tokyo Denki University
Tokyo, Japan

Abstract—This paper describes a policy transfer method of a
reinforcement learning agent based on the spreading activation
model of cognitive psychology. This method has a prospect of
increasing the possibility of policy reuse, adapting to multiple
tasks, and assessing agent mechanism differences. In the existing
methods, policies are evaluated and manually selected depending
on the target–task. The proposed method generates a policy
network that calculates the relevance between policies in order to
select and transfer a specific policy that is presumed to be effective
based on the current situation of the agent while learning. Using
a policy network graph structure, the proposed method decides
the most effective policy while repeating probabilistic selection,
activation, and spread processing. In the experiment section, this
study describes experiments conducted to evaluate usefulness,
conditions of use, and the usable range of the proposed method.
Tests using CartPole and MountainCar, which are classical
reinforcement learning tasks, are described and transfer learning
is compared between the proposed method and a Deep Q–
Network without transfer. As the experimental results, usefulness
was suggested in the transfer learning of the same task without
manual compared with previous method with various conditions.

Keywords—Reinforcement learning; transfer learning; deep
learning; cognitive psychology; spreading activation theory

I. INTRODUCTION

In recent years, practical realization of robots, which can
perform flexibly in various environments like those of a human
being, is being expected. It is difficult for robots to act flexibly
in unknown and dynamic environments without human control.
In addition, it is also difficult to establish a control strategy
beforehand. Therefore, many researches that allow the robot
to learn by itself are being actively conducted [1] [2]. In
these researches, reinforcement learning is used for robot

autonomous learning. Reinforcement learning is a method that
allows an agent (hereinafter, a learning robot or system will
be referred to as an agent) to learn the optimal action by
trial and error [3]. Reinforcement learning enables agents to
autonomously acquire behavior rules, however there are still
some problems that need to be addressed, such as the extensive
learning time required for practical and complex tasks. In order
to solve this problem, a learning method of reusing a policy
of a previously learned task (source–task) for a new task to be
learned (target–task) is proposed. This learning method, called
transfer learning [4], has been studied in various domains.
This method enables agents to improve the adaptability of
the target–tasks, thus shortening the learning time. However,
most of the transfer learning in the existing research needs
to previously determine the policy of the source–task that is
considered to be effective for the target–task. Therefore, it is
necessary to manually evaluate the policies.

In the existing methods, selecting and reusing effective
policies from a plurality of them has been proposed [5]
[6]. However, it is considered difficult adapting to obstacles
when reusing policies. Specifically, many obstacles should be
considered, such as performing different tasks (heterogeneous
tasks), utilizing different agent mechanisms (heterogeneous
agents), and setting the parameters of reinforcement learning
itself, among others. Assuming that agents are used in various
fields and environments, it is very difficult for people to set
up reinforcement learning parameters considering all obstacles.
Therefore, this research discusses a new policy reuse method
with a prospect to reduce the manual labor required for policy
selection and that can perform flexibly in the presence of
various obstacles.

For the above problems, in order to flexibly select a policy,

www.ijacsa.thesai.org 8 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Fig. 1. Simplified Image of the Spreading Activation Model. A Value Called
Activation Value Diffuses Through the Network Extending from the

Activated Concept.

we apply the spreading activation model as a psychology
model that aids human behavior and judgment in the proposed
policy selection method based on previous method [7]. In
addition, Deep Q-Network method is adopted as function
approximation of policy of reinforcement learning, and pro-
posed method is evaluated with various classical reinforcement
learning tasks in computer simulation.

A. Spreading Activation and Existing Research

The spreading activation model [8] is a psychology
model related to human concept formation (remembrance, re-
recognition, etc.) on the assumption that concepts acquired by
humans are stored as a network structure in the brain. Many
concepts are memorized using schematic representation as net-
work structure in human brain. The concept has an activation
value that can be activated or deactivated by external stimuli
such as visual information. In the process, activation value
increases beyond the threshold value, the concept remain. This
phenomena is called recall. Activated values spread to related
concepts that are connected via path of semantic distance.
In the spreading activation model, there is a concept called
semantic distance in which the distance between concepts
varies according to the strength of the relevance between these
concepts. Concept activation is done via a relevance network.
An example of an activation diffusion model is shown in Fig.
1.

