
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

ParaDist-HMM: A Parallel Distributed
Implementation of Hidden Markov Model for Big

Data Analytics using Spark

Imad Sassi∗1, Samir Anter2, Abdelkrim Bekkhoucha3
Computer Science Laboratory (LIM), FSTM, Hassan II University,

Casablanca, Morocco

Abstract—Big Data is an extremely massive amount of hetero-
geneous and multisource data which often requires fast processing
and real time analysis. Solving big data analytics problems needs
powerful platforms to handle this enormous mass of data and
efficient machine learning algorithms to allow the use of big
data full potential. Hidden Markov models are statistical models,
rich and widely used in various fields especially for time varying
data sequences modeling and analysis. They owe their success to
the existence of many efficient and reliable algorithms. In this
paper, we present ParaDist-HMM, a parallel distributed imple-
mentation of hidden Markov model for modeling and solving
big data analytics problems. We describe the development and
the implementation of the improved algorithms and we propose
a Spark-based approach consisting in a parallel distributed big
data architecture in cloud computing environment, to put the
proposed algorithms into practice. We evaluated the model on
synthetic and real financial data in terms of running time,
speedup and prediction quality which is measured by using the
accuracy and the root mean square error. Experimental results
demonstrate that ParaDist-HMM algorithms outperforms other
implementations of hidden Markov models in terms of processing
speed, accuracy and therefore in efficiency and effectiveness.

Keywords—Big data; machine learning; Hidden Markov model;
forward; backward; baum-welch; parallel distributed computing;
spark; cloud computing; ParaDist-HMM

I. INTRODUCTION

Big data is an extremely large, typically heterogeneous,
structured and unstructured data, gathered from a wide range
of sources (logs files, Internet of Things [1], web, transactions,
social media insights, sensors, mobile devices, third party data,
etc.), with a very high speed of generation and diffusion which
often requires fast processing and real time analysis [2].

Everyday, huge volume of data is produced in different
fields, such as commerce, medicine, social media, or Internet
of Things which is compiling data in an accelerated way. So,
how can we succeed to draw valuable insights from these data?

The characteristics of big data (volume, velocity and vari-
ety) have given rise to numerous challenges in the domain of
big data analytics, for instance, scalability of models, efficiency
of algorithms and robustness of hardware configurations [4].

Regarding the volume of data, classical solutions, which
use traditional data warehouses, are limited because their
latency is too long and the data must first be stored in single
place, which is not recommended for the security of critical
data for example [8].

The velocity is also a key factor for data analysis efficiency.
Usually, the data has to be processed in a very short time,
even in real time, so that we get the good information in good
time. Thus, big data analysis requires powerful algorithms in
order to make all of this data very quickly understandable
and to use it effectively in decision making in a constantly
evolving environment. Computing power and speed of analysis
are therefore essential [9].

The diversity and complexity of data formats are also
causing real problems since data is collected from various
sources. Faced with this challenge, classical algorithms have
to be ameliorated in order to manage the variety of data [10].

In addition, the big data universe is undergoing great
technological evolution. Spark [11], Hadoop [12], graph ana-
lytic [13] and GPU distributed computing are now ubiquitous
solutions in many sectors.

Given the above, the use of the full potential of big
data will be achieved by efficient processing that requires
new techniques and algorithms referred to big data analytics
or data science. Among these techniques, machine learning
whose objective is to create systems that can learn from the
data they receive. This principle of machine learning explains
its renewed interest with the appearance of big data since
this enormous amount of knowledge-bearing data and this
computation power makes it possible to manage more and
more data and thus, to refine the relevance of predictions of
learning systems [3].

Numerous studies have shown that many factors can
affect the implementation efficiency of algorithms for big
data analytics. Among these factors the computation time,
the memory cost, the hardware architecture, the scalability
and centralization, the non-dynamic of most traditional data
analysis methods, the analyze of social network data, the
security and privacy issues. Thus, several problems arise when
handling and analyzing big data [5–7].

Solving these problems will contribute to facilitating
knowledge discovery and decision making and it will undoubt-
edly open new perspectives for researchers in the field of big
data analytics, and this will influence positively the global
growth and will contribute to the development of business
strategies and models in several sectors.

To achieve this goal, new flexible big data analytics so-
lutions are needed. In this context, the parallel distributed

www.ijacsa.thesai.org 289 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

computing approach, which has brilliantly succeeded in the
past decade, is one of the most promising solutions [14].

It is one of the efficient analysis methods that have shown
their excellent performance in this type of application. Given
the importance of emerging big data technologies it has now
become a requirement to use them for implementing parallel
distributed computing. However, there are great challenges
regarding the design of parallel distributed implementations,
related to algorithms and frameworks, mainly, the communica-
tion errors, the storage and the query burden and the integration
of massive heterogeneous big data into a single unified view,
the matrix multiplications and the optimization techniques [15–
17].

The combination of classical algorithms and big data
technologies enables a high level of flexibility, allows the
simultaneous execution of several complex analyzes, and fa-
cilitates the integration of new analysis tools.

One of the most powerful machine learning algorithms
are hidden Markov models (HMMs) [18]. HMMs are widely
used for sequential data modeling and time series analysis.
They owe their success to the existence of many efficient
and reliable algorithms. Given the great potential demonstrated
by the paradigm of HMMs in various applications, it seems
quite natural to extend them for big data. Although there are
many parallel implementations for HMMs, there is no clear
compromise for each application scenario, especially for real-
time processing of large data of different structures.

To address some of the aforementioned issues, this paper
presents a new Spark-based parallel distributed implementa-
tion of HMMs to make their use for modeling and analysis
applicable for big data without decreasing in accuracy and
computational efficiency. Our aim is to provide a solution
for big data analytics that meets two fundamental criteria
for designing big data solutions: an architectural criterion (an
architecture that supports parallel computations and distributed
storage) and an algorithmic criterion (algorithms capable of
efficiently processing and analyzing big data.

In summary, the main contributions of this work are:

• We introduce the phenomenon of big data and we
explain the need for new machine learning algorithms
to draw value from this huge amount of data.

• We present a detailed study of hidden Markov mod-
els and we describe its three fundamental problems
(evaluation, decoding and training).

• We review the existing solutions with a description
and analysis of the main parallel implementations of
hidden Markov model algorithms.

• We propose new parallel distributed versions of the
Forward, Backward and Baum-Welch algorithms, then
we describe a proposed Spark-based big data architec-
ture to use the new algorithms.

• We experimentally evaluate the proposed algorithms
in a cloud computing environment using a set of
synthetic and real-world data, and we compare the
performances of these algorithms with classical ones,
but also with the main solutions proposed in the
benchmark.

Fig. 1. Basic Structure of a Hidden Markov Model.

