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Abstract—For many years, the area of health care has evolved,
mainly using medical images to detect and evaluate diseases.
Nowadays, the world is going through a pandemic due to COVID-
19, causing a severe effect on the health system and the global
economy. Researchers, both in health and in different areas, are
focused on improving and providing various alternatives for rapid
and more effective detection of this disease. The main objective of
this study is to automatically explore as many configurations as
possible to recommend a smaller starting hyperparameter space.
Because the manual selection of these hyperparameters can lose
configurations that generate more efficient models, for this, we
present the MKCovid-19 workflow, which uses chest x-ray images
of patients with COVID-19. We use knowledge transfer based on
convolutional neural networks and Bayes optimization. A detailed
study was conducted with different amounts of training data.
This automatic selection of hyperparameters allowed us to find
a robust model with an accuracy of 98% in test data.
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I. INTRODUCTION

Currently, there are different areas of knowledge where
algorithms, heuristics, and artificial intelligence models are
applied. The area of health care has evolved year after year,
adopting the use of technology to save lives and improve life
quality. Mainly visual information is frequently applied for
the detection and evaluation of diseases. For that reason, the
established fields of computer vision and medical imaging pro-
vide essential tools. The integration of these technologies and
data analysis from various sources, real-time processing are
core competencies necessary for the successful improvement
of healthcare systems.

As we know, at the end of 2019, the first official cases
of COVID-19 began to be reported in China, which continues
to wreak havoc around the world today, mainly in the health
system and the global economy. Currently, around 113 million
cases of coronavirus (SARS-CoV-2) have been registered glob-
ally, 87 million cases of patients cured of COVID-19 and with
a mortality of more than 2 million people1. This virus is an
epidemic disease, which can cause respiratory infections from
a cold to serious illnesses such as Middle East Respiratory
Syndrome (MERS) and Severe Acute Respiratory Syndrome
(SARS).

1https://www.statista.com/statistics/1087466/
covid19-cases-recoveries-deaths-worldwide

In order to better control the problems caused by COVID-
19 and help reduce the death rate, the detection of this disease
through medical imaging is an important factor. Currently,
Chest X-rays (CXR) and Computed Tomography (CT) are
commonly used, which allow the severity of the disease in
the patient to be assessed and monitored.

At the beginning of the pandemic, at least in Latin Amer-
ican countries, such as Peru, serological and molecular tests
were in short supply. They were caused by the difficulty of
acquiring their central governments due to the high demand
for purchase by the other countries. In these countries, due
to the paucity of tests, chest radiographs were used more
frequently; these were used because they are more accessible
to patients. However, this presents a challenge for radiologists
since pneumonia can be caused by other viruses or bacteria,
making it difficult to diagnose and predict Covid-19 in the
patient.

Nowadays, to face this challenge, computer-aided diag-
nostics (CAD) is used, accelerating and improving medical
diagnosis precision. As part of this problem’s solution, artificial
intelligence algorithms are used due to the large-scale data
processing capacity integrated into CAD. For this case, an
analysis of medical images and deep learning is carried out.
Specifically, transfer learning is used with models based on
convolutional neural networks (CNN). Some of these models
already used for related studies are RESNET50[1], COVID-
NET[2], ResNet50V2 [3], VGG16 [4].

At the beginning of the pandemic, training data was not
available, this being the limitation even though the authors used
data augmentation techniques. In this work, data are collected
from various sources to make an extensive data set for further
study. Besides, Bayes optimization is used to carry out more in-
depth research, such as the effect of using different amounts of
data, the batch size, and other adjustments. Finally, it is studied
and recommended that pre-trained models better adhere to the
use of medical images to detect covid. This whole study aims
to help choose the most optimal values of the hyperparameters
that will directly influence the performance of these models.

All the above can help improve performance and speed to
detect cases of Covid-19, as well as other diseases that can
affect the lungs. This can be done by finding the best model
for this type of “problem”. For this study, Transfer Learning
is used, explained, and detailed in this article’s content, where
the results obtained are shown.