Kono et al. are proposed transfer reinforcement learning
with spreading activation model which is called SAP–net to
select the policies adaptivelly according to environments [7].
SAP–net is discussed effectiveness by simplified computer
simulation such as shortest path problem, and it is defined
theoretically for implementation. However SAP–net is not
consider the computer resources for actual implementation in
the robot or agent, which means that it is adopted table type
Q function to be described a policy.

B. Policy Description Method

When reusing policies acquired through reinforcement
learning, it is important to describe and store them. In rein-
forcement learning, policy description methods can be roughly
divided into two types. One is to describe the behavioral value
obtained by learning in a Q function as Q–table which is
constructed by look–up table. It is indirectly prescripts the

policy. In the case of using the Q–table, learning is possible by
describing all the state-behavior pairs of the agent. By mapping
the behavior value from the Q–table for each state, it is possible
to perform the transfer learning. However, when using a Q–
table, the table size increases exponentially as the number
of states increases, which is disadvantageous. Therefore, it is
difficult to learn tasks handling many state numbers like in real
environments and complicated tasks.

As a second policy description method, there is a method
to approximate the behavior value by a function. By function
approximation, it is possible to learn tasks with a larger
number of states than when using Q–tables. Various methods
such as tile coding [9] [10], fuzzy [11] [12], RBFN [13]
[14], and deep neural networks [15] have been proposed as
function approximation methods. In this research, we discuss
a function approximation method using neural networks (NN),
which have been actively researched recently, such as Deep Q–
Networks, Deep Reinforcement Learning [16] [17] [18] and so
on. By function approximation, it is possible to learn tasks with
more states than when using a Q–table. However, depending
on the setting of the intermediate layer of a NN and the
activation function when performing function approximation,
it may cause an increase in learning time, excessive learning,
and unlearning. In the case of a task performed by an agent in a
real environment, it has been considered that transfer learning
using a function approximation method is effective; however,
it is not realistic to optimize the network structure of a NN
for each learning environment, scale, and task.

C. The Principal Aim of this Study

From the above context, the principal aim of this study is
to discuss the following two topics.

1) The proposed method of automatically selecting ef-
fective policies from the policy features, such as the
setting of the hidden layers of a NN.

2) The prospects of the proposed method, conditions of
use, and applicable range.

As a function approximation with reinforcement learning
method, Deep Q–Network is implemented in this study. There-
fore proposed method is based on policy selection method
in transfer reinforcement learning with spreading activation
model proposed by Kono et al. [7], and is tuned that the policy
selection method can be implemented by Deep Q–Network as
a part of reinforcement learning algorithm. In the experiment,
CartPole and MountainCar are adopted as evaluation function,
which are classical reinforcement learning tasks.

II. METHODS

A. Precondition

In this section, to introduce the proposed method, we
describe related terms and assumptions. For the reinforcement
learning algorithm, Q learning was used.

Q(s, a)← (1− α)Q(s, a) + α{r + γmaxQ(s′, a)} (1)

Here, observable state is s ∈ S, and action of agent is a ∈
A. S and A are assumed discrete state. Learning parameters

www.ijacsa.thesai.org 9 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

are learning rate α, discount rate γ and rewardr. In addition,
hereinafter, the NN model used for function approximation is
called policy.

B. Flow of the Proposed Method

Initially, the proposed method classifies each policy into
categories based on features of multiple policies learned in
advance, and creates a network using these categories. The
proposed method selects a policy from the selection probability
calculated based on a parameter, which is called the activation
value, given to each policy. Policies are selected by referring
to selection probabilities. Based on the loss between the value
calculated for each action obtained through the policy and
the value that acts as the teacher, the action obtained by the
selected policy is classified as one that promotes learning
(positive transition) or one that does not promote learning
(negative transition). From this judgment result, the network
is constructed based on the selected policies. By performing
this process for each action, the activation value of each policy
is changed during the transition learning. Thus, a system that
assigns preferential learning to policies with large activation
values is constructed.