The rest of the paper is organized as follows. Section 2
gives a formal study of hidden Markov models, discusses main
parallel distributed implementations challenges and reviews
some proposed solutions for parallelism of HMMs algorithms.
Section 3 describes the studied problem and shows the novelty
of this research. In Section 4, we present main concepts of
the proposed approach, then we describe the new parallel
distributed HMM algorithms (ParaDist-HMM) and the pro-
posed big data architecture to put them into practice. Section
5 presents the experiments settings and methods used for the
evaluation of the algorithms. The results of the experimental
study are presented and discussed in Section 6. Finally, Section
7 draws the conclusions of the paper and gives some prospec-
tive points for the future work of this research.

II. BACKGROUND AND RELATED WORK

In this section, first, we provide an overview of the theo-
retical and technical background required for this study. Next,
we discuss the fundamental challenges of parallel distributed
implementations of machine learning algorithms in the era of
big data. Then, we present main related works with a study of
main advantages and limitations of these works.

A. Hidden Markov Models

In the literature, there is a large amount of studies of
HMMs [18–20]. Based on these interesting studies, in this
section, we will present the theoretical foundations of the
HMMs, in particular, the algorithms studied in this article.

There are different definitions for HMMs. One of the most
well-known definitions in the literature is provided by Rabiner
and Juang [21] who define a HMM as a “doubly stochastic
process with an unobservable underlying stochastic process
(hidden), but can only be observed by another set of stochastic
processes that produce the sequence of observed symbols”.
It consists of two stochastic processes. The first is a Markov
chain characterized by states and transition probabilities where
the states of the chain are not visible, so “hidden”. The second
produces emissions observable at each instant based on a
state-dependent probability distribution. Thus, we can simply
analyze what we observe without seeing at which states it
occurred. The observations can be discrete or continuous. It is
important to note that the “hidden” denomination of a HMM
refers to the states of the Markov chain and not to the model
parameters (see Fig. 1). In the rest of this section, we will
present the essential notation and key concepts about HMMs
which will be helpful in the rest of this work.

In order to fully define a HMM, the following elements
must be defined:

www.ijacsa.thesai.org 290 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

1. The N states of the model, defined by

S = {S1, ..., SN}

2. The M observation symbols per state V = {v1, ..., vM}
corresponding to the output of the system being modeled. If
they are continuous then M is infinite.
3. The state transition probability distribution A = {aij},
where aij is the probability that the state at time t + 1 is
Sj given that the state at time t is Si.

aij = Pr{qt+1 = Sj | qt = Si}, 1 ≤ i, j ≤ N (1)

The transition probabilities must satisfy the normal stochastic
constraints:

aij ≥ 0, 1 ≤ i, j ≤ N and

N∑
j=1

aij = 1, 1 ≤ i ≤ N (2)

4. The observation symbol probability distribution in each
state, B = {bj(vk)} where bj(vk) is the probability that
symbol vk is emitted in state Sj .

bj(vk) = Pr{ot = vk | qt = Sj}, 1 ≤ j ≤ N, 1 ≤ k ≤M (3)

where vk denotes the kth observation symbol in the alphabet
and ot the current parameter vector. The observation may be
discrete or continuous.
The following stochastic constraints must be satisfied:

bj(vk) ≥ 0 and

M∑
k=1

bj(vk) = 1, 1 ≤ j ≤ N, 1 ≤ k ≤M (4)

5. The HMM is the initial state probability distribution Π =
{πi}, where πi is the probability that the model is in state Si
at the time t = 0 with

πi = Pr{q1 = Si}, 1 ≤ i ≤ N,
N∑
i=1

πi = 1 (5)

The following notation λ = (A,B,Π) is often used in the
literature to denote a discrete HMM.
We will also use the notations Pr{O|λ}: the probability that
the given observations O = o1, o2, ..., oT are generated by a
model λ with a given HMM. αt(i): the forward variable is the
probability of the partial observation sequence o1, o2, ..., ot to
be produced by all possible state sequences that end at ith
state and that we are in state Si at time t. βt(i): the backward
variable is the probability of the partial observation sequence
ot+1, ot+2, ..., oT given that the current state is Si. γt(i): the
probability of being at state Si at time t, given the model λ
and the observation O and ξt(i, j): the probability of being at
state Si at time t and at state Sj at time t+1, given the model
λ and the observation O.

There are three fundamental problems studied around
HMMs. First, the evaluation problem in which we try to
calculate the probability Pr{O|λ} that a given observations
O are generated by a model λ with a given HMM. The
methods commonly used to solve this problem are the forward
or the backward algorithms based on the technique of dynamic
programming. Second, the decoding problem in which, we
look for the most likely state sequence in a given model λ that
produced a given observations O. Viterbi algorithm is the most
used to solve this problem [22]. Third, the learning problem in

which we try to adjust the parameters of the model (A,B,Π)
to maximize the probability Pr{O|λ} given a model λ and
a sequence of observations O. For this problem, Baum-Welch
algorithm (BW), also known as forward-backward algorithm
is the most used [19].

In the rest of this article, we focus mainly on the evaluation
and the learning problems.

B. Parallel Distributed Implementation Challenges

There is a vast amount of literature concerning challenges
to face when designing a parallel distributed implementation.
The following table (Table I) presents the most important
challenges and criteria, related to the implemented architecture
but also to the algorithms in question, to take into account
when designing parallel distributed implementations.

C. Related Work

Many practical problems arise during the parallel GPU
or CPU implementation of forward, backward, Viterbi or
Baum-Welch algorithms for HMMs. This section surveys the
solutions proposed in the previous major work on parallel
distributed implementation of HMMs. For example, [31], pro-
poses a new distributed multidimensional HMM (DHMM) for
multi-object trajectory interaction modeling, the results show
superior performance and greater accuracy of the proposed
distributed 2D HMM. In [32], the authors present a paral-
lelized HMM to accelerate isolated words speech recognition.
Another work of [33] presents a GPU implementation in
which they proposed a C and Cuda implementation for the
forward, Viterbi and BW algorithms. For a low number of
states, the GPU performs far worse than the CPU and for a
number of symbols and number of observations, it has had
little impact on the difference in speed of execution between
the CPU and the GPU. Regarding the execution time, the
speed increases can reach 180x for the forward algorithm,
65x for the BW algorithm and 4x for the Viterbi algorithm
with 4000 states. In [34] and [35] a proposed C++ library
for general HMMs was presented, exploiting modern CPUs
with multiple cores and supporting the SSE instruction set
to increase performance by distributing the computations for
each state among the available processors. The results showed
significant accelerations for all conventional HMM algorithms
except posterior decoding for a very large number of states.
Another parallelization approach has been also proposed for
HMMs with small number of states. [36] propose a paral-
lel implementation of the three fundamental algorithms of
HMM for GPU computing environment. [37] presented GPU
Cuda using Cuda C language and ANSI C language. The
result obtained shows an acceleration of the forward-backward
implementation faster 4 to 25 times than the classical one.
Finally, the work of [38] presented a parallel implementation
of a HMM (forward, backward and Viterbi) for the spoken
language recognition on the MasPar MP-1. A complexity
comparison of the serial and the parallel implementations of
the forward and Viterbi algorithms shows that there is a big
improvement in execution time.