After this introduction, this article is organized as follows:
The works related to this article are explained in Section II,
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the methods and material used in this research in Section III,
the methodology in Section IV, and the experimental setups in
Section V, experimental result in Section VI, conclusions in
Section VII,and finally, future works in Section VIII.

II. RELATED WORK

There are works such as [5], [6], and [7], which use medical
images, such as images captured from colonoscopy videos,
endoscopies for the diagnosis of different gastrointestinal dis-
eases. If we refer specifically to the diagnosis of conditions
that affect the lungs. We have as a reference [8], where they
used images to classify different diseases that occur in the
lungs, such as pneumonia, sarcoidosis, and cancer, obtaining
in each case more than 78% accuracy. Another similar work
is [9], where they classify the two types of pneumonia, either
of viral or bacterial origin; for this, the authors divide their
methodology into three steps: first, they segment the critical
part of the lung, that is, the left and right area of the lung,
then they extract the characteristics of each image making use
of transfer learning, and finally they use those characteristics
for binary classification using the SVM algorithm.

The first works for this task used less amount of data
since it was not available due to the virus’s recent appearance.
Among the most used techniques are convolutional neural net-
works (CNN). An excellent example of Convolutional Neural
Networks’ application is the work [10], which could obtain a
precision of 85% despite the data limitation. It should be noted
that this work was only based on one model, SqueezeNet,
compared to the proposed work that is used up to 6 models.

Like [11] and [10], the works are both based on convolu-
tional neural networks, but at this time, due to the little data
available, data augmentation was used to have more training
data. The work [11] divides work into three phases: a data
augmentation phase, the second feature extract phase using
already trained CNN models based on transfer learning, and
finally, a classification phase.

In other works referred to as [12], carried out a few weeks
after starting this pandemic, due to the lack of data, they used
algorithms such as Generative Adversarial Networks (GAN) to
generate images with positive Covid-19 cases. These data were
used to train models, validate them, and diagnose the disease
from the generated models. Despite using a GAN instead of
data augmentation, the final precision obtained was 77%.

The use of some automatic hyperparameter optimization
approach is essential here. The CNN needs adjustments of
several hyperparameters that directly affect the model’s per-
formance. In-state of the art, they recommend using Bayes
optimization, having as its main characteristic the considera-
tion of past iterations, which is why it was chosen to follow
this approach. However, there are tools and libraries such as
Auto-Weka [13], Auto-Keras [14], and Google Vizier [15]
that promise this automatic optimization of hyperparameters.
But they do not have the flexibility to consider, for example,
batch size, pre-trained models, or some other characteristic
that could be considered as hyperparameters.

Taking as reference the work [16], wherein the same way
it uses this Bayes approach for the automatic optimization of
hyperparameters considering the pre-entered models and the

descent of gradients’ optimization function. However, recently
in work [17], they consider that the Batch Size is an essential
hyperparameter in the classification of medical images using
convolutional networks. They conclude that a large batch size
does not necessarily produce better accuracy. Inspired by these
studies, it was considered as optimization space: pre-trained
models, the optimization function of the descent of gradients,
learning rate, momentum, and batch size as hyperparameters.

III. METHODS AND MATERIALS

This section describes how the data were collected and the
sources from which they were obtained, and their character-
istics. Besides, this work’s theoretical concepts are explained
in a didactic way, such as the deep learning algorithms, the
transfer learning process, and the automatic hyperparameter
optimization algorithm.

A. Dataset

For the present study, we collected and used a dataset of
chest X-ray radiography (CXR) images acquired from various
publicly available medical repositories [18] [19] [20] hosted
on Kaggle. At the beginning of the pandemic, these data were
scarce, wherein most of the studies used data augmentation
to achieve a greater amount of data, both for training and
validation.