C. Categorize Policies

Based on the features of the policies, multiple policies
are categorized. A category in this research refers to a set
of relevant policies that are calculated from the relevance of
multiple policies. Policies are evaluated from one viewpoint
and judged whether they belong to the same category. This
viewpoint is called a prototype. In this study, the prototype
is determined empirically based on the information available
from the features included in the learned policies. For each
category, a policy distance dij , which describes the relationship
between the policies, is generated. The inter-policy distance
combines all the policies to cover all the connection patterns
in the category.

Multiple benefits can be obtained by classifying policies
into categories. First, it is possible to summarize and manage
similar policies using a NN of multiple learned policies. It
is thought that policies having similar structures of NN layer
number and unit number are likely to obtain similar learning
results when the other parameters are unified.

Second, we can classify policies learned by with hetero-
geneous tasks or heterogeneous agents. Policies learned by
different tasks and agent mechanisms are difficult to learn with
different learning settings. Therefore, categories are useful for
organizing and managing policies.

D. Policy Network (SAP–Net)

A policy network is created using the classified categories.
The generated policy network is called SAP–Net in this
research. SAP–Net is an undirected graph, and it is defined
as follows.

G = (Π, E, ω) (2)

where Π is the set of policies to be combined, E shows
the path connection relation between policies, and ω is the

Fig. 2. SAP-Net. Multiple Policies are Tied by Policy Distance dij .

Fig. 3. Activation Value Inputs and Outputs η Flow into the Policy πi.

weight of the distance between policies. The origin of the set
of policies, which is the vertex of the undirected graph, is
πi ∈ Π, e ∈ E (e = πi, πj). The network structure of the graph
is expressed using an adjacency matrix. The adjacency matrix
is represented by a square matrix, and defines the elements in
the matrix as follows: Fig. 2 shows an example of SAP-Net.
A policy has able to multiple network path as output and input
as shown in Fig. 3.

Mij =

{
0 (e /∈ E)

ωij = 1 (e ∈ E)
(3)

Shown in Fig. 2 by an adjacency matrix, the networks
can be expressed as Eqn. (4). πi shows the Qtable and an
approximate model, which are the policies already acquired
by the source–task

M =

 0 ω12 ω13 0
ω12 0 ω23 ω24

ω13 ω23 0 0
0 ω24 0 0

 (4)

When constructing SAP-Net, weights of each element are
adjusted by influencing the weight of inter-policy distance in
the prototype matrix generated from the classified categories.
The prototype matrix is represented by an adjacency matrix
like SAP-Net, and weight ωc is generated from the connection
between the policy distances in a given category, as shown in
Eqn. (5).

www.ijacsa.thesai.org 10 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

M = M + δ(P1 + · · ·+ Pn) (5)

n is the number of categories, and δ is a coefficient for
adjusting the weight of the prototype matrix.

To calculate similarities and relevance of the policies, it is
necessary to evaluate them from various viewpoints. In general,
when making a judgment that A and B are related or similar,
we count the number of related parts and consider that they are
more similar as the number of related parts increases. In this
research, we apply this idea and calculate relevance by adding
up the prototype matrices generated with various prototypes.

E. Selection of Policy

To select the policy, the selection probability P (πi) of each
policy is calculated based on the constructed SAP-Net and
the activation value Ai given to each policy. The calculation
formula is shown in the following Eqn. (6). i, j are the numbers
used to identify policies.

P (πi) =
exp(Ai)∑n−1
j=0 exp(Aj)

(6)

F. Activation Process

In this study, based on the loss Eπi
t calculated when the

agent acts by selecting a certain policy π, judgment of positive
and negative transitions is made. The judgment formula is
shown in Eqn. (7).

Ta = Eπi
t+1 − Eπi

t (7)

Here, Ta is threshold value for judgment. Based on the
calculated judgment result, increase processing is applied to
the activation value of the policy. The process applied to
the activation value is shown in Eqn. (10). A is a activated
coefficient that adjusts the activation value increment. This
process is called activation, and the activation value must be
adjusted.