III. CONTRIBUTION OF THIS WORK

To make big data valuable, we often use machine learning
algorithms like HMMs. However, to be efficient in the big

www.ijacsa.thesai.org 291 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

TABLE I. CHALLENGES OF PARALLEL DISTRIBUTED IMPLEMENTATIONS

Authors and
Reference Challenges

Slavakis et al.
[23]

communication errors, privacy, incom-
plete data, storage and query burden,
decentralized learning with parallelized
multicores, storage in the cloud or using
distributed data systems.

Alshamrani et
al. [24]

integration of massive heterogeneous big
data residing on different sites with dif-
ferent types and formats into a single
unified view before starting data mining
processes.

Hassan et al.
[25]

distributed data mining and multi-agent
data extraction since in a distributed en-
vironment, traditional techniques require
that distributed data be first collected in a
data warehouse and pose data confiden-
tiality and sensitivity issues in addition
to the costs of storage, communication
and computation.

Zhan et al. [16]

matrix multiplication task, the improve-
ment of parallelization of a series of
matrix multiplications, parallel program-
ming for shared memory architectures.

Liu et al. [15]

speed up synchronous parallelization, ef-
fect of parallelization mechanisms on the
overall convergence rate especially when
several different techniques are simulta-
neously used in one machine learning
algorithm.

Li et al. [26]
to balance the need of flexibility and gen-
erality of machine learning algorithms
and the simplicity of systems design.

Zhou et al. [27]

the effect of preprocessing and data
probing operations on the efficiency of
parallelization, data privacy, inconsis-
tency and skewness issues.

Gunjan et al.
[28]

look for new powerful techniques es-
pecially divide-and-conquer approaches
to decompose problems into several sub
problems.

Bhattacharya
[29]

rethink optimization techniques used in
machine learning algorithms especially
with the new requirements of complex-
ity, size and variety of data.

Russell et al.
[30]

to think of new advances in logic, in
computation, to re-study the theory of
probability and to put forward the Neu-
roscience.

data context, it is necessary to improve the performance of
HMMs without losing the quality of the prediction. Through
this paper, we aim to provide a parallel distributed implemen-
tation of HMMs (i.e., ParaDist-HMM) which ameliorates the
performances of previous parallel HMM solutions mainly in
terms of execution time, speedup, scalability and accuracy. We
also present a big data architecture with horizontal scaling
capabilities to manage large volume of both real-time and

batch-based information, based on Spark as a core element
which allow to exploit the advantages of its modules for the
collection and the storage of heterogeneous data in batch and in
real time modes, for data preprocessing (cleaning, extracting,
transforming and selecting features) and also for models testing
and evaluation. In order to boost processing speeds and to deal
with the storage problem, we use cloud platform service which
makes available several machines to provide services such as
computing and storage.

The parallel distributed computing approach have been
chosen for the following reasons:

• On the one hand, to accelerate the performance of
classic machine learning algorithms, it is recom-
mended to use a distributed system to speed up
analytical tasks. This technique is widely used to
manipulate a large amount of data. This is a very
efficient technique that ensures data consistency and
availability.

• On the other hand, for complex processing, it becomes
expensive to maintain analysis requests on a single
node due to time latency and hardware requirements.
To deal with this problem, the parallelism technique
can provide promising solutions. This technique con-
sists in processing data simultaneously, thus making it
possible to carry out the greatest number of operations
in the shortest possible time.

• Finally, the combination of big data technologies and
conventional machine learning algorithms provides a
powerful tool to very quickly obtain an overview from
huge volumes of unstructured data.

Among the arguments of the proposed approach and the
proposed architecture:

- to speed up the learning and prediction process com-
pared to the solutions previously presented and im-
prove the accuracy of the model or at least present
performance comparable to previous solutions.

- to offer high scalability of the model.

- it is based, in its implementation, on the distribution
of data matrices on several vectors on different nodes
unlike the other solutions.

- to handle discrete, continuous and semi-continuous
HMMs.

- it can easily be integrated into a big data framework.

- for the computational time consideration, Spark trans-
formation and action reduces the time complexity. The
Spark’s MLlib library ensures that the quality of the
model is not reduced while maintaining much shorter
computation times compared to traditional approaches.

- for the calculation time consideration, using a much
faster data analysis environment such as Spark reduces
the time complexity.

- finally, the power of HMMs offers the possibility of
using the model in several application fields.

www.ijacsa.thesai.org 292 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

IV. PROPOSED APPROACH

In this section, firstly, we provide an overview of the
Spark’s main concepts used to achieve this implementation.
Next, we present the proposed approach and we formally
define the model and introduce the assumptions and notations.
Finally, we provide a description of the big data architecture to
put the model into practice for successful big data processing
and analysis.

A. Main Spark Concepts used in Parallel Distributed Imple-
mentation of HMM

To achieve the implementation of the proposed algorithms
we exploited fundamental Spark concepts such as:
1) The use of Resilient Distributed Datasets (RDDs) [11] to
split and distribute data into several blocks (See Figure 2a).
Since matrices are often quadratically larger than vectors, a
reasonable assumption is that vectors fit in memory on a single
machine while matrices do not [39, 40]. So, we distribute large
matrices over many vectors in several nodes. We used vectors
to store transitions matrices elements of each column in a
vector (i.e., a1i, ..., aNi are stored in the vector Transitioni).
Also, to store the αt, in such a way to store elements of the
same column in separate vector (i.e., αi(1), ..., αi(N) is stored
in the vector Alphai).
2) The use of MapReduce paradigm [11] for partitioning the
sequence into blocks. It enables parallel distributed processing
of large sets of data, converting them into another set of data
(map function) and then combining and reducing those output
sets of data into smaller sets of data (reduce function). It allows
to apply RDDs transformations including several MapReduce-
like operations (e.g., map, reduce, collect).
3) The use of broadcast variables to increase the performance
and reduce the communication costs. Spark attempts to effec-
tively distribute broadcast variables using powerful broadcast
algorithms [41]. They allow to keep a read-only variable
cached on each machine rather than shipping a copy of it with
tasks. Thus, broadcast makes it possible to distribute vectors
or matrices of parameters on all nodes. In our case, transi-
tion matrix, emission probabilities and initial probabilities are
broadcasted (see Fig. 2b).
Now, we describe, step by step, the implementation of
ParaDist-Forward algorithm:
(1) Initialization step: each executor will execute an initializa-
tion task of a α1(j) for a given j, 1 ≤ j ≤ N .
for each executorj of N executors do

α1(j)← πjbj(o1)
end for
This operation is described in Fig. 2d.
So, the initialization step has a complexity of O(1) instead of
O(N).
For HMM with multiple observations (M), we will have to
use N ∗M executors in parallel.
(2) Induction step: at each time t, for the calculation of
αt+1(j), we must first calculate the αt(j). So, since αt(j)
depend on time, we cannot parallelize over t, but it is possible
over N (states number).
for t← 1 to T − 1 do

for each executorj of N executors do
for each executori of N executors do

αt+1(j)← bj(ot+1)ΣNi=1αt(i)aij
end for

end for
end for
The calculation process can be schematized as in Fig. 2c.
(3) Termination step: now, we have all αT (i) stored in the
vector AlphaT , we can simply use Spark’s RDD action
’reduce’ to sum all elements of the vector (Fig. 2e).
Pr{O|λ} ← AlphaT .reduce(lambda a, b : a+ b)

The proposed parallel distributed forward algorithm using
Spark (ParaDist-Forward) is presented in Algorithm 1. In back-
ward algorithm, we use the same principle as forward variable.
ParaDist-Backward algorithm is presented in Algorithm 2.
Baum-Welch algorithm has a complexity of O((T − 1)N2),
with the proposed implementation, we were able to reduce
this complexity to O(T −1). The proposed parallel distributed
Baum-Welch algorithm using Spark (ParaDist-Baum-Welch) is
presented in Algorithm 3.