This repository was developed by a team of researchers
from the University of Qatar, Doha, Qatar, Dhaka, Bangladesh,
and their collaborators from Pakistan and Malaysia in col-
laboration with doctors. They created a chest X-ray images
database for COVID-19 positive cases along with Normal
and Viral Pneumonia Images. COVID data is collected from
different public access data sets, online sources, and published
articles. All images are in Portable Network Graphics (PNG)
file format and 1024 * 1024 pixels and 256 * 256 pixels. As
shown in Fig. 1, contain images for the two class (Covid-19
and Non-Covid-19).

The dataset used in this study includes a total of 5,641 2D
X-ray images in the posteroanterior (PA) view of the chest.
There was an unbalanced distribution of classes, 1300 images
labeled as covid, and 4341 as non-covid. In order not to bias
our model, 1,300 images were randomly extracted from each
class, specifically in the non-covid surplus class as shown in
Figure x, contain images for the two class (Covid-19 and Non-
Covid-19). The test dataset used in this work was collected by
[21], which is intended to simulate the real world. It is also
necessary to highlight that this data is not within the training
data. This test dataset contains 5000 non-covid images and 184
images categorized as covid-19.

B. Convolutional Neural Networks (CNN)

The convolutional neural network (CNN) is a deep learning
neural network class. In short, think of CNN as a machine
learning algorithm that can take an input image, assign impor-
tance (weights and learnable biases) to various aspects/objects
in the image, and differentiate one from the other. CNN works
by extracting features from images. Any CNN consists of the
following:

• The input layer is a grayscale image.
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(a) non-Covid-19 (b) non-Covid-19

(c) Covid-19 (d) Covid-19

Fig. 1. Example Images from Each Class
Covid-19 and non-Covid-19.

• The output layer, which is a binary or multi-class
label.

• Hidden layers consisting of convolution layers, ReLU
(rectified linear unit) layers, grouping layers, and a
fully connected neural network.

It is essential to understand that artificial neural networks,
made up of multiple neurons, cannot extract features from
the image. This is where a combination of convolution and
grouping layers comes into play. Similarly, convolution and
grouping layers cannot perform classification, so we need a
fully connected neural network.

1) Convolution: In the Convolution, product and sums
operations are performed between the starting layer and the
n filters (or kernel) that generate a characteristic map. The
extracted characteristics correspond to each possible location
of the filter in the original image. The advantage is that the
same filter (= neuron) is used to extract the same characteristic
in any part of the input, with this that manages to reduce the
number of connections and the number of parameters to train
compared to a multilayer network of real connection.

After applying the Convolution, an activation function is
applied to the feature maps. The recommended activation
function is sigmoid ReLU, selecting a suitable learning rate
and monitoring the fraction of dead neurons; it could also
be tried with Leaky ReLu or Maxout, but never use logistic
sigmoid.

2) Reduction: In Reduction, the number of parameters is
reduced by keeping the most common characteristics. The way
to reduce parameters is done by extracting statistics such as the
average or maximum of a fixed region of the characteristics

map; when reducing characteristics, the method loses precision
although its compatibility improves.

3) Sorter: At the end of the convolutional and Reduction
layers, it is often used fully connected layers in each pixel
is considered as an individual neuron as in a multilayer
perceptron. The last layer of this network is a classifier layer
that will have as many neurons as the number of classes to
predict.

C. Transfer Learning

Transfer Learning is the act of transferring knowledge from
one network to another or, in general, from one model to
another as shown in Fig. 2. Convolutional neural networks,
as we know, stand out for learning, on their own, to interpret
the images that we pass to them. In other words, they are
experts in creating high-quality features. For this reason, pre-
trained convolutional neural networks are, in many cases, the
ideal feature extractors. We give the definitions of “domain”
and “task”, respectively.

A domain D consists of two components: a feature space
X and a marginal probability distribution P (X), where X =
x1, ..., xn ∈ X . For example, if our learning task is to classify
documents, each term is considered a binary characteristic.
Hence, X is the space of all vectors of terms, xi is the ith
vector of terms corresponding to some documents, and X
is a particular learning sample. In general, if two domains
are different, then they may have different feature spaces or
different marginal probability distributions.