Ai =

{
Ai +A (Ta ≤ 0)

Ai (Ta > 0)
(8)

G. Spreading Process

The spreading process of the activation value is applied to
a policy with connection relation via policy distance extending
from the activated policy. When defining the spreading value,
the state of activation value η diffuses to the policy π stored
on SAP-Net, as shown in Fig. 4. The activation value output
is recorded when a certain policy is activated or diffused.
The activation value output ηi from a certain policy πi is
obtained by the following expression using the number of
policy distances extending from the policy π.

ηi ←
A
k

(9)

Fig. 4. The Activated Value Outputs η Propagate from the Activated Policy
πi.

Due to diffusion, the activation value output is updated
every time via a policy. This is done based on Eqn. (9).
Considering the diffusion of the activation value for the
two sources of diffusion πi and the diffusion destination
πj adjacent to the diffusion source, the active value change
amount ∆Aj takes into account the activation value output ηi
from πi and the diffusion through multiple policies. The sum∑
ω of the weights of the inter-policy distances by which it

passed through, and h of inter-policy distances by which the
intermediary passed through are obtained as follows.

∆Aj =

0 (
∑
ω ≥ Tω)

ηi
h
∑
ω

(
∑
ω < Tω) (10)

An image of activation diffusion is shown in Fig. 4.
Activation spreading diffuses permanently as long as it does
not specify the range of spreading, because it is calculated
recursively through each policy. Taking this into consideration,
the threshold value Tω is determined by the sum of the weights
of the inter-policy distances by which the value passes through.
Ultimately, each policy calculates the total sum of activation
change amounts, as shown in Eqn. (11), by the number of
active value outputs received through the network and adds it to
the residual activation value. In the proposed method, we adjust
the activation value of each policy through these processes,
and re-learn while choosing a policy for each behavior. After
the learning, the policy with the highest activation value is
determined as a policy that can be learned effectively. The two
algorithms describing the activation process and the spreading
process of the proposed method are shown in Algorithm 1, 2.

Aj =

{
Aj +

∑
∆Aj (Ta ≤ 0)

Aj (Ta > 0)
(11)

Each policies are labelled environmental information of
source task respectively. Therefore input of proposed system
is environmental information of target task, and final output of
proposed system is selected policy or policies.

www.ijacsa.thesai.org 11 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Algorithm 1 Activation process

1: function ACTIVATION(i,A,M,A)
2: Initialize: h = k = j = Ω = 0, N is set as number of policies collected via source–task
3: . h is inter–policy distances by witch the intermediary passed through . k is number of path that πi has
4: . j is number of policy connected to πi via dij . Ω is corresponding to

∑
ω

5: Ai ← Ai +A
6: for j = 0 to N − 1 do
7: if Mij 6= 0 then
8: k ← k + 1
9: end if

10: end for
11: j = 0
12: while j < N do
13: if Mij 6= 0 then
14: ηi = A

k
15: Ω← Ω +Mij

16: SPREADING(j, h,Ω, ηi)
17: Ω← Ω−Mij

18: end if
19: j ← j + 1
20: end while
21: end function

Algorithm 2 Spreading process

1: function ACTIVATION(j, h,Ω, ηi)
2: Initialize: k = 0
3: η = ηi
4: i = j
5: h← h+ 1
6: if Ω < Tω then
7: Ai ← Ai + η

hΩ
8: for i = 0 to N − 1 do
9: if Mij 6= 0 then

10: k ← k + 1
11: end if
12: end for
13: j = 0
14: while j < N do
15: if Mij 6= 0 then
16: η ← η

k
17: Ω← Ω +Mij

18: SPREADING(j, h,
∑
ω, η)

19: Ω← Ω−Mij

20: end if
21: end while
22: end if
23: end function

III. EVALUATION

A. Experimental Setup

This study conducted transition-based learning using the
proposed method by establishing multiple approximate models
that randomly set and learned hidden layers to verify the
usefulness of it. The learning efficiency of reinforcement
learning using this new transfer learning and normal Deep
Q–Network was compared. In this experiment, we focused
on the structure of the NN and discussed the learning effect
when performing a selecting operation during re-learning. In

addition, we did not fix the weights of the policies reused at the
time of transfer learning, and observed the learning effect when
re-learning while selecting. In the case of not fixing the weights
during transfer learning, convergence tends to be difficult.
Therefore, whether it is necessary to fix weights when learning
while selecting multiple policies was verified. In addition,
the necessary conditions for adaptation to heterogeneous tasks
and heterogeneous agents will be included in future prospects
based on the learning results.