Algorithm 1: ParaDist-Forward Algorithm
input : A model λ = (A,B,Π), a sequence of

observations O = o1, o2, ..., oT

output: The probability Pr{O | λ}
1 begin
2 for each executorj of N executors do
3 parallel do
4 α1(j)← πjbj(o1) {j ∈ {1, 2, 3, ..., N}}
5 for t← 1 to T − 1 do
6 for each executori,j of N∗N executors do
7 parallel do
8 calculate(map) αt(i)aij and store αt(i) in

Alphat {i, j ∈ {1, 2, 3, ..., N}}
9 make the sum (reduce) αt(i)aij , then

multiply by
bj(ot+1){i, j ∈ {1, 2, 3, ..., N}}

10 Pr{O | λ} ← AlphaT .reduce(lambda a, b : a+b)

11 return Pr{O | λ}

B. Proposed Architecture for Modeling and Solving Big Data
Analytics Problems using ParaDist-HMM Model and Spark

The proposed approach, described in Fig. 3, is based on
use of Apache Spark offering Spark core for batch processing,
Spark streaming for real time processing and Spark sql for
connection to other applications and data exploration. Next, in
this section, we will present the main steps of the proposed
Spark-based architecture for modeling and analyzing big data
using ParaDist-HMM.

Spark is an open source big data processing framework
built to perform advanced analysis. It has several advantages
over other big data technologies like Hadoop and Storm. Spark
offers a complete and unified framework to meet the needs
of big data processing and analysis for various datasets (see
Fig. 4a). It allows applications on Hadoop clusters to be
executed up to 100 times faster in memory and 10 times faster
on disk. Spark is composed of seven elements: Spark core of

www.ijacsa.thesai.org 293 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Algorithm 2: ParaDist-Backward Algorithm
input : A model λ = (A,B,Π), a sequence of

observations O = o1, o2, ..., oT
output: The probability Pr{O | λ}

1 begin
2 for each executorj of N executors do
3 parallel do
4 βT (j)← 1 {j ∈ {1, 2, 3, ..., N}}
5 for t← T − 1 downto 1 do
6 for each executori,j of N∗N executors do
7 parallel do
8 calculate βt+1(j)aijbj(ot+1) and store

βt(j) in Betat {i, j ∈ {1, 2, 3, ..., N}}
9 for each executorj of N executors do

10 parallel do
11 calculate πibi(o1)β1(i) {i ∈ {1, 2, 3, ..., N}}
12 Pr{O | λ} ← sum(πibi(o1)β1(i))
13 return Pr{O | λ}

data engine, Spark cluster manager (includes Hadoop, Apache
Mesos and built-in Standalone cluster manger), Spark SQL,
Spark streaming, Spark machine learning library MLlib, Spark
GraphX and Spark programming tools.

The steps of the Spark-based architecture for modeling and
analyzing big data using ParaDist-HMM are the following:
Step 1: Data collection and data storage
For data ingestion, we used Sqoop (Fig. 4b) to import struc-
tured data from HBase, Hive or or Hadoop Distributed File
System (HDFS). For data streaming, we used Kafka (Fig. 4c)
to collecte the data streaming. It works in combination with
Spark for real-time analysis and rendering of streaming data
used. Data are, then, loaded in HDFS (Fig. 4d).
For cluster management, we used Spark on Hadoop YARN
cluster (Fig. 4e). This coordinates data ingestion from Sqoop
and Kafka and other services that deliver data into Spark clus-
ter. YARN cluster manager (Fig. 4f) allows dynamic sharing
and central configuration of the same pool of cluster resources
between various frameworks that run on YARN. The number
of executors to use can be selected by the user unlike the
Standalone mode. When executing a program on top of Spark,
it runs as a driver. The driver passes execution of parallel
operations such as map or reduce to Spark.
Step 2: Feature selection and extraction
The mllib.feature package contains several classes for common
feature transformations. These include algorithms to construct
feature vectors from text (or other tokens) and ways to nor-
malize and scale features.
STEP 3: Machine learning algorithms
In this step, we go through the learning machine algorithms
to solve big data analytics problems thanks to the Spark’s
machine learning library, MLlib in addition to the proposed
implementation under Spark of HMMs, ParaDist-HMM.
STEP 4: Model evaluation
When building machine learning models, we need to evaluate
the performance of the model on some criteria. spark.mllib
provides a suite of metrics for the purpose of evaluating the
performance of machine learning models.

Algorithm 3: ParaDist-Baum-Welch algorithm
input : Initial model λ = (A,B,Π), a sequence of

observations O
output: Optimal Model parameters

A = {aij}, B = {bj(vk)},Π = {πi}
1 Begin
2 for each executorj of N executors do
3 parallel do
4 α1(j)← πjbj(o1) {j ∈ {1, 2, 3, ..., N}}
5 for t← 1 to T − 1 do
6 for each executori,j of N∗N executors do
7 parallel do
8 calculate(map) αt(i)aij and store αt(i) in

Alphat {i, j ∈ {1, 2, 3, ..., N}}
9 sum (reduce) αt(i)aij , then multiply by

bj(ot+1){i, j ∈ {1, 2, 3, ..., N}}
10 Pr{O | λ} ← AlphaT .reduce(lambda a, b : a+b)

11 for each executorj of N executors do
12 parallel do
13 βT (j)← 1 {j ∈ {1, 2, 3, ..., N}}
14 for t← T − 1 downto 1 do
15 for each executori,j of N∗N executors do
16 parallel do
17 calculate βt+1(j)aijbj(ot+1) and store

βt(j) in Betat {i, j ∈ {1, 2, 3, ..., N}}
18 for each executort,i of T∗N executors do
19 parallel do
20 calculate γt(i)← αt(i)βt(i)/Pr{O | λ} and

store γt(i) in Gammat {i ∈
{1, 2, 3, ..., N}; t ∈ {1, 2, 3, ..., T}}

21 for each executort,i,j of (T-1)∗N∗N executors do
22 parallel do
23 calculate ξt(i, j)←

αt(i)aijβt+1(j)bj(ot+1)/Pr{O | λ} and
store ξt(i, j) in Xit {i, j ∈
{1, 2, 3, ..., N}; t ∈ {1, 2, 3, ..., T − 1}}