Here is a unified definition of transfer learning. Definition
1 (Transfer Learning). Given a source domain Ds and a
learning task Ts, a target domain DT , and a learning task
TT , transfer learning aims to help improve the learning of the
target predictive function fT in Dt using the knowledge in Ds

y Ts, where DS 6= DT , or Ts 6= TT .

In the above definition, a domain is a pair D = X,P (X).
Therefore, the DS 6= DT condition implies that XS 6= XT or
PS(X) 6= PT (X). For example, in our document classification
example, between a set of source documents and a set of
destination documents, the term’s characteristics are different
between the two sets (they use different languages), or their
marginal distributions are different.

Similarly, a task is defined as a pair T = , P (Y |X).
Therefore, the TS 6= TT condition implies that YS 6= YT or
P (YS |XS) 6= P (YT |XT ). When the destination and source
domains are the same, DS = DT , and their learning tasks are
the same, that is, TS = TT , the learning problem becomes
a traditional machine learning problem. When the domains
are different, then 1) the feature spaces between the domains
are different, that is, XS 6= XT , or 2) the feature spaces
between the domains are the same, but the marginal probability
distributions between the domain data are different; that is,
P (XS) 6= P (XT ), where XSi ∈ XS and XTi ∈ XT . For
example, in our document classification example, case one
corresponds to when the two sets of documents are described
in different languages. Case two may correspond to when the
source domain documents and destination domain documents
focus on different topics. Given the specific domains DS and
DT , when the learning tasks TS and TT are different, then
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1) the label spaces between the domains are different, that
is, YS 6= YT , or 2) the conditional probability distributions
between the domains are different; that is, P (YS |XS) 6=
P (YT |XT ), where YSi ∈ YS and YTi ∈ YT . In our docu-
ment classification example, case 1 corresponds to the source
domain has binary document classes, while the destination
domain has ten classes to classify the documents. Case 2
corresponds to the situation where the source and destination
documents are very unbalanced in terms of the user-defined
classes.

Furthermore, when there is some relationship, explicit or
implicit, between the two domains’ feature spaces, we say that
the source and destination domains are related.

Fig. 2. Transfer Learning Workflow.

D. Bayes Optimization Algorithm

Bayesian optimization is a technique used to optimize an
objective function f(x), also called latent or underlying [22].
Its application is made in scenarios where the observations
have a high cost, can have noise, and there is no expression
for f(x). Given these three characteristics, the objective is
to obtain the values that, in addition to providing the most
significant amount of information, minimize the objective
function in the least possible number of observations.

Scenarios can be proposed in artificial intelligence, such
as synthesizing a molecule with certain characteristics, where
each evaluation may require a real costly experiment in time
and money. In this case, we want to obtain the best parameter
configuration, given by a vector x, that obtains the smallest
error in f(x). Therefore the mathematical expression that
collects this would be the following

x∗ = min f(x) (1)

Where x is the input value, which minimizes the underlying
function f(x), and X is the feature space where it is being
optimized. If X is chosen wrong, f(x) is not optimized
correctly. In order to effect this minimization, a trade-off will
be made between exploiting promising solutions and exploring
unknown areas of the entry space. To achieve this trade-off,
the acquisition function will use the mean µ(xn + 1) and
the covariance σ2(xn + 1). To thus calculate the expected
utility of observing a certain point xn+1. Therefore, Bayesian
optimization is a technique that makes its predictions based

on the belief that one has about the model. This approach to
problems achieves better results than a simple random search
or grid search since neither of these strategies uses the model
to guide the minimization process.