The source–task and the target–task were learned by the
same task. In this experiment, the total reward obtained from
the learning curve of each Episode versus the total reward, as
well as the test results after learning, were evaluated. By this
evaluation, we confirmed two points of effective learning and
accurate learning.

B. Experimental Condition

For learning of the source–task and re-learning of the
proposed method, a Deep Q–Network (DQN) built with li-
brary ChainerRL [19] was used. Experimental environment is
build using Python, and for the learning task, CartPole and
MountainCar, provided by OpenAI Gym [20], were adopted.
Approximate models of the multiple methods used in the
proposed method were designed randomly, assuming that a
person cannot manually design an optimal hidden layer. The
number of policies used in the proposed method was set to
10. In this experiment, the prototype used as a categorization
perspective was set as the number of layers in the hidden layer
of the policy.

For the DQN to be compared, the hidden layer was set
to a 1 to 3 range, and the number of units per layer was set
to 100. The number of units was approximately the same as
the number of units in the hidden layer of the policy used
for the proposed method. Statistic losses calculated for each
step, which can be referenced by ChainerRL, were used for
positive or negative judgment of policy transition. The learning

www.ijacsa.thesai.org 12 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Algorithm 3 Transfer reinforcement learning with proposed method

Require: A: Array that manages the activation value, M : SAP-Net, Π: Array that manages policies
1: N =is set as number of policies collected via source–task
2: Episode = 1
3: for Episode = 1 to Max Episode +1 do
4: reward = 0
5: done = False . done Fragment of granting rewards (True or False)
6: R = 0
7: step = 1
8: stepstore = 1 . Fragment of store data for Experience Replay
9: while done 6= True and step < Max step do

10: if stepstore < N∗ Replay start size then
11: Act a and store data(s, a, s

′
, r) to be used for Experience Replay when selecting each policy

12: else
13: Select policy πi based on probability P (πi) =

exp(Ai)∑N−1
b=0 exp(Ab)

14: Act a and training with πi
15: Calculates statistic loss Eπi

t
16: Ta = Eπi

t+1 − Eπi
t . Judgment positive or negative of policy transition

17: if Ta > 0 then SPREAING(i,A,M, 0) . Negative transfer
18: else SPREAING(i,A,M,A) . Positive transfer
19: end if
20: R← R+ r
21: step← step+ 1
22: stepstore ← stepstore + 1
23: end if
24: end while
25: step = 1
26: stepstore = 1
27: end for

TABLE I. TASK AND PARAMETER SETTING

Learning task CartPole MountainCar
Max episode 5000 10000
Number of test 5 5
Activate function ReLU ReLU
Discount rate 0.99 0.99
Explorer ε-greedy (ε = 0.03) ε-greedy (ε = 0.03)
Optimizer Adam (ε = 1e− 3) Adam (ε = 1e− 3)
Replay buffer size 1e+ 6 1e+ 6
Replay start size 50 100

TABLE II. PARAMETER SETTING FOR PROPOSED METHOD

Parameter Symbol Value
Adjustment weight of P δ -0.5
Initial weight of P ωc 0.1
Activation function parameter A 1.0
Threshold Tω 1.0

conditions of DQN are shown in Table I. For parameters other
than Table I, ChainerRL’s initial setting was used. Episode
per total rewards was averaged 5 times, test results were
summarized 5 times and expressed as a learning curve and
bar graph. The learning curves are indicated by the moving
average value every 10 episodes in order to easily observe
the increase or decrease of the total reward for each episode.
Table II shows the parameters of the proposed method. The
transfer learning algorithm of reinforcement learning used in
the proposed method is shown in Algorithm 3.

Fig. 5. Comparison with Learning Curve (CartPole).