24 for each executori,j of N∗N executors do
25 parallel do
26 calculate

aij ← sum(ξt(i, j))/sum(γt(i)) {i, j ∈
{1, 2, 3, . . . , N}; t ∈ {1, 2, 3, . . . , T − 1}}

27 for each executorj,k of N∗M executors do
28 parallel do
29 calculate

bj(vk)← sum(γt(j))/sum(γt(j)) {ot =

vk; j ∈ {1, 2, 3, ..., N}; k ∈
{1, 2, 3, ...,M}; t ∈ {1, 2, 3, ..., T}}

30 for each executori of N executors do
31 parallel do
32 calculate πi ← γ1(i) {i ∈ {1, 2, 3, ..., N}}
33 set λ← λ and go to 18 unless some convergence

criterion is met
34 return A = {aij}, B = {bj(vk)},Π = {πi}

www.ijacsa.thesai.org 294 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

V. MATERIAL AND METHODS

In this section, we give a description of the dataset used
and we present the experimental setup and the architectural
configuration of the experiments.

A. Experiments Data

We performed various experiments to solve fundamental
problems of HMM based on datasets that we have selected
to be representative of the main field of application of HMM.
In the experiments, we firstly, used synthetic data, since they
allow better understanding of the real data and identifying the
special features of it for a considerable number of use cases.
They also help, by simulating real data sets, to fulfill their
gaps. Generating synthetic data also helps to get a view of
how a larger dataset would be, this view could save us from
getting a very large dataset and avoid a lot of work effort
that may require. In addition, synthetic data allow to know
if a model would be useful with the data by providing early
results with the synthetic data, giving a performance preview
without needing to retrieve more real data [42]. The synthetic
data were generated using PyMC3 HMM [43], an open-source
probabilistic programming package written in Python, giving
the parameters of the model consisting of sequences of integers
drawn from a multinomial distribution. We assume to have an
ergodic HMM. First, we choose the initial HMM parameters
randomly in such a way the initial state probabilities, the state
transition probabilities and the symbol probabilities satisfy
the following criteria:

∑N
i=1 πi = 1,

∑N
j=1 aij = 1 and∑M

k=1 bj(vk) = 1. An adequate choice for Π, A and B is
to assign to each state transition probability aij a real value at
random between 0 and 1/N, a set of random values between
0 and 1/N to each initial state probability πi and a random
value between 0 and 1/M to each symbol probability bj(vk).
Then, as reported in [44], given appropriate values of N, M,
A, B and Π, the HMM is used to generate an observation
sequence O = o1, ..., oT as follows: 1- Choose an initial state
qt = Si according to the initial state distribution πi. 2- Set
t = 1. 3- Choose Ot = vk according to the symbol probability
distribution in state Si, i.e., bi(vk). 4- Transit to a new state
qt+1 = Sj according to the transition probability distribution
for state Si, i.e., aij . 5- Set t = t + 1; return to step 3- if
t < T ; otherwise terminate the procedure.

Then, in order to evaluate the prediction accuracy of
algorithms, we used a real financial dataset consisting of daily
data from the Dow Jones Industrial Average (DJIA) stock
market index during the period between January 1, 2010 and
July 1, 2020 obtained from Yahoo Finance website [45].

B. Experimental Setup

For experimental evaluations, we have chosen scenarios
that reflect as much as possible a real world of big data
analytic.

In the first scenario, experiments are conducted in Amazon
EC2 Elastic Compute Cloud using t2.large cloud computing
platform with 8 GB of memory and 2 CPU with 2.0.1 as
version of Spark with 5 GB of storage for Amazon S3. In
the second scenario, we perform the evaluation in a pseudo-
distributed mode with 3 local machines (a laptop Acer aspire

5551g-p324g32mnkk with an AMD athlon II dual core proces-
sor p320, 2.3 GHz, 4Go ddr4 and on an integrated ati radeon
hd5470 512Mo graphics card based on the park xt graphics
processor , a laptop HP 620 with an intel core2 duo processor
T6570, 2,10 GHz, a memory 4GB ddr3 1333MHz sdram, 320
GB hdd and a graphics card mobile intel gma 4500mhd and
an Acer extensa tower pc workstation em2610 i5-4460 4th gen
intel core i5 4 GB ddr3-sdram 500 GB hdd freedOS PC black).
In the third scenario, we used Spark in single node (laptop
Acer aspire 5551g-p324g32mnkk) mode so, we can implement
the classic algorithms of HMMs. The experiments reported in
this paper were performed on Ubuntu Linux 18.04.5 LTS with
the Linux Kernel 5.4. For BW algorithm, in each experiment,
we randomly selected from the database a training dataset
consisting of 80 % of data and a tests dataset representing
a percentage of 20%. Several experiments were performed
independently.

VI. RESULTS AND DISCUSSION

In this paper, the results obtained after performing dif-
ferent experiments are evaluated, based on the comparison
between the classical algorithm and the proposed algorithm
(i.e., ParaDist-HMM) in a pseudo distributed environment and
in a cloud environment, in terms of running time, speedup
and accuracy using synthetic and real. In this section we give
a detailed description of different experimental evaluations
performed in this study followed by an analysis of the results.

A. Running Time

To investigate and examine the total running time, we
have conducted several experiments varying the number of
states and the number of sequences. Each experiment was
repeated 3 times and the running time is the average of the
running times of the three tests. We show the running time
in terms of data sizes (i.e., sequences number) and states
numbers. We compute the running time for different values
of states numbers (i.e., 10, 100, 1000, 5000, 7000 and 10000).
Fig. 5a illustrates the running time taken for the ParaDist-
Forward algorithm as it varies with the states number. We
can see a clear improvement since the time complexity is
optimized. In the second experiment, we compute the running
time varying the number of sequences with values ranging
from 10 up to 5000000. Fig. 5b shows ParaDist-Forward
algorithm performance in terms of running time according
to sequences number. Concerning BW algorithm, Fig. 6a
shows ParaDist-Baum-Welch algorithm performance in terms
of running time according to states number. While Fig. 6b
shows how the running time of BW algorithm varies with
the number of sequences. From the curves on these figures,
we can see a significant improvement in the running time in
terms of states number and sequences number, the difference is
very clear between the parallel distributed Baum-Welch and the
conventional one. We notice that increasing the states number
and sequences number (dataset size) has a positive effect on
the amelioration of running time.

B. Speedup

Speedup is one of the main parallel performance metrics
which measures the evolution of the execution time according
to the number of nodes. It measures acceleration, the benefit

www.ijacsa.thesai.org 295 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

obtained by an algorithm and a parallel implementation com-
pared to the same algorithm on a single node. Fig. 7a presents
a comparison between ParaDist-Forward algorithm in cloud
environment with 20 nodes, ParaDist-Forward algorithm in
pseudo distributed environment with 5 nodes and the classical
algorithm implemented in a single node on a local machine.
This figure clearly shows an excellent performance of the
proposed algorithm especially in a cloud environment. It is also
noted that as long as the number of states or the number of
sequences becomes important, the result is better. From these
results, we can see that the proposed algorithm is positively
affected by the size of the input data and the number of nodes,
hence its high scalability.