The Bayesian optimization pseudocode follows:

1) Set t ← 0 randomly generate the initial population
P (0)

2) Select a promising string set S(t) from P (t)
3) Build network B using a chosen metric and con-

straints
4) Generate a set of new chains O(t) according to the

joint distribution encoded by B
5) Create a new population P (t+ 1) by replacing some

strings of P (t) with O(t) set t← t+1
6) If the termination criteria are not met, go to (2)

In the end, the idea behind Bayesian optimization is to use
the model through the Gaussian process in order to calculate
the next best point to evaluate, which is calculated using
the acquisition function. In this way, the problem becomes
optimizing the acquisition function in each evaluation, the cost
of which is considered negligible compared to evaluating in the
objective function since it lacks noise and is explicitly counted,
making it easier to optimize.

a) Acquisition function: The acquisition function is
of great importance within Bayesian optimization since it
regulates the trade-off between exploitation and exploration.
There are multiple methods used, such as the probability of
improvement (PI), expected improvement (EI), lower confi-
dence bound (LCB), entropy search (ES), and a portfolio of
several strategies, the latter usually giving better results. The
values returned by the acquisition function usually correspond
to the values expected to have a more significant improvement
in the optimization task. The first of the listed strategies,
probability of improvement, as the name suggests, measures
the probability that the following observation is better than the
best value obtained so far. Since the values of f (x) are those of
a Gaussian posterior distribution, the mathematical expression
that defines the probability of improvement is given by

PI(x) = P (f(x) ≤ f(x+))− ε

= Φ(
f(x+) + ε− µ(x)

σ(x)
(2)

where φ(· ) is the cumulative probability function of stan-
dard Gaussian distribution, ε is a regularization constant, and
f(x+) is the best value obtained up to that moment. The
problem with this strategy is that it is pure exploitation; once
there is a point with a good result, it directs the search only in
the vicinity of that point, so it tends to stay local minimums. To
also consider unexplored areas, the focus has to be changed
to maximize the expected improvement. In order to achieve
this, you must first define what the improvement is so that
following, you obtain:

I(x) = max{0, f(x+)− f(xn + 1)} (3)
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In which I(x) will only have positive values when the
evaluation at the new point xn + 1 is less than the previous
lower value f(x+). In order to continue with the calculation
of the expected improvement, it must be taken into account
that a Gaussian defined the values of f(x), so the probability
of improving I(· ) in the posterior distribution defined by µ(x)
and σ2(x), is obtained by solving the following integral.

Ξ(I) =

∫ ∞

0

1
√

2πσ(x)
exp(−

f(x+) + ξ − µ(x)− I2

2σ2(x)
)dI (4)

where I = I(x), gives as a result, the expected improve-
ment.

{
EI(x) = (f(x+) + ξ − µ(x)Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
(5)

where

Z =
f(x+) + ξ − µ(x)

σ(x)
(6)

Where µ(· ) is the probability density function of a standard
Gaussian distribution.

In both equations shown above, the regulation constant ξ,
which is added to f(x+), is used to specify that there could
be a value higher than the best found.

Finally, we will discuss the acquisition function that uses
the lowest confidence limit (or the highest, if it is being
maximized). This function is optimistic about the variance
σ(x). Next, the mathematical expression of this strategy is
presented

LCB(x) = µ(x)− νσ(x) (7)

where ν is a constant called kappa. Note that v ≥ 0 must
be met (since we want to minimize).

IV. METHODOLOGY

As seen in Fig. 3, the present work shows the architecture
of the proposed MKCovid-19 workflow. It is made up of two
main components of Training and Inference. Each element
consists of several sub-components. The training component
has a data separation structure, followed by data pre-processing
and the sub-component of automatic hyperparameter optimiza-
tion. Together, they make up the flow training and search for
the best model considering the different configurations.

A. Training Component

The flow and procedures to train our MKCovid-19 model
for the diagnosis of Covid-19 are detailed, which will depend
on the order in which they are performed.

1) Split Dataset: MKCovid-19 uses 75% data for training
and 25% for validation. The validation data is used to avoid
overfitting the models. Besides, test data is also used to
evaluate the model’s performance in real situations, that is,
the generalizability of the model.

Fig. 3. Architecture of the Proposed MKcovid-19 Model.

2) Data Pre-Processing: The input data are prepared fol-
lowing the pre-processing pattern used in training the pre-
trained models used in this work. Specifically, the images’ size
and normalization are converted to 224 * 224 pixels, being
the standard size used by the popular models of convolutional
neural networks (CNN).