C. Experimental Results

The learning curve of the CartPole task is shown in Fig.
5, and the test result after learning is shown in Fig. 6. The
learning curve of the MountainCar task is shown in Fig. 7,
and the test result after learning is shown in Fig.8. In Fig.
5 and Fig. 7, the red learning curve shows transfer learning
(TL: Transfer Learning) using the proposed method. The blue
learning curve represents the result of reinforcement learning
(DQN: Deep Q–Network) of 100 units in one layer, the orange

www.ijacsa.thesai.org 13 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Fig. 6. Test Task After Learning (CartPole).

Fig. 7. Comparison with Learning Curve (MountainCar).

learning curve of 100 units in 2 layers, and the green learning
curve of 100 units in three layers. The vertical axis represents
the total rewards, and the horizontal axis represents the task
execution number (Episode).

In Fig. 6 and Fig.8, the vertical axis represents the total
rewards, and the horizontal axis represents the number of tests.
The color of the bar graph shown in the test result corresponds
to the color of the learning curve.

From the results shown in Fig. 5, it can be confirmed
that high rewards can be earned from an Episode at the
initial learning stage. From this result, it is understood that
the learning is promoted by the proposed method. From the
learning results of the three types of DQN to be compared, a
phenomenon in which the reward acquisition amount declined
was seen. This may be caused by the fact that the structure
of the learning model is not optimized for the task. When
learning from the beginning, in order to perform optimum
learning, it is necessary to adjust the NN structure and its
parameters to a specific task. From the test results of CartPole
in Fig. 6, the proposed method confirmed that it is possible
to acquire high rewards at high frequency. This is presumed
to be due to re-learning of the policy with the highest priority
being possible while selecting the policy. We confirmed that
the reward decreased in the 4th and 5th tests. It is presumed
that this was caused by the fluctuation of the teacher data value
during the learning process. In this regard, it may be possible

Fig. 8. Test Task After Learning (MountainCar).

to cope with by fixing the weight of the approximate model for
each policy. From the above results, it was possible to confirm
the usefulness of the proposed method in CartPole.

From the results shown in Fig. 7, it can be confirmed
that, although the amount of reward earned at the early stage
of learning was large, the proposed method decreased the
amount of compensation earned in the Episode near the end
of learning, compared to the DQN. This result seems to be
caused by being unable to perform the MountainCar task. In
this task, judging positive or negative transition is carried out at
the end of the task, while in the proposed method, the transfer
judgment of the policy is carried out for each action. In order to
increase the reward acquisition amount against this result, this
may be solved by examining whether to perform the policy
transition judgment for each Episode or to perform it every
certain step number. In addition, by considering indices other
than the loss for activation judgment, some conditions may be
judged more effectively.

Considering the usable range of the proposed method, we
think that it can be applied to tasks where timing of reward
assignment is likely to be associated with task achievement
condition. In future prospects, if SAP-Net includes policies for
heterogeneous tasks and agents, we estimate that a new method
is needed that takes into account the above applicable range.
For that method, it is desirable to calculate selection candidates
of policies by using categories, or to exclude policies presumed
to be unnecessary for learning of the target–task. In the case of
policies in heterogeneous agents, processing the data to enable
reusability by the target–task through Inter task mapping is
necessary.

IV. CONCLUSION

In this paper, we proposed a method to re-learn while
choosing a policy as transfer learning. The method was im-
plemented by using a spreading activation model and was
verified by a computer experiment. From the results of the
verification, usefulness was suggested in the transfer learning
of the same task without manual evaluation by NN model
design. In addition, as a countermeasure to the problem, we
will examine judgment of appropriate positive and negative
transition, and consider selection candidate calculation of
policies using categories in transfer learning of heterogeneous
tasks and agents. We also think that it is possible to develop

www.ijacsa.thesai.org 14 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

a method of applying Inter task mapping for related tasks by
applying categories to this problem.

ACKNOWLEDGMENT

Part of this research was undertaken with the aid of
JSPS Grant-in-Aid for Scientific Research (JP16K12493 and
JP19K12173). We express our gratitude here.