We also performed the classical implementation of the
Baum-Welch algorithm in a single node and the proposed
algorithm, ParaDist-Baum-Welch, in a pseudo distributed (5
nodes) and a distributed environment (20 nodes). The com-
parison results are shown in the Fig. 7b. We can deduce
that the proposed version of Baum-Welch algorithm in a
parallel distributed environment presents a great improvement
if we compare it with the results of the implementation
of the classical Baum-Welch algorithm in a single node.
For a more meaningful evaluation, we compared ParaDist-
Forward and ParaDist-Baum-Welch algorithms to those im-
plemented under Mahout MapReduce using the package
org.apache.mahout.classifier.sequencelearning.hmm as func-
tion of data size and nodes number. From Table II showing the
speedup percent comparison, we observe the superiority of the
improved algorithm compared to the classical version, where
both implementations (i.e., ParadDist-Forward and MapRe-
duce’s) are affected by the increase of data size since we
observe a decrease in the speedup. For small data sizes, the
proposed algorithm outperforms that of MapReduce by up to
three times and a half. However, as compared to MapReduce’s,
the proposed algorithm surpasses it up to two and a half
times for large data sizes. The Table III shows the results
of the acceleration comparison of both versions according to
the number of sequences and the number of nodes. This table
shows a clear improvement in terms of running time. We can
also notice that this increase is proportional to the number of
sequences and to the number of nodes. For small data sizes
the speedup is not too high and we also observe that for this
data case the classic algorithm outperforms even the proposed
algorithm for a low number of nodes. The ratio between the
speedup of the proposed algorithm and that of MapReduce is
of the order of 10. For large data sizes, our algorithm surpasses
that of MapReduce up to two times.

Finally, we also compared ParadDist-Forward to the main
proposed models in the literature in terms of speedup. Due
to the problem difference, the model parameters for different
run in this comparison might be different, thus we did not
directly compute the running time of each algorithm. Since
both the serial forward and the proposed parallel version in
each paper were executed using the same dataset with the same
parameters, we compute the relative speedup between the two
in each case and compare it over the other versions. Table IV
shows the result of average relative speedup comparison of
ParaDist-Forward algorithm compared to those of [32], [33],
[34], [35], [36], [37] and [38]. The results show that the
speedup of the proposed model has the best results compare
to the benchmark models.

TABLE II. FORWARD ALGORITHM SPEEDUP %

5 nodes 20 nodes
Sequences number Parad

Dist-
Forward

Map
Re-
duce’s

Parad
Dist-
Forward

Map
Re-
duce’s

7000 11,50 3,28 2880,02 1152,01
1000000 5,26 2,10 96,15 38,46
2000000 5,55 2,23 111,11 44,45
3000000 5,95 2,41 120,05 48,33

TABLE III. BAUM-WELCH ALGORITHM SPEEDUP %

5 nodes 20 nodes
Sequences number Para

Dist-
Baum-
Welch

Map
Re-
duce’s

Para
Dist-
Baum-
Welch

Map
Re-
duce’s

1000 0,31 3,08 3,01 30,15
500000 5,01 10,06 29,65 59,31
800000 5,50 10,87 255,35 512,63
1000000 6,01 11,95 260,86 518,57

TABLE IV. SPEEDUP FACTOR COMPARISON OF FORWARD ALGORITHM

ours [32] [33] [34] [35] [36] [37] [38]
Average
Speedup
Factor

5333.34x 9.2x 180x 3x 4x 880x 3.5x 1.1x

C. Accuracy

As we mentioned above, the data are divided into two
groups: a training dataset consisting of 80 % of data and
a tests dataset representing a percentage of 20%. Our pri-
mary goal is to investigate how the prediction accuracy of
the HMMs learned using different versions of Baum-Welch
algorithm varies as function of the number of iterations, in
terms of data size and as function of the number of nodes.
We compared the quality of prediction of the HMMs with
Baum-Welch algorithm in the conventional and the parallel
distributed versions, using the occurrences of the output values
correctly predicted. To assess the HMM performance, we used
two metrics: the accuracy and the Root Mean Square Error
(RMSE). The accuracy is defined as the number of correctly
predicted values under the total number values in the testing
set. The RMSE of a model prediction measures the difference
between the values predicted by a model and the values
actually observed. The RMSE is defined as the square root
of the mean squared error:

RMSE =

√∑n
i (Vobserved − Vpredicted)2

n

where Vobserved is the observed value and Vpredicted is the
predicted value at time i and n is the total number of test data.
Table V shows the prediction accuracy for HMM learned by
the conventional BW on a single node and HMM learned by
the ParaDist-Baum-Welch in a distributed environment. This
table illustrates how the prediction accuracy of the models
varies for different values of iterations numbers. We note, here,

www.ijacsa.thesai.org 296 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

TABLE V. HMM ACCURACY (%) VS ITERATIONS NUMBER

Number of Iterations ParaDist-
HMM

Conventional
HMM

100 87.01 87.01
600 87.08 87.08
1000 91.18 91.05
10000 93.56 93.50
100000 96.67 94.34

that we used, for the prediction accuracy evaluation, the finan-
cial dataset from the DJIA index in order to forecast financial
market behavior. We observe an improvement in the prediction
accuracy with the increase in the number of iterations. We
also investigated how well the learning algorithm affect the
prediction accuracy of the model as function of the number of
sequences.

Table VI shows the change in RMSE of HMM model
prediction with different data size for HMM learned by
ParaDist-Baum-Welch and conventional BW. As the number
of sequences increases, a slight decrease in the accuracy of the
models appears in both scenarios. But the difference in RMSE
values for high numbers of sequences indicates a difference
on how accurately the models predict the output. The HMM
trained using ParaDist-Baum-Welch clearly outperforms the
other model. Like shown in Table V, our model achieve
comparable accuracy to the classical one for lower numbers of
iterations and presents a best prediction accuracy of 96.67%
for a number of iterations equal to 100000, while the RMSE
of the model prediction achieves 3,850 as shown in Table VI.
The results indicate the proposed model is more accurate and
provide good estimation for large numbers of iterations for big
data sizes since the increase in the number of iterations, the
refinement of the model improves and therefore the learning
phase which explains the good results of the model.

We, finally, also compared our model to the main proposed
models in the literature. Table VII presents the results of
prediction quality comparison of our ParaDist-Baum-Welch
algorithm compared to those of Mahout MapReduce, [31] and
[32]. In this table, we compare the average prediction accuracy
achieved by this algorithm in an identical scenario. As we
can see, our algorithm gives almost the same result as that
of MapReduce and outperforms other benchmark algorithms
in terms of prediction accuracy. Although there is a minor
fluctuation in the accuracy for a lower number of iterations or
for small data, this is due to the random nature of the choice
of initial parameters and model topology and does not affect
the analysis to a large extent. A subject around the HMMs
which certainly remains interesting to explore. Nonetheless,
the ParaDist-HMM meets minimum benchmarks for accuracy,
often outperforming the conventional HMM mainly in a big
data context.