3) Automatic Optimization of Hyperparameters: This sub-
component receives a search space that contains the values
that will not be optimized, such as iterations number and
epoch number. It also receives all the hyperparameters that
will be optimized, consisting of the learning rate, the batch
size, momentum, pre-entered models, and gradient optimizers.
At the end of each iteration executed, the statistical data
is saved in a CSV file. These data are the values of each
hyperparameter chosen by the Bayes optimizer, the loss of
each model, and the iteration number. Subsequently, the best
configuration is chosen based on the lowest loss obtained. With
these configurations of the recovered hyperparameters, the final
model is trained to evaluate it with the test data not seen by
the training model.

B. Inference Component

The final model generated in the training component is used
in this component. For any image consulted, it goes through
the same data pre-processing. Finally, the model manages
to classify the input image as Covid-19 or Non-Covid-19.
This inference component can now be consumed and used by
anyone, such as a medical specialist.

V. EXPERIMENTAL SETUPS

As mentioned in the previous sections, one of the main
objectives is to provide information on which pre-trained
model and hyperparameters can make it possible to obtain
more efficient models in the classification of clinical images,
specifically in detecting people with Covid-19. This section
details the procedures, definitions, and metrics used to carry
out our experiments to achieve this objective.
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A. Separation of Data into Different Sets

To evaluate the precision of the resulting models trained
using transfer learning for clinical data, specifically images
of lungs compromised by Covid-19. We want to identify
how much it affects the amount of training data, starting
from small datasets, up to considerable amounts, in this case,
2,600 images. This experiment is evaluated with the validation
dataset and the test dataset.

For this experiment, from the total of 2,600 selected
datasets, datasets of different sizes were randomly drawn, such
as 150, 300, 500, 1000, 1500, 2000, and 2600 (total data). The
complete optimization procedure was executed for each data
set, detailed in the Subsection 3.

B. Definition of the Optimization Space

A general non-optimized configuration was defined, with
50 epochs for each iteration and a total of 50 optimization
iterations. The hyperparameters search space contains learning
rate, momentum, pre-trained models, the gradient descent
optimization function, and the batch size. We can observe
these hyperparameters in Table I, where it is also shown
for continuous data, the minimum, maximum value, and the
increment. For discrete data, the set of values is shown.

TABLE I. DEFINE SEARCH SPACE FOR BAYES OPTIMIZATION

Hyperparameters Min Value Max Value Step Value
Batch Size 5 100 5
Momentum 0 1 0.1
Learning Rate log(0.01) log(0.02) -

Pre-Trained Models Resnet18, Resnet50, Googlenet,
Vgg16, Squeezenet, Densenet -

Optimizer SGD, Adam, RMSprop, Adagrad,
Adadelta, Adamax -

C. Evaluation Metrics

To evaluate the performance of the resulting model, we
have used some metrics that recommend state of the art, such
as Accuracy (Acc), precision (Pe), specificity (Sp), sensitivity
(Se), and F- score. Besides, the count indices are reported,
such as True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) that are used to calculate the
metrics as mentioned above, which also allow us to have better
analysis and understanding of them.

1) Accuracy (Acc): tp+tn
tp+tn+fp+fn

2) Precision (Prc): tp
tp+fp

3) Specificity (Spc): tn
tn+fp

4) Sensitivity (Sen): tp
tp+fn

5) F1-Score (F1): 2tp
2tp+fp+fn

D. Implementation Details

To implement and evaluate our proposed model, Google
Colab [23] was used, which provides an Intel (R) Xeon (R)
CPU @ 2.30 GHz, a 12 GB system memory, and a 16 GB
Tesla P100 GPU. The implementation of this model was done
in the Python 3.5 2 language. We used the pre-trained models
available from the Pytorch library [24]. For the Bayesian
optimization of hyperparameters, the Hyperopt library[25] was
used explicitly to optimize minimization. All the data used and
the codes developed for this work are available for future study
in the repository3.