REFERENCES

[1] T. Tongloy, S. Chuwongin, K. Jaksukam, C. Chousangsuntorn, and
S. Boonsang, “Asynchronous deep reinforcement learning for the mo-
bile robot navigation with supervised auxiliary tasks,” in 2017 2nd
International Conference on Robotics and Automation Engineering
(ICRAE), 2017, pp. 68–72.

[2] T. Shimizu, R. Saegusa, S. Ikemoto, H. Ishiguro, and G. Metta, “Robust
sensorimotor representation to physical interaction changes in humanoid
motion learning,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 5, pp. 1035–1047, 2015.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[4] M. E. Taylor, Transfer in Reinforcement Learning Domains, ser. Studies
in Computational Intelligence. Springer, 2009, vol. 216.

[5] F. Fernández and M. Veloso, “Learning domain structure through prob-
abilistic policy reuse in reinforcement learning,” Progress in Artificial
Intelligence, vol. 2, no. 1, pp. 13–27, 2013.

[6] T. Takano, H. Takase, H. Kawanaka, and S. Tsuruoka, “Transfer method
for reinforcement learning in same transition model – quick approach
and preferential exploration,” in 2011 10th International Conference on
Machine Learning and Applications and Workshops, vol. 1, 2011, pp.
466–469.

[7] H. Kono, R. Katayama, Y. Takakuwa, W. Wen, and T. Suzuki, “Acti-
vation and spreading sequence for spreading activation policy selection
method in transfer reinforcement learning,” International Journal of
Advanced Computer Science and Applications, vol. 10, no. 12, pp. 7–
16, 2019.

[8] A. M. Collins, F. Elizabeth, and Loftus, “A spreading-activation theory
of semantic processing,” Psychological Review, vol. 82, no. 6, pp. 407–
428, 1975.

[9] M. Han and B. Zhang, “Control of robotic manipulators using a cmac-
based reinforcement learning system,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’94),
vol. 3, 1994, pp. 2117–2122.

[10] Y.-P. Hsu, W.-C. Jiang, and H.-Y. Lin, “A cmac-q-learning based dyna
agent,” in 2008 SICE Annual Conference, 2008, pp. 2946–2950.

[11] F. Li, F. Luo, Y. Gao, D. Qi, and J. Hu, “Research on fuzzy rein-
forcement learning algorithm for agents in grids,” in 2009 Third Inter-
national Symposium on Intelligent Information Technology Application
Workshops, 2009, pp. 336–339.

[12] X.-N. Wang, X. Xu, and H.-G. He, “Policy gradient fuzzy reinforcement
learning,” in Proceedings of 2004 International Conference on Machine
Learning and Cybernetics (IEEE Cat. No.04EX826), vol. 2, 2004, pp.
992–995.

[13] H. S. Cho, “A study on the control of nonlinear system using growing
rbfn and reinforcement learning,” in Third International Conference on
Natural Computation (ICNC 2007), vol. 5, 2007, pp. 521–525.

[14] S. Li, L. Ding, H. Gao, Y. Liu, N. Li, and Z. Deng, “Reinforcement
learning neural network-based adaptive control for state and input time-
delayed wheeled mobile robots,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 50, no. 11, pp. 4171–4182, 2018.

[15] Y. Koizumi, K. Niwa, Y. Hioka, K. Kobayashi, and Y. Haneda, “Dnn-
based source enhancement self-optimized by reinforcement learning
using sound quality measurements,” in 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2017,
pp. 81–85.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[17] T. Okuyama, T. Gonsalves, and J. Upadhay, “Autonomous driving
system based on deep q learnig,” in 2018 International Conference on
Intelligent Autonomous Systems (ICoIAS), 2018, pp. 201–205.

[18] H. Sasaki, T. Horiuchi, and S. Kato, “A study on vision-based mobile
robot learning by deep q-network,” in 2017 56th Annual Conference
of the Society of Instrument and Control Engineers of Japan (SICE),
2017, pp. 799–804.

[19] Chainerrl. [Online]. Available: https://github.com/chainer/chainer

[20] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016, cite arxiv:1606.01540.
[Online]. Available: http://arxiv.org/abs/1606.01540

www.ijacsa.thesai.org 15 | P a g e