VII. CONCLUSION AND OUTLOOK

In this paper, we presented ParaDist-HMM model which
consists of new parallel distributed versions for main HMM
algorithms. To put this implementation into practice, we have
proposed a Spark-based architecture for big data analytics
by fully exploiting the benefits of this framework with a set

TABLE VI. HMM PREDICTION RMSE VS SEQUENCES NUMBER

Number of
Sequences

ParaDist-
HMM

Conventional
HMM

1200 2.115 2.213
6000 3.370 2.972
80000 3.566 3.215
100000 3.825 3.256
1200000 3.850 3.331

TABLE VII. PREDICTION QUALITY COMPARISON (%)

ours MapReduce’s [31] [32]
Average Prediction
Accuracy

96.43 96.41 92.04 92

of powerful tools for managing and analyzing big data. In
summary, the results of the various experiments carried out on
synthetic data and real financial data show that the proposed
parallel distributed algorithms using Spark outperforms the
classics and the other main solutions presented previously in
the literature in terms of running time and speedup. As for
Baum-Welch algorithm, our approach, indeed, improves the
learning accuracy leading to better learning performance. The
proposed ParaDist-HMM model is well suited to the big data
analytics problems, since it has shown good performance for
a very large amount of data and have proven to be robust and
efficient in terms of processing speed, execution time, accuracy
and scalability.

As a continuation of this work, we will deal with the
decoding problem for the HMMs. It is also necessary to study
continuous-time HMM case by focusing on the fundamental
problem of HMM which is the training problem. It would
also be important to address the case of multiple observations.
Naturally, it would be interesting to apply our results to other
time series problems mainly for modeling and forecasting other
financial time series, bioinformatics and medicine problems
and natural language processing problems.

As future work, some promising directions include study-
ing possible combinations between hidden Markov models and
fuzzy models or some deep learning algorithms or metaheuris-
tics techniques or to use cascading methods to improve the
obtained results. Future work will also focus on using other
metrics to properly evaluate these algorithms.

REFERENCES

[1] A. H. Hussein, Internet of things (IOT): Research chal-
lenges and future applications, International Journal of
Advanced Computer Science and Applications, vol. 10,
no 6, p. 77-82, 2019.

[2] I. Sassi, S.Anter and A. Bekkhoucha, An Overview of Big
Data and Machine Learning Paradigms, In : International
Conference on Advanced Intelligent Systems for Sustain-
able Development. Springer, Cham, p. 237-251, 2018.

[3] C. C. Qi, Big data management in the mining industry, In-
ternational Journal of Minerals, Metallurgy and Materials,
vol. 27, no 2, p. 131-139, 2020.

[4] G. T. Reddy, M. P. Reddy, K. Lakshmanna, et al., Analysis

www.ijacsa.thesai.org 297 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

of dimensionality reduction techniques on big data, IEEE
Access, vol. 8, p. 54776-54788, 2020.

[5] I. Sassi, S. Ouaftouh and S. Anter, Adaptation of Classical
Machine Learning Algorithms to Big Data Context: Prob-
lems and Challenges: Case Study: Hidden Markov Models
Under Spark, In : 2019 1st International Conference on
Smart Systems and Data Science (ICSSD). IEEE, p. 1-7,
2019.

[6] D. P. Acharjya and K. Ahmed, A survey on big data
analytics: challenges, open research issues and tools,
International Journal of Advanced Computer Science and
Applications, vol. 7, no 2, p. 511-518, 2016.

[7] M. A. Hashmani, S. M. Jameel, A. M. Ibrahim, M. Zaffar
and K. Raza, An ensemble approach to big data security
(cyber security), International Journal of Advanced Com-
puter Science and Applications, vol. 9, no 9, p. 75-77,
2018.

[8] V. Belov, A. Tatarintsev and E. Nikulchev, Choosing
a Data Storage Format in the Apache Hadoop System
Based on Experimental Evaluation Using Apache Spark,
Symmetry, vol. 13, no 2, p. 195, 2021.

[9] A. Ashabi, S. B. Sahibuddin and M. S. Haghighi, Big
Data: Current Challenges and Future Scope, In : 2020
IEEE 10th Symposium on Computer Applications & In-
dustrial Electronics (ISCAIE). IEEE, p. 131-134, 2020.

[10] J. Luengo, D. Garcı́a-Gil, S. Ramı́rez-Gallego, S. Garcı́a
and F. Herrera, Big data preprocessing, Cham: Springer,
2020.

[11] I. Sassi and S. Anter, A study on big data framewoks
and machine learning tool kits, In Proceedings of the
International Conferences on Big Data Analytics, Data
Mining and Computational Intelligence 2019, pp. 61-68,
2019.

[12] A. Mostafaeipour, A. Jahangard Rafsanjani, M. Ahmadi
and J. Arockia Dhanraj, Investigating the performance
of Hadoop and Spark platforms on machine learning
algorithms, The Journal of Supercomputing, p. 1-28, 2020.

[13] F. Ameer, M. K. Hanif, R. Talib, M. U. Sarwar, Z.
Khan, K. Zulfiqar and A. Riasat, Techniques, Tools and
Applications of Graph Analytic, International Journal of
Advanced Computer Science and Applications, vol. 10,
no 4, p. 354-363, 2019.

[14] A. K. Gupta, P. Varshney, A. Kumar, B. R. Prasad and
S. Agarwal, Evaluation of mapreduce-based distributed
parallel machine learning algorithms, In : Advances in
Big Data and Cloud Computing. Springer, Singapore, p.
101-111, 2018.

[15] T. Y. Liu, W. Chen and T. Wang, Distributed machine
learning: Foundations, trends, and practices, In : Proceed-
ings of the 26th International Conference on World Wide
Web Companion, p. 913-915, 2017.

[16] Z. H. Zhan, J. Zhang, Y. Lin, J. Y. Li, T. Huang, X. Q.
Guo, F. Wei, S. Kwong, X. Zhang and R. You, Matrix-
Based Evolutionary Computation, IEEE Transactions on
Emerging Topics in Computational Intelligence, 2021.

[17] M. A. Amin, M. K. Hanif, M. U. Sarwar, A. Rehman, F.
Waheed and H. Rehman, Parallel Backpropagation Neural
Network Training Techniques using Graphics Processing
Unit, International Journal of Advanced Computer Science
and Applications, vol. 10, no 2, p. 563-566, 2019.

[18] D. R. Westhead and M. S. Vijayabaskar, Hidden Markov
Models, Springer Science+ Business Media LLC, 2017.

[19] G. S. Grimmett, Probability and random processes, Ox-
ford university press, 2020.

[20] W. Zucchini, I. L. MacDonald, R. Langrock, Hidden
Markov models for time series: an introduction using R,
CRC press, 2017.