VI. EXPERIMENTAL RESULTS

In this section, an analysis is made of the hyperparameters’
values obtained throughout the Bayesian optimization itera-
tions. The frequency of use of each hyperparameter is analyzed
together with their selection over time. Finally, the results are
presented based on the metrics mentioned in Subsection V-C,
comparing the models obtained with the validation data and
test data.

A. Analysis of the Use of Pre-trained Models and Gradient
Optimizers

In Fig. 4, the number of times that the optimizer used a pre-
trained model is observed. The frequent use could indicate that
a better model for classification has been obtained using that
pre-entered model. The result of executing the optimization
for each of the datasets shows us that each one chose different
pre-trained models, specifically for the data sets considered
small, such as 150, 300, 500, and 1000. This behavior can
be explained that when trying to minimize the loss in each
iteration by choosing a pre-trained model, overfitting occurred
due to the small training data.

On the contrary, if we analyze the frequency of the data
sets with more data in this work, that is, 1500, 2000, and 2600
(totality), we can observe that the Densenet model is used more
frequently. However, the set of 2600 data also has a similar
high usage frequency to the Squeezenet model. These results
could indicate that our Bayes optimizer could have decided
and/or modeled that Densenet is the best pre-trained model
for this problem. Furthermore, we conclude that the Vgg16
model is not recommended for this type of application.

Similarly, in Fig. 5, it is shown that the best optimizer
for gradient descent for almost all data sets was Adamax. The
difference in frequency of use compared to the other optimizers
is considerable. This statistic seems to verify the theory and
recommendation on using this optimizer by state of the art.

B. Analysis of the Behavior of the Hyperparameter Distribu-
tions

Fig. 6 show the sampling distributions and the search
choice of the best hyperparameters for learning rate, batch
size, and momentum for each dataset. It is observed that for
the Learning Rate, the curves have a similar shape and similar
values, independent of each data set’s data size. These curves

2https://www.python.org/
3https://github.com/kvvaldez/MKCovid-19

www.ijacsa.thesai.org 332 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Fig. 4. figure
Frequency of use of Pre-trained Models During Bayesian
Optimization.

Fig. 5. figure
Frequency of use of Gradient Optimizers During
Bayesian Optimization.

have a similar shape to the probability sampling curve but
with a range variation of the x-axis. This hyperparameter’s
best values in the present work range from < 0.01, 0.035 >.
This range of values could help us define the initial values for
a better fit and explore the smallest search space.

For the batch size curve, it is shown that the curves of
different data sizes differ from probabilistic sampling, but these
curves coincide that it is advisable to use small batch size data
in the range of < 8, 18 >.

Also, it should be remembered for the momentum curve
that this hyperparameter is only used by the SGD and RM-
Sprop gradient optimizers. The momentum figure shows two
ridges in the curves in the experiments: < 0, 0.03 > and the
other < 0.8, 0.99 >, which is close to one. It is necessary
to consider that hyperparameter ranges found during Bayesian
Optimization are not necessarily better for the test set, only
that they produce less loss in the validation data.

Finally, Fig. 7 and Fig. 8 show how the use of pre-trained
models and gradient optimizers change over time throughout
Bayes optimization. The figure is shown all iterations for
each dataset, where it can be observed before iteration 20,
many elements belonging to our search space are tested. Later,
starting at iteration 20, the optimizer takes a limited number of
specific gradient optimizers and pre-trained models. Similarly,
in Fig. 10, for each dataset, accuracy was maximized. Although
it is observed that the optimization has been minimal, this
happens because good results are obtained naturally, at least
for this problem. This difference of 1 or two points in the
accuracy can mean much gain when using these models to
use covid-19 diagnosis and consequently save lives.

Fig. 6. Sampling Distribution and the Distribution of Learning Rate,
Momentum, and Batch Size for the Different Dataset Sizes.

Fig. 7. Monitoring the use of Gradient
Optimizer Throughout the Optimization.

Fig. 8. Monitoring the use of Pre-trained
Models Throughout the Optimization.