[21] L. Rabiner and B. Juang, An introduction to hidden
Markov models, ieee assp magazine, vol. 3, no 1, p. 4-
16, 1986.

[22] J. Lember and J. Sova, Existence of infinite Viterbi path
for pairwise Markov models, Stochastic Processes and
their Applications, vol. 130, no 3, p. 1388-1425, 2020.

[23] K. Slavakis, G. B. Giannakis and G. Mateos, Model-
ing and optimization for big data analytics:(statistical)
learning tools for our era of data deluge, IEEE Signal
Processing Magazine, vol. 31, no 5, p. 18-31, 2014.

[24] S. Alshamrani, Q. Waseem, A. Alharbi, W. Alosaimi, H.
Turabieh and H. Alyami, An Efficient Approach for Storage
of Big Data Streams in Distributed Stream Processing Sys-
tems, International Journal of Advanced Computer Science
and Applications, vol. 11, no 5, p. 91-98, 2020.

[25] H. Abounaser, I. Talkhan and A. Fahmy, A Parallel
Fuzzy-Genetic Algorithm for Classification and Prediction,
International Journal Of Advanced Computer Science and
Applications, vol. 7, no 10, p. 161-171, 2016.

[26] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T.
Verbelen and J. S. Rellermeyer, A survey on distributed
machine learning, ACM Computing Surveys (CSUR), vol.
53, no 2, p. 1-33, 2020.

[27] L. Zhou, S. Pan, J. Wang and A. V. Vasilakos, Machine
learning on big data: Opportunities and challenges, Neu-
rocomputing, vol. 237, p. 350-361, 2017.

[28] V. K. Gunjan, J. M. Zurada, B. Raman and G. R. Gan-
gadharan, Modern Approaches in Machine Learning and
Cognitive Science: A Walkthrough, Springer International
Publishing, 2020.

[29] M. Bhattacharya, Expensive optimisation: A metaheuris-
tics perspective, International Journal Of Advanced Com-
puter Science and Applications, vol. 4, no 1, p. 203-209,
2013.

[30] S. Russell and P. Norvig, Artificial intelligence: a modern
approach, 2002.

[31] X. Ma, D. Schonfeld and A. Khokhar, Distributed multi-
dimensional hidden Markov model: theory and application
in multiple-object trajectory classification and recognition,
In : Multimedia Content Access: Algorithms and Systems
II. International Society for Optics and Photonics, p.
68200O, 2008.

[32] L. Yu, Y. Ukidave and D. Kaeli, GPU-accelerated HMM
for Speech Recognition, In : 2014 43rd International Con-
ference on Parallel Processing Workshops. IEEE, p. 395-
402, 2014.

[33] S. Hymel, Massively parallel hidden Markov models for
wireless applications, Doctoral dissertation. Virginia Tech,
2011.

[34] A. Sand, C. N. Pedersen, T. Mailund and A. T. Brask,
HMMlib: A C++ library for general hidden Markov
models exploiting modern CPUs, In : 2010 Ninth Inter-
national Workshop on Parallel and Distributed Methods in
Verification, and Second International Workshop on High
Performance Computational Systems Biology. IEEE, p.
126-134, 2010.

[35] J. Nielsen and A. Sand, Algorithms for a parallel im-

www.ijacsa.thesai.org 298 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

plementation of hidden Markov models with a small state
space, In : 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum.
IEEE, p. 452-459, 2011.

[36] C. Liu, cuHMM: a CUDA implementation of hidden
Markov model training and classification, The Chronicle
of Higher Education, p. 1-13, 2009.

[37] J. Li, S. Chen and Y. Li, The fast evaluation of hidden
Markov models on GPU, In : 2009 IEEE International
Conference on Intelligent Computing and Intelligent Sys-
tems. IEEE, p. 426-430, 2009.

[38] C D. Mitchell, L. H. Jamieson, M. P. Harper and R.
Helzerman, Implementing a hidden Markov model with
duration modeling on the MasPar MP-1, ECE Technical
Reports, p. 190, 1994.

[39] R. Bosagh Zadeh, X. Meng, A. Ulanov, B. Yavuz, L. Pu,
S. Venkataraman, E. Sparks, A. Staple and M. Zaharia,
Matrix computations and optimization in apache spark, In
: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, p.
31-38, 2016.

[40] R. Gu, Y. Tang, Z. Wang, S. Wang, X. Yin, C. Yuan

and Y. Huang, Efficient large scale distributed matrix
computation with spark, In : 2015 IEEE International
Conference on Big Data (Big Data). IEEE, p. 2327-2336,
2015.

[41] M. Armbrust, T. Das, A. Davidson, A. Ghodsi, A. Or,
J. Rosen, I. Stoica, P. Wendell, R. Xin and M. Zaharia,
Scaling spark in the real world: performance and usability,
Proceedings of the VLDB Endowment, vol. 8, no 12, p.
1840-1843, 2015.

[42] J. Ferrando Huertas, Generating synthetic data through
Hidden Markov Models, 2018.

[43] J. Salvatier, T. V. Wiecki and C. Fonnesbeck, Probabilis-
tic programming in Python using PyMC3, PeerJ Computer
Science, vol. 2, p. e55, 2016.

[44] L. R. Rabiner, A tutorial on hidden Markov models and
selected applications in speech recognition, Proceedings
of the IEEE, vol. 77, no 2, p. 257-286, 1989.

[45] Yahoo!, Dow Jones Indus-
trial Average, finance.yahoo.com.
https://finance.yahoo.com/quote/%5edji/ (accessed Feb. 1,
2020).

www.ijacsa.thesai.org 299 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

(a) Split and distribute RDD into several blocks (b) Broadcast variable distribution across multiple nodes

(c) Parallel distributed calculation of forward variable

(d) Parallyzed initialization on Spark (e) Computation of the probability Pr{O|λ}

Fig. 2. Implementation Steps of ParaDist-Forward Algorithm.

www.ijacsa.thesai.org 300 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Fig. 3. Overview of Proposed Approach for Modeling and Solving Big Data Analytics Problems using ParaDist-HMM and Spark.

www.ijacsa.thesai.org 301 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

(a) Apache Spark Ecosystem (b) Sqoop architecture

(c) Kafka integration of Spark Streaming (d) HDFS Architecture

(e) Yarn Architecture (f) Yarn as cluster manager on Spark

Fig. 4. Spark-based Architecture for Modeling and Big Data Analytics using ParaDist-HMM Tools

(a) Running time vs States number (b) Running time vs Sequences number

Fig. 5. ParaDist-Forward Algorithm Performances.

www.ijacsa.thesai.org 302 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

(a) Running time vs States number (b) Running time vs Sequences number

Fig. 6. ParaDist-Baum-Welch Algorithm Performances.

(a) Forward algorithm scenarios comparison (b) Baum-Welch algorithm scenarios comparison

Fig. 7. Classical, Pseudo-distributed and Distributed Algorithms Comparison.

www.ijacsa.thesai.org 303 | P a g e