C. Classification Results and Discussion

Fig. 9 shows the best models’ validation precision for each
data set. To obtain the best model, all the hyperparameter
values were ordered in increasing order according to the loss
obtained in each iteration. Then the first best hyperparameter
configuration was extracted for each data set.

It is also observed in Fig. 9 the obtaining of models above
94% precision. It seems to confirm that using transfer learning
works well for any data amount. Also, from the data set
1000 onwards, a very similar precision was obtained, which
is above 97%. The models’ performance validation throughout
the optimization was carried out with data that simulates a real-
world situation. That is, more people think they have Covid-
19 without having it, compared to people who have it. This
is because their symptoms are not only symptoms of a single
disease. For this simulation, the test data was not seen in the
training. This data consists of 183 images tagged with Covid-
19 and 500 images of people without Covid-19.

The result obtained with the test data is shown in Table
II, using a threshold of 0.4. It is observed that low accuracy
was obtained for ‘150 dataset’ because there are many false
negatives. On the contrary, for ‘300 dataset’, an accuracy of
88% was obtained, which could be considered a good value,
but compared to 98% in the validation, it is a considerable
difference. This difference in accuracy values could verify the
hypothesis mentioned within the Subsection VI-A where the
model cannot learn or generalize its learning because little
data was used for training. From the “500 dataset” data set,
accuracy values similar to the validation one are obtained,
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Fig. 9. Validate Accuracy of the Best Models from Each Data Set.

obtaining the best accuracy for data totality (2600 dataset).
This high accuracy value is due to the fact that the model was
trained with a more significant amount of data, which manages
to learn and generalize all the characteristics of an image with
a diagnosis of Covid-19.

TABLE II. RESULTS FOR TEST DATASET, BASED ON DIFFERENT
METRICS.

DATASET FN FP TN TP F1 ACC PRC SEN SPC
150 dataset 223 3 277 180 0.614 0.67 0.98 0.98 0.55
300 dataset 59 23 441 160 0.80 0.88 0.87 0.87 0.88
500 dataset 41 10 459 173 0.87 0.93 0.95 0.95 0.92
1000 dataset 10 12 490 171 0.94 0.97 0.93 0.93 0.98
1500 dataset 11 16 489 167 0.93 0.96 0.91 0.91 0.98
2000 dataset 6 13 494 170 0.95 0.97 0.93 0.93 0.99
2500 dataset 11 5 489 178 0.96 0.98 0.97 0.97 0.98

Fig. 10. Results of Hyperparameter Opti-
mization across Iterations.

VII. CONCLUSION

A detailed study was conducted, and a workflow was
presented for the automatic selection of hyperparameters for
the classification of images of people with Covid-19 using the

Pytorch library. Several experiments were carried out, within
which the hyperparameters were optimized for each data set
with different amounts of data. The pre-trained models were
included as a hyperparameter in order to try to know and
recommend which models best fit this type of medical image
classification model. For this reason, we conclude the best
fit of the pre-entered models towards our problem is highly
variable according to the amount of data. If we consider the
results obtained with relatively large data sets, the Densenet
models and Resnet in general, provide us with accurate and
robust models. As a result of this study, we made available
the best hyperparameters of the best model obtained with an
accuracy of 98%, which will help to quickly detect people
with Covid-19 with high sensitivity, using chest X-ray images.
Besides, due to the analysis seen in the VI-B sections, we
recommend smaller search spaces for this problem, which
will surely be very useful as a starting point for people who
want to train a model similar to ours. We then conclude
that Bayesian optimization is an effective strategy to increase
transfer learning use cases.

VIII. FUTURE WORKS

As a first future work, we recommend doing more iteration
in the optimization component to analyze better and conclude
the behavior of the hyperparameters considered in the search
space in this work. We recommend testing the other pre-trained
models not addressed in this study regardless of the image size
they were trained in since only models with image size 224 *
224 pixels were used. Finally, it is recommended to validate
this optimization workflow to classify other diseases that are
not necessarily Covid-19 images.
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